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Structure of Anomalous Coupling
(j—1) States

Kenichi MATSUYANAGI

Department of Physics, Kyushu University
Fukuoka

May 27, 1971

In spherical odd-mass nuclei in which
an opposite parity orbit of large spin j
in the major shell (such as 1f7., 1952) is
presumably being filled, there is a competi-
tion between a spin j- and spin (j—1)-
state for the ground state. The extra low-
lying states with spin (j—1) and with
opposite parity have been called the anomal-
ous coupling states (A.C.S.).

Low-lying excited states with spin (j—1)
have also been found not a few in the
1k, region. Moreover, strongly enhanced
E2 transitions between the (j—1) states
and the j states are observed in recent ex-
periments.” The enhancements of the
transitions are camparable to those of
phonon transitions in neighboring even-
even nuclei.

In the conventional phonon-quasi-particle
coupling theory, one would expect to ob-
serve a “quintet” with j—2<I<j4-2 re-
sulting from the coupling of the odd quasi-
particle (in the orbit j) to the phonon at
about the energy of the 2*-phonon state
in neighboring doubly even nuclei, since
there is no f/=1I=j orbit with the same
parity inside the major shell.

‘However, experimentally one finds that
(j—1) states lie close in energy to the
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Fig. 1. Splitting of a quintet and an ap-
pearance of (j—1) state close to a ground

state.

ground states, which means that the con-
cept of “quintet” is strongly violated and
therefore the (j—1) states should be re-
cognized as new collective
modes.

excitation
In connection with the possibility of
new collective modes, it should be noticed?

that the three quasi-particle correlations
illustrated in Fig. 2 have been neglected
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Fig. 2. Diagrams representing three quasi-
particle correlations. The phonon disas-
sociates into a pair of quasi-particle, one of
which reassociates with the odd quasi-parti-
cle while the remaining quasi-particle is
now the odd quasi-particle.

completely in the conventional phonon-
quasi-particle coupling theory. The charac-
teristic of this type of “phonon-quasi-par-
ticle coupling” lies in the following point.
The more significant the effect becomes,
the more the concept of two independent
excitations (quasi-particles and phonons)
becomes violated, and they are resolved to
form the new collective modes.

With the idea, we have proposed the
concept of dressed three quasi-particle
modes as new collective modes in spheri-
cal odd-mass nuclei in a previous paper.®
According to the theory, we construct the
eigen-mode operators for A.C.S. as follows:
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whereT%s,, (fr) means the quasi-spin
tensor of rank 3/2 composed of the quasi-
particle creation and annihilation operators
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in a large spin opposite parity orbit 7z, and
the summation with respect to &, ¢ should
be carried over proton and neutron orbits
in a major shell except for the 7 orbit.
It should be noticed that Y, becomes
very simple from parity considerations.
Furthermore, because of the special situa-
tion of shell structure, this new mode ap-
pears relatively “pure” (the coupling to
the single particle state is forbidden in
our truncated shell model space).
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Fig. 3. Excitation energies of dressed three
quasi-particle modes. Single quasi-particle
energies in orbit z are written by arrows.
It should be noticed that all energies are
measured from the ground states of their
modes. Thus the differences of these ener-
gies are those which correspond to the
spectra of odd-mass nuclei. The symbol
“ X ” means that the calculated energy of
(j—1) state becomes smaller than the single
quasi-particle energy E,. In this case other
angular momentum states are written by
broken lines. The nuclei whose (j—1)
states are found below j states are denoted
by the asterisk *.
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Fig. 4. Excitation energies of dressed three
_quasi-particle modes. Notations are the
same as Fig. 3.

Adopting the pairing plus quadrupole
force model, we can easily calculate the ex-
citation energies for these modes. In
Figs. 3~4 we present some results,
where pairing force strength and single
particle energies are taken from the work
of Kisslinger and Sorensen.? Quadrupole
force strength y are regarded as free param-
eters in each shell region except for the
usual mass number dependence, i.e.,

A=20"ATT.

Adopted values of y, are written in the

Figures.

From Nb% to Ag!", and also in each
isotope, the calculated energies of 7/2*
states go down as a function of mass num-
ber A, and this precisely corresponds to
the experimental result. The behavior of
7/2* states is something like that of RPA
phonons, but the effect of quardrupole
force y is strengthened only for the 7/2*
states due to the three quasi-particle correla-
tions, 'so the excitation energies of 7/2*
states go down faster than those of phonons.
The growth of three quasi-particle correla-
tions is demonstrated in these calculations
to be very strong although it may be
somewhat overestimated as is usual in the
new-Tamm-Dancoff approximations.

The 9/2- states found in Cd, Te, Xe
isotopes are also well explained in these
calculations with a reasonable value of %.
These states have been explained as
Kisslinger’s three quasi-particle states.»



998 Letters to the Editor

If 9/2- states are such states (extra de-
gree of freedom out of his phonon-quasi-
particle coupling theory), then we can ex-
pect 9/2- states also in Sn isotopes that
are single closed nuclei. But none of such

a level is observed up to now.® The

reason is well understood when we con-
sider 9/2- states as “dressed three quasi-
particle states”, as is shown in Fig. 4,
because in such single closed nuclei col-
lectiveness due to the other shells becomes
weak and so (j—1) states lie at about 1 MeV
higher positions.

Interesting result is that in Te isotopes
the trend of excitation energies w,; is
smooth but in Xe isotopes the change of
w,; is rapid and at Xe!??, the 9/2- state
cross below the 11/2- (single quasi-particle)
state. This indicates the instability of the
spherical ground state. Experiments also
show™ that the 9/2- states appear below
11/2- states in neutron deficient Xe iso-
topes below Xe!'?” and that the spectra of
adjacent even-even nuclei become more
and more quasi-rotational.
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|411=1/2 Rule for Nonleptonic
Kaon Decays, Duality
and Current Algebra

Akio HosovyA and Naoki TOKUDA

.Department of Physics, University of Tokyo
Tokyo

June 4, 1971

In a previous paper,? we investigated weak
nonleptonic kaon decays assuming duality,
current algebra and absence of exotic reso-
nances. Expressions for relevant amplitudes
are obtained, which enjoy all the conditions
stated above. The |4I]|=1/2 rule is then

Thus, there is a close connection be-
tween the growth of three quasi-particle
correlation (i.e., lowering of the (j—1)
states) and the phase transition “spherical”
to “deformed”.

This work was done in collaboration
with Prof. T. Marumori and Dr. A.
Kuriyama. Details will appear in this
journal.
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satisfied automatically, whereby the |41
=3/2 interaction is ruled out.» One may
not be surprised, however, if the scheme
in which only the spurion has an exotic
quantum number (/=3/2) and intermediate
resonances have ordinary ones leads to
internal contradiction.

In this letter it will be shown that |41
=3/2 parts are incompatible with duality
and current algebra. We do not assume
non-existence of exotic resonances. All the
possible Regge trajectories are taken into
account, that is, /=0, 1, 2 trajectories in
ww channels and I=1/2, 3/2 in K= chan-
nels. The resonances with /=2, 3/2 have
not yet been established experimentally, so
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Theory of Collective Excitations in Spherical
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Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes-——
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(Received September 24, 1970)

A new systematic theory of describing the collective excitations in spherical odd-mass
nuclei is developed. The theory can be regarded as a direct extension of the conventional
quasi-particle-new-Tamm-Dancoff method (i.e. the quasi-particle-random phase approximation)
for spherical even-mass nuclei into the case of spherical odd-mass nuclei. In order to con-
struct properly the theory within the framework of the quasi-particle-new-Tamm-Dancoff
method, it is shown to be decisive to introduce a new concept which precisely specifies the
“dressed” three-quasi-particle modes. The new concept is recognized in connection with the
““quasi-spin space” which has been introduced through the quasi-spin formalism for the pairing
correlations. It is not the purpose of this paper, part I, to go into a clear-cut formulation of
the theory and into detailed quantitative calculations, but rather to put an emphasis on the
explanation of basic ideas.

§ 1. Introduction

Recent accumulation of the experimental data illuminating the structure of
low-lying collective excited states in spherical odd-mass nuclei has stimulated
the investigation of problems on particle-vibration coupling.

An important effect of particle-vibration coupling, which has been neglected
for a long time, has been emphasized by Bohr and Mottelson” in the Tokyo
Conference in 1967: “In the phenomenological phonon-quasi-particle coupling
model, the lowest-order-perturbation effects which contribute to energies of the
excited states composed of the odd quasi-particle and the one-phonon, are shown
in Figs. 1A and 1B. The diagrams of type 1A are nothing but the conventional
ones which have so far been treated as ‘ phonon-quasi-particle coupling”, while
the diagrams of type 1B have usually been neglected so far. The physical effect
underlying the diagrams 1B is that the phonon disassociates into a pair of quasi-
particle, one of which reassociates with the odd-quasi-particle while the remain-
ing quasi-particle is now the odd-quasi-particle. Thus this effect is essentially
based on the Pauli principle between the quasi-particles composing the phonon
and the extra quasi-particle outside the core. The extreme importance of the
diagrams of type 1B can be recognized as follows. The diagrams of type 1A
consist of the coupling with the factor (wiu,—wv,v,) which can be quite small,
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Fig. 1A. Contributions of Lowest Order. The solid and broken lines represent the quasi-particle
and the phonon respectively. This type of particle-vibration coupling is accompanied by the
reduction factor (wius—vivs).

Fig. 1B. Contributions of Lowest Order. This type of particle-vibration coupling is accompanied
by the enhancement factor (u;vs+wviuz). Both (A) and (B) are from reference 1).

while the diagrams of type 1B involve the coupling with the factor (w,vs+ vius)
which is close to unity for low-lying states in the middle of the shell. Thus it
is likely that the description of collective excited states of almost all spherical
odd-mass nuclei is significantly effected by the inclusion of the effect.”

In the conventional phonon-quasi-particle-coupling theory,” the phonons are
regarded as ideal bosons described by the random phase approximation (the RPA)
and so are commutable with the odd-quasi-particle. Therefore, the effect which
underlies the diagrams 1B and is based on the Pauli-principle between odd-quasi-
particle and quasi-particles composing the phonon cannot be treated im principle
within the framework of the theory.

Thus we are forced to construct a new theory to treat properly the essen-
tial effect responsible for the diagrams 1B. Of course, the more significant the
effect becomes, the more the higher order diagrams of the type 1B must be
taken into account. In constructing the theory, therefore, it may be strongly
required to take the essential effect into account not by the perturbation approx-
imation but by diagonalizing the Hamiltonian in a certain subspace, in such a
way that we adopt the new Tamm-Dancoff approximation (i.e. the RPA) when
constructing the phonon modes in even-mass nuclei.

The main purpose of this paper is to propose a new systematic theory which
satisfies such requirements. The basic idea is as follows. Taking account of
the composite nature of the phonon, let us replace the phonon line in the dia-
grams 1B by the conventional correlated-two-quasi-particle line shown in Fig. 2.
Then the diagrams 1B can be decomposed into the corresponding microscopic
diagrams in Fig. 3. The structure of the diagrams in Fig. 3 shows that they
are composed of only two types of the quasi-particle interaction, FHy and Hy,
represented in Fig. 4 in §2, which are also well known to be responsible for
the phonon modes in even-mass nuclei. The situation never changes even when
we take account of any higher order diagrams of type 1B, and the excited state
corresponding to any such diagram is always represented as a superposition of
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—

Fig. 2. Representation of the phonon as the
correlated two-quasi-particles. Fig. 3. Microscopic structure of diagrams 1B.

the particle states with 3, 7, 11, 15, --- quasi-particles.*> We may thus conclude
that if we succeed in®constructing the correlated three-quasi-particle modes (i.e.
the “dressed” three-quasi-particle modes) including the corresponding ground-state
correlations in the framework of the new Tamm-Dancoff (NTD) approximation
(by using the two-types of the quasi-particle interactions Hy and Hy), the theory
satisfies the above-mentioned requirements in a very suitable way.

A serious formal difficulty in developing the basic idea (in constructing the
dressed three-quasi-particle modes in the framework of the NTD approximation)
arises from the well-known spurious-state problem. Owing to the fact that any
quasi-particle state |¢> is not an eigenstate of nucleon-number operator N, the
quasi-particle picture inevitably introduces spurious states arising from the nu-
cleonnumber fluctuation (N—N,)|4¢>, and only the states orthogonal to them
correspond to those of a physical nucleus. In the case of the “dressed” two-
quasi-particle modes, i.e. the phonon modes, it is a well-known and major advan-
tage of the NTD method that both the collective excited states and the correspond-
ing correlated ground state are orthogonal to the spurious states within the frame-
work of the NTD approximation. In our dressed three-quasi-particle modes,
however, the literal application of the NTD method never leads us to both
“physical” collective excited states and the ‘““physical” ground state orthogonal
to the spurious states, because the creation operators of the dressed three-quasi-
particle modes themselves generally involve some components of the number-
fluctuation operator (N—Np).

In order to avoid this serious difficulty and to enjoy the proper advantage
of the NTD method for the spurious-state problem, it is decisive to introduce a
new concept to specify the dressed three-quasi-particle states as the ‘“physical”
states (orthogonal to the spurious states). In §3, we show that recognition of
the quasi-spin space, which has been introduced through the quasi-spin formalism®
for the pairing correlations, plays an important role in introducing the new con-
cept to specify the ‘“physical” dressed three quasi-particle modes. Remember

*) This forms a marked contrast to the conventional “coupling diagrams” 1A, in which the
quasi-particle interaction of the type Hy represented in Fig. 4 in § 2 plays an important role as the
essential coupling between odd-quasi-particle and collective modes. Thus the states corresponding to
these diagrams are always represented as the superposition of particle states with 1,3,5,7, -+ quasi-
particles. '
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that the quasi-spin formalism labels the states of an identical-nucleon configura-
tion j* by a formal angular-momentum quantum number (i.e. the quasi-spin) which
is equivalent to the seniority number v, and that its generalization to the many-
shell case is greatly simple.”

After §4 we show that, only when with the new concept-to specify the
“physical” dressed-three quasi-particle modes, we can develop the systematic
theory to treat properly the essential effect responsible for the diagrams in Fig.
1B in the framework of the NTD approximation and can enjoy the proper ad-
vantage of the NTD method for the spurious-state problem.

In order to magnify the essential effect (based on the Pauli principle) res-
ponsible for the diagrams in Fig. 1B, and to illustrate the physical essence of
the theory without inessential complications, throughout this paper except the
final section we adopt the single j-shell model with nucleons interacting through
a general effective nuclear force. In the final section (i.e. §9) we discuss the
generalization to a realistic case, and show that no conceptual difficulties are
encountered in extending the essential idea developed with the single j-shell

model.

§2. The Hamiltonian

We start with the single j-shell model® with nucleons interacting through
a general effective nuclear force. The Hamiltonian is then given by

H=> (e,— ) cilc,+ ;@ CV prsCaicgicser (2-1)
[23 apr

where ¢, ! and ¢, are a creation and an annihilation operators of a nucleon in the
state & and 1 is a chemical potential. The matrix element of the two-body
potential C{/,4,; satisfies the relations

Dgrs= — Vgars = — Vagsr = Vrsag - (2-2)
After the Bogoliubov transformation
a=uc,'—sq.vey,
Ay =UCq— SaVCy (2-3)
u=cos0/2, v=sin0/2, s,=(—)""™,

our Hamiltonian may be written in terms of the quasi-particle operators, a,' and
a,, as follows:

H=>Ea/)a,+ ;acvam s cllegleser s, (2-4)
a apy

*) The single particle states are then characterized by a magnetic quantum number. These
single-particle states are designated by Greek subscripts. In association with the subscript a(=m,),
we use a subscript & which means —m,. For a basis of stationary states, it is possible to build the
entire treatment on real quantities if the phase convention is suitably chosen. Throughout this paper,
we always assume this to be the case.
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where [E is the quasi-particle energy, determined as usual together with the
parameters # and v of the Bogoliubov transformation, and the symbol :: denotes
the normal product with respect to the quasi-particles. In Eq. (2-4) we have
dropped the constant term corresponding to the energy of the BCS ground state.

For the convenience of later discussion, we decompose the interaction term
into the following parts:

Hintz 526 CVQ/QTS : CaTCﬁTCS(,‘r:
apy

=Hy+ Hy+ Hy, (2-5)
where
HX: Hm;+ Hhh+ th ’

pr + Hy, = ;‘fvama (u4 + 714) aaTa,@Tasar ,
apy
H,,= 45%](7 CVugrs (W) srspaqtaztazas ,
Hy,= BZ; CV grs (W™0") sp55{asag'as’a;’ + a;azaga.},
apr

Hy=27% CU, gsuv (u’—v*) s;{aaslas’ ar + alazaga.} . (2-59)
afr0

XA Y A

Fig. 4. Graphic representation of the interactions.

Each part is represented by one of the diagrams in Fig. 4. The interaction
Hy(=H,,+ Hy,+ H,,) conserves the number of quasi-particles, and is therefore
the only one considered in the Tamm-Dancoff calculation for a fixed number of

<

quasi-particles. In the conventional ‘“pairing plus quadrupole-force model”, the
parts H,, and H,, are neglected and the part H,,, which contains the factor
2uv, plays the role as the interaction Hy. The part Hy introduces the ground-
state correlations, and composes the diagrams of type 1B together with the part
Hy. Contrary to the Hy and Hy, the part Hy which involves the factor (#’
—9?%) plays an important role as an essential coupling between odd-quasi-particle

and collective modes, in the conventional “coupling diagrams” of type 1A.
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§ 3. Concept of “physical” dressed three-quasi-particle modes

3. 1. Quasi-spin space

For the convenience of a later discussion on the introduction of “physical”
dressed three-quasi-particle modes, here we briefly recapitulate the quasi-spin
formalism.”

Let us define the nucleon-pair operators coupled to the angular momentum

JM :

Aby :\/% 2 Gimamg| JM e, teg!,
(3-1)
Bly=— aZﬁ ijmamg|JM pc,'eg
where
Co=spcg=(—)Y Mcg. (3-2)
Then we can easily see that the three operators
S, =24}, 8. =8"4,,
S=(5) - (3)} -3 -9 o
have the commutation properties of angular momentum operators:
[S.,5_1=2S,, [S,,S.]1=+8., (3-4)

so that we call them the quasi-spin operators. In Eq.(3-3), NEchJca is the
nucleon-number operator and £=;+1/2 is the maximum allowed number of pairs.
From Eq.(3-3) the physical meaning of the quantum number S, is evident:

So=3(No— ), (3-5)

where NN, is the nucleon number. In order to understand the physical meaning
of the “quasi-spin” quantum number S, let us take up the equation

S_IS, S;=—Sy=0, (3-6)

which means that the state [S, So=—S) includes no J=0 nucleon pairs. By
definition, the nucleon number of this state is called the seniority v. We then
have

5218, So=—SY=S(S+1)|S, So=—S)
=[8:5_+5,(S—1]IS, S=—S5)
=§o(§o“1) IS, So= ’“S>>
=$(v—Q) {3 (-2 —1}[S, S,=—S). (3-7)

Thus the quantum number S is related to the seniority v through
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S=1(2—v). (3-8)

With the quasi-spin operators gi, S,, we can define quasi-spin-tensor opera-
tors Ty, of rank s and its projection s, in the quasi-spin space, as usual, by the
commutation relations

[SOS sso] :SOTsso s
[S., Tes,] =V (sF50) (s 50+ 1)Tspun -

The single nucleon operators ¢,' and ¢, are therefore regarded as spinors in the

(3-9)

quasi-spin space:
T1/2 1/2 (CK) = CaT s T1/2 —1/2 (05) =Cq . (3‘ 10)

The quasi-spin-tensor operators can be obtained from products of these elementary
operators by the standard vector coupling procedures. For example, we have

Ty (af)=cd'cs,
Ty, (af) = / % (c1%+Eucs') (3-11)
T1_1(CK6) =Culp » [

and

T2 52 (B7) =c,'cglc s

1
Tg/z 1/2 ((XB?’) E/\/-.?)— ‘{EaCBTC7vT "I" caTEBCTT + CaTCﬁTET} ’
(3-12)

1
Ts/z—l/ﬂ(aﬁr) E/\/—g {CaTg,@zT + EaCﬁTET + 5c:zg‘/SCTT} ]

~

T3/2 3/2(“57)55 E Cr .

Finally it should be noticed that there is no interference between the coupl
mg of quasi-spins and the coupling of ordinary angular mementa, because S,,
S, commute with the angular momentum operators .L, Ji

3.2. Rotation in quasi-spin space®

The quasi-spin operators Si, S, are associated with the transformation of
states under rotations of the coordinate system in the quasi-spin space. Let us
introduce a new coordinate system K’ obtained from the original system K (in
which the argument in § 3.1 has been done) by a rotation specified in terms of
the Euler angles w=(¢, 0, ¢). The transformation of states is then given by

|SS0y =R (0) | SSo)
=2 1SS ISSY | R () | SSu, (3-13)

where R(w) is the unitary rotation operator in the quasi-spin space
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R(0) = exp{—i¢S,} exp {—:08,} exp {—ipS,}, "

S . 3.14
§,=5,, syzé(sps_), (3-14)
z

and |S, Sp) is the state in the original system K while |S,.S;> means the state
in the new coordinate system K’. Remember that the quantum numbers S and
S, in the state |S, S, refer to the eigenvalues of S’=R(0)S*R~'(w) (=8§?
and §0=R(w) S,R! (0) respectively.

The matrix elements of R(w) define the conventional D (w) functions® in
the quasi-spin space:

Dsys, (@) =4S, S| R(0) S, Si)*

=S, S| R (@) S, Sop*. (3-15)
With Eq.(3-15), Eq.(3:13) becomes
1S, Sop = :@ Dg,.s, (@) ]S, Sy). (3-16)

Since R(w) is unitary, this can also be writen

1S, S =25 Disy (@) 1S, Sv7). (3-17)

By definition, the quasi-spin-tensor operators in the new coordinate system K’,
T, are related to those in the original system K, T, through
Tsso =R ((D) TssoR_l ((D> = Z Dg:’so (CO) Tssu’a

847

(3-18)

Tsso = R—l (U)) TssoR (U)) = Z Dgoso’Tsao"

Now let us take up a new coordinate system K, specified by the Euler
angles w,=(0, —0,0). According to Eq. (3-18), we then have the elementary

¢

quasi-spin spinors Ty, (@) in the K, -system by

<T1/2 1/2 (a{) > . <COS 0/2— sin 6/2) <T1/2 1/2 (Qf) > <3 ] 19)
T1/2—1/2 (af) Sin 0/2 COS 0/2 T1/2_1/2 (CK) .
With definition

| T ap(@) =ad, Tippo1p (@) =0 = Sulla, - (3-20)

Eq.(3:19) can be written
a. =uc,' —s,vey ,

Ao =UCy — SxgVCq

u==cos 0/2, v==sin /2,

*) We use a definition of the D function which is employed by A. Bohr and Mottelson.
(Therefore, the Dgosa, function here is the complex conjugate of that employed by Rose, and differs
from that employed by Edomonds by the phase factor (—)Se—S0"),
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which is nothing but the Bogoliubov transformation (2-3). We may therefore
say that the Bogoliubov transformation just corresponds to a special rotation w,
= (0, —0,0) of the coordinate system in the quasi-spin space.

In this new coordinate system K, the quasi-spin operators are given by

+ —«R((,Do)s R 1((1)0) ‘91/2Ano ’\
S_=R (a)o) S_R_l (a)o) = -Ql/ono s
Sy =R (00) SR (wo)

3" 4 o

=—;—<ﬁ—m,

where A}y and By are the quasi-particle-pair operators coupled to the angular
momentum JM

A= 3 CGimemglIM Yaclag
(3-22)
.IM— Zg<]m 771[3[JM>CZ“ ags
and 7 means the quasi-particle-number operator
A=Y aa,. (2-23)

Since S?= R(a)o)SaR‘ (wo) =S’ the quasi-spin quantum number S in the state
|S, So» in the new system K, (i.e. in the quasi-particle representation) has the
same physical meaning as Eq. (8-8):

S=1(2—v). (3-24)
From Eq. (3-21), however, the physical meaning of the quantum number S, is

now
Se=4%(n— ), (3-25)

where 7, denotes the number of quasi-particles. Needless to say, the BCS ground
state |¢o» is given by

|gop=[S=1%2, So=—32. (3-26)

Finally it should be noticed that the nucleon-number-fluctuation operator
(N—N,), causing the troubles of spurious states, is now given by

N—N,= (a*— ") (25,+ ) +2uv (S, +S.). (3-27)

This implies that in the quasi-particle representation any collective vibration
which involves motion of the quasi-spin operators S,, S, always contains the



Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I 793

spurious components.

3.3. Concept of “physical” dressed Zkree-quasi'—particle modes

"We are now in a position to construct the “physical” dressed three quasi-
particle modes (in the NTD approximation).

It is usual to characterize the conventional spherical tensor operators by the
amount of angular momentum they transfer to the state on which they act. For
example, a spherical temsor of rank A,7'(Ax), transfers an angular momentum 2 to
the state. (The different y# components of the tensor have to possess the same
intrinsic properties.) In the completely same way, we may characterize the
quasi-spin tensors T, by the amount of transferred quasi-spin s, i.e. by the amount
of transferred seniority Av=2s to the state on which they operate. At this stage
we can precisely define the concept of ‘“dressed” m-quasi-particle eigenmodes
which is customary used in the quasi-particle-NTD approximation: 7The eigen-
mode operators of the dressed n-quasi-paticle modes should be expressed in terms
of the quasi-spin tensor T, (composed of n quasi-particle operators) with the
transferred seniority Av=2s=mn. For example, the eigenmode operators of the
dressed two-quasi-particle modes, i.e. phonons are known to be composed of the
quasi-spin tensor Ts_i s (af8) with transferred seniority Ju=2s5=2. '

Eigenmode operators of our dressed three-quasi-particle modes (in the NTD
approximation) may, therefore, be written in the following form:

Clox = 33 32 furx @by : ) Ton 1, (@B, NEIE

where I and K are the angular momentum and its projection, and » indicates a
set of additional quantum numbers to specify the modes. The expression (3-28)
means that the eigenmode operators CJ,;x transfer the quasi-spin s=3/2, i.e.
4v=3 to the state on which they operate. With the aid of Egs. (3:12), (3-18)
and (3-20), the explicit form of the quasi-spin tensor 7%, (afS7) of rank 3/2 in
the quasi-particle representation is written

Ty o (@fr) =aaglar,  (3-292)

1
713/2 13 (CKBT) E~/3 {’d’aaBTaTT + aaT&'ﬁaTT + aaTczBTﬁr}
= : Ty 1p(aB7):

T .
+ /\/3 {657’35aaf - 5575aa5T + 6aﬁsaﬂyT} N (3 . 29b)

1 e
Tg/g_l/g (CKBT)E,\/’B— {aaT'dﬂ'd} + ?z’aaﬁTar + aaaﬁaﬂ}

=: Tspapn(aBr):
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1
+ ,J? {65'35a~7 - 6@15'“?1:/3 + 6755,5;&“} ’ (3 . 290)

Tspa—spe (BT) =0l oy | (3-29d)
Since Ty o, (af7) is antisymmetric with respect to (&, 8, 1), the amplitudes ¢,;x
(afr;s,) in Eq.(3-28) also satisfy the antisymmetry relation
Pz (@Br: s0) =Oppurr (7 1), (3-30)
where P\ is the permutation operator with respect to (&, 8, 7) and

1 for even permutations
Op= ] (3-31)
—1 for odd permutations. -

In order that the eigenmode operators (3-28) are the ‘“physical” ones
which create the states orthogonal to the spurious states (within the framework
of the NTD approximation), they are required never to contain any component
of nucleon-number-fluctuation operator (3-27), i.e. never to involve the quasi-spin
operators S,, S, With the purpose to find a condition for this requirement, we
rewrite Eq.(3-28) in the following form:

Clix =i 3 DG DM ) T o GOIIK),  (3:32)

where ),/ means the summation with respect to even values of J, and
On(G* (D)2 s0) Eo;w 2 {JjMmi | IK jjmameg| IM pdnrx (@B : 50).
o (3:33)
oo, (IR =30 53 < TiMomy IR Y jmam ol M T, eB)
(3:34)
with the even J.

From the antisymmetry relation (3:30), the amplitudes ¢,(7*(J)j}°I:s,) satisfy
the equation

On(F (DL 50) = — 2/ dn G UHF sV 2T +1) @ +1)

X W(Gili: J7J) (=), (3-35)
With the definition of the quasi-spin operators (3-21), it is now clear that the
condition for the eigenmode operators (3:32) to include no quasi-spin operators

gi, So is
$n (7 (0) 71512 50) =0, (3-36)

which is also written

2 Sa(l}nIK(aaT: SQ) =0. (3‘37)

a
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Here it is of interest to know that Eq(3-35) with the condition (3-36) is, in
its form, precisely the same equation as the coefficients of fractional parentage
(c.f.p.) with seniority v=3 for j*-configurations have to satisfy.

In the expression (3-28) of the eigenmode operators Cj;x, the second terms
in Egs.(3:29b) and (3:29¢), {Tsn12(aBr) —: Tsp1p(aBy):t and {Tspu-spn(aBr)
—: Typ1s(aBy):} (which include only one-quasi-particle operators), are automa-
tically dropped because of the condition (3:37). Thus, our eigenmode operators
of the physical dressed three-quasi-particle modes are finally defined by

Clix =7§'~ Y Gurm (BT 51): Toa, (@BY): (3-38)

aBy S,

with the conditions (3:30) and (3-37).

§4. Properties of eigenmode operators with Jv=3

The three-body-correlation amplitudes ¢nrx(af7;s) in Eq.(3-38) may be
determined so that CJ;x becomes a ‘“good” approximate eigenmode operator
satisfying

[H, Clix] = 0nClix — Znix 4-1)

where “interaction” Z,;x is composed of one-quasi-particle operators a,' and a,
(i.e. Tips, (@) with dv=1), third-order normal products of trilinear quasi-spin
tensors Tip,, (fy) with 4v=1 and fifth-order nomal products. Thus, in our
NTD approximation (concerned with the physical dressed three-quasi-particle
modes with 4v=3), the ‘“interaction” Z,;x is neglected in the first step. With
this approximation, direct calculation of Eq.(4-1) with Eq.(3-38) leads us to
the following equation which the correlation amplitudes have to satisfy:

Pnrx (Y 3/2)
" Gnrxc (@By: —1/2)
" Gurx(abr: 1/2)
Ynx(@B7: —3/2)

/ 3Daﬂr,a16m s T Aaﬁr,mﬁm 4 0 ‘ 0 ﬁanK (041517’11 3/2)
. Aaﬁr.rxlﬂlrl H —Daﬁr,mﬂm H Baﬂr,alﬁm > \/gBaﬁr,alﬁm ¢)nIK<C¥1.8171: - 1/2)
@181y ‘\/gB«zﬁr.alﬂm > Baﬁr,alﬂm » Daﬂr,alﬁlrl s Aaﬁr,a,ﬂm Onix(aBir1: 1/2)

O O Aaﬁr,a,ﬂlr, [ 3Dm91',w1[?1n ¢)an (a131T1 N 3/2)
| , (4-2)

b4

where

Aopy, By =

%—u%ﬁ {aBr| VelauPiry — 2{aBr| VrlauBir} ]
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Bugr ot Eguv (@ — v (aBr| ValauBirsd — 2{aBr| Vil aubur D}

1
Daﬁr,alﬂ,nE'—‘ Z 6PP'6\dﬂf|6ﬁﬁ;6TT1.E

3! papn

-

+ —§—{<u4 + 0% <aBr| Valaubursd + 4wt afr | Vil st}
<C¥57r VGIQIBIYI>E:§1?P§”6P P{C(jaﬁdllﬂa?;h + Cvdﬁ’halaﬂﬁ —}_ CVal?ﬁlrlé‘Tax} H

<CKBT|VF[051817’1>E*1* > 6PP{CVaE;Ew,5ﬂ5b’x6m.
» 3! e@@bn

-+ CVamETISﬂSDtl 67‘5’1 + CV“T1EﬂJ'Sﬂs'I"16T‘¥1} . /
(4-3)

In Eq.(4-3) the symbol » pwg,) means the summation of all permutations of («,
B,7). For simplicity, we shall often use the matrix notation with respect to
(e, B, 7), with which Eq.(4-2) is written '

Yo (3/2) 3D —4 0 0 Y dux(3/2)
$ux(—=1/2)| | A —D B V3B || gux(—1/2) 1.9)/
O e (1/2) | V3B B D —A || pux(1/2) ( -2)

Garx(—3/2)) L 0 0 A —3DI\¢ux(—3/2))

Of course, Eq.(4-2) is compatible with the conditions (3-30) and (3-37).
Let C} ;x with the positive eigenvalue 0,z (which is reduced to 3E in the
absence of the interaction) represent the creation operator Y., of the mode

under consideration:
CZ;,,IKE YnTIK, O, x>0 . : (4 : 4)

Then the corresponding annihilation operator Y,;x also satisfies Eq.(4-1) under
our approximation (to neglect the ‘“interaction” Z) with the negative eigenvalue

Wy 18k= ’_‘0)7,,+1K<O, so that

Crx=Ynr, On 18= — Wn, 150 . (4-5)
We thus obtain
CnJK:CJ_iK . ; (4-6)
This implies a condition for the correlation amplitudes, o
Gn_1x(BT:3/2) 0 0 0 17[¢nx(@BT7:3/2) SaSaS,
bax(@fr: —1/2)| | 0 0 1 0| gnu(@sr: —1/2)
Gnax(aBr:1/2) | | 0 =1 0 0| dnux(@B7:1/2) ’
Ynrc(afr: —3/2) L—=1 0 0 0Jlg,x(@B7: —3/2)

(4-7)
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which is consistent to Eq.(4-2).

Now it is very important to examine the compatibility of Eq.(4-2) and another
decisive condition for the correlation amplitudes which is essential to the NTD
approximation. This condition is implicitly related to the orthonormality problem
of the various states Y ,x|@,> (Wifhin the framework of the NTD approxima-
tion):

{Bo| Y i Y x| Do) = O nm0 11 O (4-8)
where |@,> is the correlated ground state (in the NTD approximation). With
the aid of Egs.(4-4) and (4:5), Eq.(4-8) may be written

Do) {Crm.rxrs Cl1x} 4100 = 00110 s
<@0[ {Cm-I’K’3 C;{_IK} + | @o> = 6nm6zp5KK'a

where we have used the fact Y,x|@o>=0, ie. Cpnixl@=C, 1x|@,)=0, and the
symbol {A, B}, means the conventional anticommutation relation

{A,By,=AB+BA. (4-10)

(4-9)

(Here it should be noticed that, contrary to the case of phonon modes, in Eq.
(4-9) we have used the Fermion-type anticommutation relations for our eigen-
mode operators of the physical dressed three-quasi-particle modes.) As is re-
cognized from the formal structure of the NTD theory for conventional phonon
modes, the fundamental essence of the NTD approximation is to define the inner
product and its orthogonality of correlation amplitudes in such a way that they
become equivalent to the ground-state-expectation values of commutation relations
of the eigenmode operators under consideration. We may, therefore, set up the
form of the inner product and its orthogonmality of our correlation amplitudes in
a consistent way to Eq.(4-9):*

(me’K’ ) WnJK) Eg:ﬂr (ﬁbm*I’K; (aBT 3/2) » ¢}'m.:I’K’ (CKBT - 1/2) s

e (@BT:1/2), e (BT —3/2))

Onax(B7:3/2)

nax(afr: —1/2)
XT

Onax(Br:1/2)

nax(afr: —3/2)

where 7 is the metric matrix, the 4 x4 matrix elements of which are certain

real numerical constgnts. Since (¥, x+¥nix) is real by definition, T must be
Hermitian ’ :

== 6nm61['6KK’ > (4 * 11)

— L (412)

*) An explicit justification of the equivalence of Eqs. (4:-9) and (4-11) will be given in §7.
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From Eq. (4-7) and Eq. (4-11) with n=m, I=I', K=K’, we also have

0 0 0 -1 0 0 0 1
0 0 -1 0 0 01 0
T= : T (413)
0 1 0 0 0O -1 0 O
1 0 0 0 —1 0O 0 O

Equation (4-11) with the metric T satisfying Eqgs.(4-12) and (4-13) is the deci-
sive condition which our correlation amplitudes (in the framework of the NTD
approximation) have to satisfy. Thus the compatibility of Egs.(4-2) and (4-11)
is essential in constructing our NTD theory.

The compatibility may be satisfied if we could have

TM=Mttt=M~*T, (4-14)
where M is the matrix on the right-hand side of Eq. (4-2)’:
3D -4 0 0
E -D B V3B - (4.15)

v3B B D -4
0 0 A 3D

Equation (4-14) means that, under the definition of inner product (4-11), the
matrix M beomes a self-adjoint operator, so that the eigenvalues w,;x are gene-
rally real and the correlation amplitudes ¢nx(@B7;s,) satisfy the orthogonality
relation (prxCnrx) =0 if nxm.

To examine Eq. (4-14), let us write the matix T as

a b c 0
b d 0 -—c¢ '

T= , (4-16)
c 0 d b

0 —c b a
(a, b, ¢, d: real numerical constant)
which satisfies the conditions (4-12) and (4:13). Then Eq. (4:14) leads us to
Ca=—d, b=0,> c=0,
~ } (4-17)
V3Bd=0.

This implies that it is necessary to reject +/3B from M in order that the matrix
M satisfies Eq. (4-14) together with the metric T having a simple form

1 0 0 0
0 —1 0 O
T= (4‘18)
0 0 —1 0
0 0 0 1
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Here it should be emphasized that, by definition in Eq. (4-3), B comes from
ony the interaction part Hy (in Eq. (2-5)) which has no responsibility to the
type of diagrams in Fig. 1B. Therefore, it is consistent to the purpose of this
paper discussed in §1 to reject B from the matrix M. The rejection of B from
M means that in Eq. (4-1) all terms coming from [Hy, Cl;x] should be newly
included into the “interaction” Z,x.

Thus we finally arrive at the eigenvalue equation (to determine the correla-
tion amplitudes) which is wery suitable for our purpose discussed in §1 and is
compatible with the definition of the inner product (4-11) with the simple me-
tric (4-18):

Gz (3/2) 3D —4 0 0 \ gux(3/2)
Pux(—1/2)| [4 =D 0 0 Paz(—1/2)
N ux@2) | L0 0 D —A |\ Pux1/2)
G (—3/2) 0 0 A —3D' \pux(—3/2)
3D 4 0 0 Gnrx(3/2)
_[4 D o0 0| [$ux(=1/2)) (4.19)
0 0 —D —A| \gux(1/2)
0 0 —A4 —3D \pw(—3/2)

§ 5. Physical meaning of eigenmodes with dv=3

Except for the case w.;x=0, the eigenvalue equation (4-19) is simply reduced
3 0\ /= (3/2)
i D>( o)y o
< D >/ 1 0> <¢MK(1/2) )

A4 —3D/\ 0 1/\gux(—3/2))
(5-1b)

1
where 0{lx= —wx. Thus the eigenmode operators with the positive energy
solutions w$);x>0 (which are reduced to 3E in the absence of the interaction)
in Eq. (5-1a) are now written

Cn IR== Yz IK

to

)

o (gonm(l/z) )

I

nlK

(pnIK( - 3/2)

\/QT o; {nax (@Br:3/2): Topy s (b))

- A dnax(@br: —1/2): Topoip(afr)h. (5-2)

With the aid of Eq. (4:7), the corresponding annihilation operators Y,;x are
expressed as
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:VL_! aZBT {nax(@By: —3/2): Tap_sp(aBy) :

+ ¢n.IK(aBT: 1/2) T3/2 1/2 (a{BT> }, (53}
which correspond to the eigenmode operators with the negative energy solutions
0P x=—0x<<0 in Eq. (5-1b). The solutions of Eq. (5-1b), therefore, leads
us to the Hermitian conjugate operators to the eigenmode operators obtained

with the solutions of Eq.(5-1a).
For simplicity, hereafter we use the following notations:

e (@B7) = fn,1x (@Br : 3/2), } (5-4)
Oz (OBT) =P (aBy: —1/2).
Equation (4-7) is then written
Uiz (ABT) = Yn1x (EPRT: —3/2) 5aSpSr ’} (5-5)
1 (ABY) = Y1z (ART: 1/2) Susps,
and the orthonormality relations (4-11) are simply expressed as
(T.'IVhI’K’ : mIK) Egr{ﬁbmd’lf’ (“BT : 3/2) ¢nJK(afBT 3/2)
—mrx (@Pr: —1/2) Gnax(afr: —1/2)}
= 2 mrre (OBY) bz (QBT) = G (BT Qre (apr)}
= 6nm611’6KK’ >
T Cnix) Eo; {—Vmrx (@Br:1/2) Purx(afr:1/2)
+ Dz (BT —3/2) Ynax(afr: —3/2)}
= (;T {Gmrx (@BY) Yurx(ABT) — Pmr e (ABT) Purxc (BT}
= 0nm0 110 & - /
(5-6)
The physical interpretation of the operator
Vine= o 3 W (@Br): Tusos (@)t + o (@) Tonsn (@B)}
(5-2)’

is clear: Yi,x creates three-quasi-particles with the large amplitudes (Ynrx(afST),
accompanying the small (one-quasi-particle-creation and two-quasi-particle-annhila-
tion) amplitudes ¢nx(afy). In the absence of ground-state correlations, Yire
becomes the operator which creates an exact three-quasi-particle eigenstate with
p=3 in the sense of the Tamm-Dancoff method. .

So far we have discussed only the eigenmode operators Y}!;x which have
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physical meaning. At this stage, it is important to emphasize that the eigenvalue
equation (5-1a) has solutions which inevitably lead us to “special” eigenmode
operators:

1
V31
= An.,zK > (5 : 7)

CII(,IK = § {norx (@BY): Tspz 50 (afsy):+ O (@BY): Toppoap (aBr):}

which have the large amplitudes ¢, x(afy) and the small amplitudes P rx(ST),
and have no physical meaning. Needless to say, the conjugate creation operators
Al ;% arise from Eq. (5-1b). The appearence of the “special” eigenmode ope-
rators Al ;x (having no physical meaning) is essentially based on a special situa-
tion of the ground-state correlations due to our physical dressed three-quasi-par-
ticle modes. The original interaction responsible for the dressed three-quasi-particle
modes (and so responsible for the ground-state correlations) is not a three-body
interaction but the two-body interaction. Therefore, the ‘“bare’ three-quasi-
particles can be “dressed” (by the ground-state correlations) only through the
amplitudes @nx(afy). The existence of the amplitudes ¢@,x(@By) inevitably
leads to the appearence of the “special” eigenmode operator A}, ;x having the large
amplitudes @nrx(afy). In the absence of the ground-state correlations, which
means that ¢u.x(@By) vanish, the “special” eigenmodes do not appear.

As one of the inherent properties of Eq. (5-1a), we have the orthogonality
relations concerning the ‘“special” solutions

(Tryrx Cnix) = Z {Dny1 57 (aBy) Onyrxc (aBy) — Pny’ 17K7 (afr) Pnorx (afr)}
=0 if (n'I'K’)2 (mIK), | (5-8a)
CINT V,ix)= Z {nrx (afST) Do (7)) — @urrx (BY) DnoIlE (afsr)}

—0. (5-8b)

The existence of “special” eigenmode operators Al ,x, which have no
physical meaning, imposes an important condition upon the state vectors|@) in
the framework of the NTD approximation: Any state vector |@) which actually
has physical meaning must satisfy the supplementary condition

Azl 0>=0 . (5-9)

§ 6. Structure of the ground-state correlations

Characteristics of structure of the ground-state correlations due to the physical
dressed three-quasi-particle modes with 4o =3 should be determined in principle
through properties of the fundamental equation (4-19) (with the condition (3-37))
which defines the three-quasi-particle modes. As is seen from Eq. (4-3), the
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fundamental equation (4-19) does not contain any matrix element of the part Hy
defined in Eq. (2-5). The diagrams considered in the correlated ground state
|@,) are therefore closed diagrams which are composed by combining only the
matrix elements of Hy and Hy, so that |@,) may be generally written as a super-
position of 0, 4, 8, 12, .-+ quasi-particle states:

|00y =Co| oy + %ﬁcl (aBrd) adlagarltast| gy

+ ;} Cy(aBroepm) alaglaras’asta,ta,lat go)
apr

spul
deeeenes , 6-1)

where |¢o> is the BCS ground state and C, is the constant related to the nor-
malization of |¢g».

The coefficients C in Eq. (6-1) should be determined in a consistent way
to the framework of the approximation which we have used in obtaining the
fundamental equation (4-19), by the conditions Yux |0 =0 and A, x|@)=0.
From the supplementary condition (5:9) for the ground state |@,», we have a set
of recurrence relations connecting C, to C,_;, the first of which is

Cor (@B1) ~1243(33) 33 0nP{ 33 ot Qi) D C @) =0 .
(6-2)

Combining Eq. (6-2) and Eq. (5-8b) and using the antisymmetry property of C,
(aBr0) with respect to the permutation of (&, f,7,0), we obtain a relation to
determine C,;(af70) in terms of the physical amplitudes:

Gurs(@Bp) ~12v3( ) 53 00P{ 33 Gurr (i) OrsessCa (@Baus) /O =0
(6-3)

After determining C,, we may proceed to the next relation connecting C, to C,
in order to determine C, and so on.*

This procedure within the framework of our approximation suggests that
the correlated ground state |@,> in question is of the form:

100> = Co exp (kK o} |g>=Co exp{W T g, (6-4)
where
KLOEVZL: ; 7=0(aBrd) alas’a,’as', 6-5)

%;Tax?r:o (afrd) =1,

*) We show in § 7 that the ground state |@> obtained from the relation (6-3) satisfies also the
relation Y,rx|®>=0 under the basic approximation of RPA.
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and the constant 2 and xJ=o(aBr6) are defined through the relation

gm0 (ayd) =T (6-6)
«/ C,
Needless to say, %s-o(aB70) is antisymmetric with respect to the permutation of

(o, 8,7, 0).

In order to see the physical essence of the approximation used in obtaining
the expression (6:4) for the ground state |@,), it is convenient to take up

{Oo| [Kmos K}oo] 100
=1—-473 Z A7=0 (1710 Y=o (1B1718) { Dol as'ag| Do)

aB a 8111

3> 2 Xr=0 (Cs5103) Y7=0 (CaB17 D) <$o|aaTdﬁT4 as| Doy

aBrd af;

32 Z Xr=0 (@B70) Y70 (Ct1f1710) <Dy laa,aﬂlanaaaﬂa |Dy).

0‘37’5 aByry

6-7)

Using the expression (6-4), we then can calculate the expectation values on the
right-hand side of Eq. (6-7), the largest terms of which are of the order of A%

i.e.

D, aﬂ[@0>_‘

aﬂ

289
=4k’ Z Ka=0 (CKlBlTlCK) Xr=0 (“1617’1.8)

@y By1y
~O0 (k/22) 0up » (6-8a)
{Dlaag'a,as|0y)
. 121@2“23} K=o Q1) Y70 (s P17 D)

~O(gp) Doren roe (6-8b)
<m0|a’a1aﬁ1aha“aﬂa [mﬂ>

~ —24F* ; LT=0 (018')’61) Xa=0 (CK161T161)

=~ O<(27;3)3> ay+ B+t Br o (6-8c)

where n is the average number of quasi-particles in the ground state and 20
=2j+1 is the total number of particle states under cons1derat10n With the
use of Egs.(6-8), Eq.(6-7) is reduced to

(Ol [K -0, K o] |czio>~1+o<5’f.g_> . 6-9)
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It is well known that basic approximation in the NTD method is #<€28, i.e.
O (n/28) ~0. We may also expect this property to be held not only for the ground
state|@,) but for all low-lying excited states under consideration, so that we have

[Ky0, KJo]=1. (6-10)

With the basic approximation which underlies Eq. (6-10), we can easily see that

the recurrence relations connecting C, to C,_; obtained by the condition A, ;x|®,>
=0 are simply reduced to one equation

An.,IKl @o>ECoAnOIKe LS | oy

;\—/;——' 2 {Sbn,,zK(CKBT) —12v3 <Ti—y->k

afr

ay By

X 2 Onorxc (CB1T1) Opr Sa,So, AT=0 (5151&@) }

Xt Tapsopa (aPr) 1|00 =0, (6-11)
frdm which we obtain Eq.(6-2).

§ 7. Quasi-fermion approximation

We are now in a position to discuss the equivalence of Eq. (4:9) and Eq.
(5-6) which has so far been assumed as the fundamental essence of the formal
structure of NTD theory. With the aid of Eq. (5-2)7, Eq. (4-9) can be written

Do {Yur 5+ Y):IK}‘ +| 0= §r¢mI’K’ (aB7) bnix (B7)
- c% Bmr e (BT) Ynix (@BT) — Pmrx (ABT) @rzx(BT) } Dol au'as| Doy .

- Z Z {%‘/)mI’K’ (a1 0) Ynixc (051045) +20mrx (CMB) (2954 (631047) SaS,

afrd o
+ 2 0mrrr (OB Qi (A1TO) 5u5p5,55} Dol as'as'a,as| Doy
- %\/g pa Z Dmrrxr (a.a3) Pnix (au10) <@0|aaaﬁ2ira3 |0,

aByd oy

— 503 20 2 Omrxr (0B) Przx iy 0) o] @' apta, a5 | Do) (7-1)

afyld a,

In evaluating the right-hand side of Eq. (7-1) within the framework of the NTD
approximation, we adopt the following procedures: (i) We first calculate the
expectation values by using the expression (6-4), and take up the largest terms
which are of the order of £* or more, i.e. Egs.(6-8a), (6-8b) and

(Bolautsa | 00y =24— k100 (D) G

(i) We then use the relation (6-3). (iii) Afterwords we drop all terms with
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O (n/282) according to the basic approximation in the NTD method. Procedures
(1), (i) and (iii) lead to
O\ { Ymrzer Yirx} +100)
= D%a{sbmz'xf (aBr) Ynix (ABT) — Pmrrr (BT Purz (@BY) }

:5nm611’é\KK’ . (73)
We can therefore see that, with the basic approximation in the NTD method,
the equivalence of Eq. (4-9) and Eq.(5-6) is justified.
Now it may be natural to expect that the relation (7-3) would also approxi-

mately hold for all low-lying excited states under consideration. If this is allow-
able approximation, we have

{Yorxs Vit + = 0wl 1Oz » , 7-4

which means that the eigenmode operators of the dressed physical three-quasi-
particles are regarded as Fermion operators. We may thus call it the ‘“quasi-
Fermion approximation”,

Adopting the same procedures as used in obtaining Eq. (7-3), we can also
see that the various eigenstates |@,;x>=Y\/x|@,> are orthogonal and normalized

{Opr 5| Prize)=LBo| Your & Y} 1| D) = OO 110 - (7-5)
From Egs. (7-3) and (7-5), we obtain
<@ol Y;{IK YmI’K’ l @o> =0 (7 ) 6)

within the basic approximation O (#/22)=0. In the quasi-Fermion approximation,
we therefore have

Yurx|@o) =0, (7-7)

since the inner product of the state vector Y,x|®,) is of the order of O(n/22).%
Here it is quite interesting to note that with the same procedure as used in
obtaining Eq. (6-11), the excited states |@n;x>=Y]}x|®,> is expressed by

Ylrel00) = 32 @by ~1243( 1 )k

% 3 g (iBirs) 6msa,sﬁlx1_o<ma5>}

@ Biry

X T3/2 3/2 (CKBT) : ]@g> (7 . 8)

Equation (7-8) clearly shows the following important fact: 7he collective ex-
cited states are always described by three-quasi-particle creations with Av=3
Sfrom the correlated ground state |@,», although they are always represented as

*) Needless to say, we have {0, x| Yprx|@o>=0, and {@|Y,;x|®:>=0, so that any state under
the NTD approximation is orthogonal to Y,rx|®)>.
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superpositions of 3, 7, 11, 15, .-+ quasi-particle states.

§8. The spurious states

The function Xs-o(afB70) defined by Eq. (6-5) is antisymmetric with respect
to (a, B,7,0), so that we have

2 (G (05" (T} =0)

=2V ()7 (I} =0) v @I+ 1) @+ DW (ijis: Jl)

for even J, (8-1)
where (7*(J)j*(Jy)}j*J=0) is defined through
Krmo (AB0) = 3 221G ()} =0)

gy My 2

><<'Jymamﬁ1JlM1><ﬁm,ma1JzM2><—>J1-M16J,J26M,m (8-2)

and > means the summation with respect to even values of J. Now let us
impose a condition on ¥s_o(@870);

1 (N=0)7" (S, =0)}*J=0) =0, (8-3)

with which Eq. (8:1) becomes of the same form as the equation which the
coefficient of fractional parentage (c.f.p) with seniority v=4 and J=0 for j-
configulations have to satisfy. We then can examine that, within the basic ap-
proximation O (n/28) =0, the condition (8-3) is compatible with Egs. (6-2) and
(6-3) which determine the function xs-(aB70).

With the condition (8-3), we have under the basic approximation

1
«/4'

=0, (8-4)

where S_ is defined in Eq. (3-21). This means an important fact that the cor-
related ground state |0,) has no zero-coupled quasz-partzcle pairs®. With the
aid of Eq.(8-4), we obtain

S—‘@nIK> = [S_, Y;IK:I IQ0>

S_ l@o> = - \/ 20 % Z <ijam,8|00> Z X7=0 (Chﬁxaﬁ) aalam]@(}

a; B8y

:—:73:— % {1z (aBy) [S—, Tsss s (05487')]

+ @i (@B [S=, Toppo1pn (@B7) 1} 100>

*) If Eq. (8-4) were exactly valid, |@y)> would be represented as |0p) =315 C(S)I|S, So=—S so
that the seniority number v in each component has the very same value as the number of quasi-
particles 7. (See Egs. (3-24) and (3-25).)
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- \/% V3 3 Apu (@) Ton-n (@)

+ Gnrx (BT : Topp1p (@By) 2 }Dop. (8-5)

Since the inner product of the state vector on the right-hand side of Eq. (8:-5)
is of the order of O(n/20), we can further see that zhe excited states |Quix)
also have no zero-coupled pairs under the basic approximation O (2/20)=0:

S_|Buxy=0. (8-6)

It is now quite clear that, within the framework of the NTD approximation,
both the ground state |0, and the collective excited states are orthogonal to the
spurious states,

|0, (0) )=const (N—N,) |05
= const{ (&’ —v*) A+ 2uv (S, + S} |0,
|0sp (nIK') y=const (ﬁ— No) |Opixy
= const{ (&> — v®) A+ 2uv (S, + S} Bz,

(8-7)

which arise from the nucleon-number fluctuation introduced inevitably by the use
of the quasi-particle picture: With the use of Egs. (8-4) and (8-6) and of the
fact (' —v")<¢i|%|p;>~0 (n/28) ~0 with |0;>=|0,) or |D.x), we obtain

{Bsp (2) |99 =0, (8:8)

where |0;,(7)>=|0,,(0)> or |@,,(nIK)>. We therefore may conclude that our
theory can leads us to both the ‘“physical” collective excited state and the
“physical” ground state, and with this theory we can enjoy the proper advantage
of the NTD method to remove the troubles of spurious states.

§9. Generalization to the realistic case

With the purpose of illustrating the physical essence of our method, we have
so far used the single j-shell model. However, the extension of the essential
idea to the realistic case possesses no difficulties.

It is well known that the use of the quasi-particle-Tamm-Dancoff approxima-
tion on the basis of the BCS theory can be regarded as an attempt to describe
both the ground state and the low-lying excited states in terms of the seniority
eigenstates: The BCS ground state and the Tamm-Dancoff excited states in
terms of quasi-particles are given by

[$> =15 (@) =420, S0 (@) = —$8u5 S(B) =5, S0 (D) = — 5805+, }

(9-1)

In Eq.(9-1), I" means a set of additional quantum numbers to specify the Tamm-
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Dancoff excited states, and S(a) and S,(a) are the ‘“‘quasi-spin” quantum number
and its projection belonging to the single-particle level o™

S(a)Z%'(.Qa—‘ZLO, So(a):%(na—'lga.)a (92)

where 20,=2j,+1 and 7, means the number of quasi-particles in the level a.
Thus the total seniority v of the state in question is well defined as

V= Vg, (9-3)

the value of which is the same as the number of quasi-paricles 7,=> .74, except
for a special class of excited states associated withe pairing excitations with
J:O.**)

Corresponding to such a quasi-particle-Tamm-Dancoff approximation with v
=n,=3 and extending the essential idea so far developed into the realistic case
we now can define the eigenmode operators of ‘“physical”” dressed three-quasi-
particles, which should be used in the quasi-particle-NTD approximation:

Clix= Zﬁ e (aBr) da*aBTarT + ZB: P9 (aBr) aaTEiB?iT
afr afr
+ ::Jﬂr (0§1.21)K (05.87’) arTaBTaa + 0% ngf}K (aBT) aaaﬁay > (9 ) 4)

where ¢@x(aBy) (i=1 and 2) satisfy the two conditions
Ppiltx (aBr) =0ppite (b)),

33 33 CieMms IR fuomaim | 00)4ste (i) =0, (9:5)
momg my
while ¢ (aBy) (k=1 and 2), which satisfy
952x (aBy) = — oi7x (a7B) s
S 3 (M IR jojem g, 10030 @) =0, ©-62)
mgmy me
have to obey the following conditions:
Zﬁ 2 {Jjem | IK) jjmams| TM g2 (afy) =0
mamg my.
for J=0 and odd-J, if a=b3c(Ju=jr=)), (9-6b)

25 2 L TjgMm | IKH ' j mam | J' M >¢(Px (aBr) =0

magmy m,gM

for J”=0 and odd-J’, if a=05Fb<ja=chj’),

*) In the realistic case, the single-particle states are characterized by the quantum numbers:
the charge g, n, [, j, m. The single-particle state with a set of these quantum numbers is then
designated by a Greek subscript «. We further use a Latin letter @ to mean all the quantum numbers
in @ except the magnetic quantum number 7.

*%) For the quasi-particle-Tamm-Dancoff states defined by Eq. (9-1), we have S_(a)|gexcitd=0.
For the class of excited states |¢pairy associated with the pairing excitations, however, we have
S_(5) |ppairy=0 for some levels 4, which means w2, so that the quasi-particle picture loses its
original merit. Needless to say, such a class of excitations arising from the motion of 5;\ (@) are
closely related to the spurious states, since the nucleon number fluctuation is given by N—N,=
S0 (12— 062) g +2 Sy qve (S (@) +S_(a)).
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and

PpBe (aBr) = 0ppi7e (aBr),
20 2 <chMmr]IK)(ja,jbmamﬁIOO>(p§Z?K (afr) =0

magmpg mrM

(9-6¢)

if a=b=c.

In Eq. (9-4), the terms on the right-hand side with a=b=c are composed of
T star=s2,5,a) (ABY; a=b=c) with the transferred seniority 4v,=2s(a) =3, and for
example the terms with a=b=cc consist of products of quasi-spin tensors
Ts@y=1,5,0) (@3 a=b) with dv,=2 (in the level a) and Tsey-1/a,3,00) () with dv,=1
(in"the level ¢), and so on. Therefore it is quite evident that the amount of
seniority which the eigenmode operators CJl;x transfers to the state on which
they operate is now Av=>,4v,=3. It is also clear from the conditions (9-5)
and (9-6) that the eigenmode operators never contains the ‘“quasi-spin’ operators
S, (@), So(a) defined at each level a. Within the framework of the NTD ap-
proximation, both our collective excited states |@,;x» and the corresponding cor-
related ground state |@,> are thus orthogonal to the spurious states as well as
to the special class of collective excited states associated with the pairing vibra-
tions (in superconducting nuclei) which arise mainly from the motion of S, (a).
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A new point of view on the structure of the anomalous coupling states is proposed. In
this point of view, the main component of the anomalous coupling states with spin = (j—
1) is considered to be the dressed three-quasi-particle mode, which has been developed in a pre-
vious paper, part I, as a new collective mode in spherical odd-mass nuclei. The excitation-
energy systematics of the anomalous coupling states is theoretically made with the use of
the pairing-plus-quadrupole force. From the numerical results, it is concluded that the excit-
ed anomalous coupling states with spin /= (j—1) can be recognized very well as the dress-
ed three-quasi-particle states. The role of the three-quasi-particle correlation in characteriz-
ing the anomalous coupling states is investigated, and the importance of the three-quasi-particle
correlation in the collective excitations in odd-mass nuclei is demonstrated.

§ 1. Introduction

For a long time it has been difficult to understand the following experimental
fact. In spherical odd-mass nuclei in which an opposite-parity level of large spin
j in the major shell (such as 1f7; and 1¢55.) is presumably being filled, there occurs
a competition between a spin j- and a spin (j—1)-state for the ground state.
Such extra low-lying states with spin /= (j—1) and with opposite parity have
been called the anomalous coupling states. Recently the low-lying oppsite-parity
states with spin /=(j—1) have also been discovered, not a few, in the 1A, region.
One of the most characteristic features of the anomalous coupling states is that
E2 transitions from the anomalous coupling states to the one-quasi-particle states
with spin j are strongly enhanced while A1 transitions are moderately hindered.
The amount of enhancement of the K2 transitions is comparable to that from
the phonon states to the ground states in neighboring even-even nuclei. Thus,
it has been recognized that the anomalous coupling states have a strong collec-
tive nature.

The systematic studies of the low-lying states of spherical odd-mass nuclei
have been made with the use of the phonon-quasi-particle-coupling theory.”

*) A preliminary report of this work has been published in this journal, 46 (1971), 996.
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Although the theory has succeeded in systematic explanation of the energy levels,
transition rates and other properties of many low-lying levels, the anomalous
coupling states have remained still unsolved.

The main purpose of this paper is to propose a new point of view in
understanding the structure of anomalous coupling states with the use of the
pairing-plus-quadrupole-force (P+QQ) model. The basic idea underlying the
new point of view is as follows: In the conventional phonon-quasi-particle-coupl-
ing theory® for spherical odd-mass nuclei, the elementary excitation modes are
assumed to be one-quasi-particle modes, one-phonon mode, two-phonon modes, etc.,
and the low-lying states are described as superposed coupling states of these
elementary excitation modes. Contrary to this assumption, we suppose that the
elementary excitation modes characterizing the low-lying states are one-quasi-
particle modes, “dressed” three-quasi-particle modes, “dressed” five-quasi-particle
modes, etc. The concept of the ‘“dressed” #m-quasi-particle modes has been pro-
posed in the previous paper,” part I, in connection with the quasi-spin tensors
of each orbit. Now let us consider the systems of odd-mass nuclei in the trun-
cated shell-model space consisting of one major harmonic-oscillator shell (for both the
protons and the neutrons) and of a large spin, opposite-parity level j which enters
into the major shell, and suppose the oppsite-parity level j being is filled. (See Fig.
1.) Then, the dressed three-quasi-particle modes, proposed in part I, with the opposite
parity (to that of the major shell) and with spin I3¢; (for instance I=j—1) do
not couple to any ome-quasi-particle modes, be-
cause there is no single-particle level with oppo-

82 site parity and with spin j/ =I=gj in the truncated

diny,, =— space. (Such a single-particle level is generally

-=== 70 TGSy lying in the next upper major shell. See Fig. 1.)

::222312 J+ Thus, the special physical condition of the ap-

Tigoy pearance of anomalous coupling states becomes

— 50 just the same condition that the dressed three-

+167 ——— quasi-particle modes manifest themselves as rela-

B j_,"z"p"l;z" ————————— tively pure eigenmodes without coupling to the
j_%}’:ﬁg }- one-quasi-particle modes.

28 It is now clear that the proposed new point

Lif of view is to consider the main component of the

--~-20 --———-:_-2-5-'-;; ~~~~~~~~~ anomalous coupling states with spin /= (j—1) to

:%53’2 }+ be just the dressed three-quasi-particle modes,

— 8 32 which have been proposed in part I as new col-

lective modes in spherical odd-mass nuclei. If

Fig. 1. Schematic representation we neglect the ground-state correlations and re-
of shell structure. The .Symb?l strict ourselves only within the opposite parity
‘< denotes the high spin orbit 1 1 7 which is bei Glled. the d d th
with opposite-parity in each evel 7 wnich 1s belng ed, the dressed three-

major shell. quasi-particle state with spin I=j—1 in the
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P+QQ model is reduced to Kisslinger’s (Tamm-Dancoff-) three-quasi-particle
“intruder” state,® which is very much lowered in energy by the quadrupole
force and has been considered by him to be the state due to an extra degree of
freedom in the phonon-quasi-particle-coupling states. . On the other hand, if we
neglect the characteristic three-quasi-particle correlation® in the dressed three-
quasi-particle mode, the mode is decomposed into the odd quasi-particle and the
phonon. We may therefore expect that the dressed three-quasi-particle mode with
spin I=(j—1) can involve two essential characteristic aspects of the anomalous
coupling states in a unified manner: One characteristic aspect which is repre-
sented by Kisslinger’s “intruder” states® and another characteristic aspect of
strong collectiveness (which underlies the phonon-quasi-particle-coupling states).

In the case of even-even nuclei, as is well known, when the strength of the
quadrupole force becomes large and reaches a critical value which brings the
excitation energy of the phonon (i.e., the dressed two-quasi-particle mode) to be
zero, there occurs the instability of the (spherical) BCS ground state toward de-
formation. In the same way, when the strength of the quadrupole force becomes
large, the characteristic three-quasi-particle correlation grows up so that the
excitation energy of the dressed three-quasi-particle mode with spin I=(j—1)
is very much lowered. Also, when the excitation energy (of the mode with
spin (j—1)) becomes equal to the energy of the one-quasi-particle (ground) state
with spin j, there may occur an instability of spherical odd-mass nuclei toward
deformation. Therefore, our new point of view of the anomalous coupling states
as the dessed three-quasi-particle modes seems to us to be strongly supported
by Bohr-Mottelson’s old suggestion® concerning the possible connection between
the appearance of the spin (j—1) state as ground state and the onset of deforma-
tion. Although there is no systematic evidence for such stable deformation in
these nuclei (with the spin (j—1) ground states), it should be noticed that the
adjacent even-even nuclei exhibit the quasi-rotational spectra.”

In § 3, the “physical” dressed three-quasi-particle modes proposed in part
I are recapitulated in the single j-shell model with the P+QQ force, and the
three-quasi-particle correlation characterizing the modes is explicitly shown. In
§ 4, the dressed three-quasi-particle modes in the P+QQ model are investigated
under the special physical condition of shell structure for the appearance of ano-
malous coupling states. Enhancement factors of the characteristic three-quasi-
particle correlation (involved in these modes) are also discussed. Solving the
eigenvalue equation of the modes, we make excitation-energy systematics in §5
in order to check the proposed new point of view of the anomalous coupling
states. The result of numerical calculations indicates that, in the first order ap-
proximation, the anomalous coupling excited states with spin /= (j—1) can be
recognized very well as the dressed three-quasi-particle states.
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§ 2. The Hamiltonian

Let us start with the spherically symmetric j; coupling-shell-model Hamilto-
nian® with the P+ QQ force. Then, after the Bogolyubov transformation, our
Hamiltonian may be written in terms of the quasi-particle operators, a,' and a,,
as follows:

H:H0+HQQ
:ZEaaaTaa_%xg:Q;MQZM:9 (21)

where x is the strength of the quadrupole force, and E, is the quasi-particle
energy, determined as usual together with the parameters v, and #, of the Bo-
golyubov transformation. The symbol : : denotes the normal produét with res-
pect to the quasi-particles, and the quantity Q. is the mass-quadrupole-moment
operator in terms of quasi-particles,

Quu= ; g (ab) [&(ab) {Aly(ab) + (=) " A:-n(abd)}
+ 77 (ab)» {Bly(ad) + (— )2-MBz—M (ab) 1, 2-2)

where g(ab) is the reduced matrix element of the single-part.icle quadrupole mo-
ment, defined through

a|P?Yau (0, ) |BY =q (ab) (=Y "8 jojyma—mg|2M ) }
(2-3)
g (ab) = — (—)a++q (ba),
and
1,
§(ab) = 73 (Uay+ vatty),

| 2-4)
w(ab)zé—waub-vava. »

The operators Aby(ab) and Biy(ab) in Eq. (2-2) are the conventional pair
operators defined by

A y(ab) =%§ 53 Lajimemal IMaa,
ma (2-5)

BTTM(ab) = Z <jajbmamﬁIJM>aaT?i/5’ s
mgmg

*) The single-particle states are then characterized by a set of quantum numbers: the charge
g, n, I, j, m. Throughout this paper, these states are designated by Greek letters. In association
with the letter @, we use a Roman letter a to denote the same set except the magnetic quantum
number m. We further use a subscript —«, which is obtained from @ by changing the sign of the
magnetic quantum number. For a basis of stationary states, it is possible to build the entire treat-
ment on real quantities if the phase convention is suitably chosen. In this paper we always as-
sume this to be the case.
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where
Ug=(—)""8q_j,. : (2-6)

The quadrupole force Hyq in Eq. (2-1) represents the interaction causing the
breakup of the Cooper pair. We divide it in the following way:

Hge=Hx+ Hy+ Hy+ H,,
where
Hyx=—y ZM] alb%‘zb;] (@:61) q (as01) § (1) & (asbs) Al (and) Asu(ashs),
(2-7a)

Hy=—1%y Z Z g (a1b1) g (axby) & (a:b1) § (asby)

M a;b,a,b,

X {Alu(aib,) (—)Y"Al y(asb:) +hect}, (2-7b)
Hy= -2y ; 2 g(aiby) g(awbs) & (a:by) 7 (asbs)

a1b,a,b,

X {AYu(a:by) By (asbs) +h.c.}, (2-7¢)
H,= -2y %: Z q (4150 q (dzbz) 7 (611171) 7 (Clzbz) : B;M (4151) Bw(dzbz) :

aybiagb,

= 4 4XJ§_J; >0 qlaiby) g(asbs) 7y (aib) 7 (asby)

1My a0y,

jaq j 1 2
Xb- { ’ } A,'T}IM‘ (Cllbg) AJle ((lgbl) . (2 . 7d)

Jag JosJ1

The essential advantage of using the P+ QQ model is its great simplicity
in the treatment. The inherent assumption underlying the model is the follow-
ing:"

i) The contribution of the pairing force to the Hartree-Fock field is
neglected.

ii) The contribution of the quadrupole force to the pairing potential, which
comes from the recoupling of a pair of single-particle states in the force itself,
is neglected.

iii) The exchange term arising from the quadrupole force is also neglected
for the same reason that it involves the recoupling.

According to the imherent assumption of the model, we hereafter neglect
the exchange term H,, (2:7d), in the quadrupole force Hyy. Thus we may write

the interaction as
I{Q,Q:HX']‘ Hv+Hy,

each matrix element of which is represented by one of the diagrams in Fig. 2.
The part Hy represents a scattering of the pair of quasi-particles coupled to
J7=2%  The part Hy represents a pair-creation and a pair-annihilation of the pair
of quasi-particles coupled to J”=2%, so that it introduces the ground-state correla-



Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II 503

tions. The part Hy denotes the coupling between a
quasi-particle and the pair of quasi-particles coupled
to J*=2%. As has been discussed in part I, the
part Hy does not play any important roles in con-
structing the dresssed three-quasi-particle modes as
elementary excitation modes. The Hy changes the

/-2 number of quasi-particles, so that it may play an
essential role in constructing interactions between

J=2

the different types of elementary excitation modes,

for instance, interactions between the one-quasi-

v particle modes and the dressed three-quasi-particle

Fig. 2. Graphic representation of 405 otc. Throughout this paper, in which the
the matrix elements of the . .

interaction. anomalous coupling states are regarded as relatively

pure dressed three-quasi-particle modes (in the first

order approximation), we do not touch the interaction between the one-quasi-

particle modes and the dressed three-quasi-particle modes, so that we drop the part

Hy. Thus, our Hamiltonian of the P+ QQ model for the dressed three-quasi-

particle modes is finally given by

Hy

H(O):HO—I_H 06)2 H

(2-8)
Hig=Hx+ Hy,

which is the same as one used in constructing the phonon modes (i.e., the
dressed two-quasi-particle modes) in spherical even-even nuclei.

§3. “Physical” dressed three-quasi-particle modes
in the single j-shell model

For the convenience of later discussion, let us start with the single j-shell
model.® The “physical” dressed three-quasi-particle modes (with excitation
energy w,r>0), which have been introduced in part I, are then

Yire= -—1: 2 Aburx(@e0): Ty 53 (m00)
+ Qurr(m00) : Tsposps (00 ) :}
=== 73T ;’ [0 (Jo’ (ot o) Tsyz5p2(Gp" (J)julK):

+ @n (o ()J prin D) T 12 (Gp" (J)plK) ], CIY

*) The single-particle states in this single j-shell model are denoted by Greek letters, =, p, o,

etc., and a set of the quantum numbers specifying the single j-level is characterized by a Roman
letter p(=r=5s).
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with
Topeiat Dis K) = 30 CTjpMmo| IRy jym ol JM Ty, (00),
e 3-2)
and
Gurx(T00) = 3§ (iy? (T Viakin'D) TinMmg| IK Y Gy jom.m, | IM,
(3-3)

Garx (T00) = 3 0u (s (s’ D) <TjpMms| IR Y jpjymim,| IM .

Here I and K are the angular momentum and its projection and # denotes a
set of additional quantum numbers to specify the mode, and the symbols:: and
2.7 denotes the normal product with respect to the quasi-particles and the sum-
mation with respect to even values of J, respectively. The operator Ty, (700)
(with its components s,=3/2,1/2, —1/2, —3/2) is the quasi-spin tensor of rank
s=3/2 in the level p, the explicit form of which is given in Eq. (I. 3-29) of
- part I, for instance,

T'ss 52 (mp0) =a,'a,'a,!,
T3/2——-1/2 (77.'0(7) = \/% {am*a/pziﬂ' + anaPTaﬂ + anapaaT} s
etc.

Since the quasi-spin tensor T, (7p0) is antisymmetric with respect to the
permutation of (7, p,0), the three-body-correlation amplitudes ¢n;x(7pd) and
¢n1x (T00) also have the same property. As a result, the amplitudes ¢, (7,2 (J)7ptin’l)
and @, (jp' (J)jorjpl) (with the even value of J) satisfy the equations

.9 . . 3’ ‘ 7 _ , jp ]‘.‘p J .9 7N\ » .3
0 DD = VETTD @I+ D77 LG in i,
- 2 sy 38 ’ 7 Jp iz . 2 RN
ouCir DD = 37V @TFD @ D " ol (DD
3-4)

As has been emphasized in part I, the eigenmode operator (3-1) must include
no zero-coupled quasi-particle pairs, i.e., no quasi-spin generators (S., S, defined
in Eq.(I. 3-21) in part I), so that the amplitudes have to satisfy the condition

¢n (Js' (0)Jatjn'l) =0, }
@ (Jp (0)jp}is’l) =0.

The expression (3-1) with the explicit use of the quasi-spin tensor of rank
s=3/2 means that the dressed three-quasi-particle modes are characterized by
the amount of transfered quasi-spin s=3/2, i.e., by the amount of transfered
seniority Av=2s=3 to the state on which they operate. Thus, the eigenvalue

(3-5)
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equation for the three-body-correlation amplitudes should be obtained so that Y.«
becomes a “good” approximate eigenmode operator satisfying

[H(0>, YgIK] - a)nIY7IIK - ZnIK:}
(with ©,,>0)

where ‘“interaction” Z,;x is generally composed of the normal product of quasi-
spin tensors with s=1/2, i.e., 4v=1 and of the higher fifth-order normal products,
and is neglected in the first step (which determines the dressed three-quasi-
particle eigenmodes Y;;x.) In the P+QQ model under consideration, the inter-
action Z,;x which is neglected should also include the other third-order normal
products which come from the recoupling of the quadrupole force, in order to
keep consistency to the inherent assumption of the P+ QQ model mentioned in
§ 2.

In part I, it has been shown that, under the basic approximation <24, i.e.,
O(n/22)~0 (where 7n is the average number of quasi-particles in the ground
state and 20=2;5+1), the correlated ground state |@,> (satisfying Y,.ix|®@,>=0)
and the dressed three-quasi-particle states Y],;x|@,> have no zero-coupled quasi-
particle pairs. It has also been shown that, under the basic approximation
O (#/29)~0, the dressed three-quasi-particle modes satisfy the gquasi-Fermion
approximation, i.e.,

(3:6)

<@o[ {YmI’K’a Y;{IK} +]@o> = Onm0 110 kx5 (3'7)
with the use of the orthogonality relation of the correlation amplitudes

> Abmrr @0 Y1 (TOT) — Qmr e (MO0) Prix (w0) } =0mnl1r-0xrss  (3+8)

MM Mg

which is obtained from properties of the eigenvalue equation ((I. 5-1) in part
I) for the correlation amplitudes.

In the P+ QQ model, the eigenvalue equation for the correlation amplitudes
becomes especially simple: It is written as

nI< On (Go* (T In}in'D) ) 5y ( 3D(JJY), —A (J1J1’)> <¢n (o (J1)Jwtdn" D) >

Dn (G (JDJprin' D) AWJJY), —D(JJY) Pn (jpz (Jl,)jﬂ}jpsl)
3-9)
where .
D (JlJll) = EpP[(Jl IJ]_,) — quz(pp) upz,vaPI (Jl 2) PI (Jl, . 2) 5
(3:-10)
ALY =%xqﬂ<pp> s, Pr( s 2) Py(JY: 2),
and

P;(J,: JY) E‘é‘ Orpry+Kipg —0sprl5,0,) )
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jpijl
K 152\/ ZJ"I"]_ 2{]""‘1 { . }:K v N
I1dy ( 1 )( 1 ) ijJll I Ty (3.11>

Lj, Ei%]%;; Oro+ Kip) Ogp0+ Kipo) =Ly, -

It is easily seen that P;(Ji:Jy) has the following properties:
@) 9a(Gp’ (I jntin’l) = f};’ Pr(J1: J1) ¢n (G (S ) o 7o’ D))
¢n (Gp' (J) ot dn’l) = ; Pr(Ji: ) on(Go' (J)Jot i) s
GD) P V) =P(Jy: Jo), |  (3:12)
Gil) Py(Jy: 0) =P;(0: J) =0,
Gv)  SVPr(hi D) Pe(J, J) =PoJa: ),

4

so that the solutions of Eq. (8:9) automatically satisfy the conditions (3-4) and
(3-5).

With the aid of Eq. (3:12), we have the following eigen-value equation
from Eq. (3-9):

14 2 /7
BE,—2x7 " (pp) vy, — =27 q (pP) vy

(¢’n (jpﬂ 2)jptin D) ) V3
nl - cy e s =
@n (o' (2)Jprin’l) _g:xzzqz (pp)uyiv,?, Ep— _Z_xz/qz (pp) 0,

V3 37

1 0\ [ (s’ (@)} in ) )
X , 3-13)
o i (
where
XI’EX(I-I—ng-é‘ijng) =3¢ P;(2:2). (3-14)

After solving Eq. (3:13), we obtain the amplitudes ¢, (j, (Ji)ju}js'l) and
0 (G (J)Jjurjn’l) with Ji22 through the equation

<U)nI"“ 3Ezn 0 > < ¢n (jp2 (Jl)jp}jﬂ31> )
0, Wz + By PDn (.ip2 (Jl)jp}jzz3]>

— 629" (pp) ty'vp" Pr(J1: 2), %xgz (pp) up’vp' Pr(Jy: 2)

762—96612 (pp)up' vy’ Pr(J1: 2), —21q* (pp) up'vy"Pr(J:: 2)
« < 1 0 ) ( $n (Js" (2)jp}jp31>>

_ (3-15)
0 —1/\¢a(dn’ (@ jntinl)
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which also comes from Eq. (3:9), and indicates that ¢,(j,'(Ji)jetjnl) and
00 (G (JD)Jjurinl) with Ji3¢2 can be expressed by the special amplitudes
UG (2)jpt i’ L) and ¢, (Gp'(2)jptjs’l). In the single j-shell model with the P+ QQ
force, therefore, the dressed three-quasi-particle modes Y);x in Eq. (3:1) can

be simply expressed in terms of only the special amplitudes ¢, (j,' (2)jptjs’l) and
0 (o' (D jptinD):

Y'/IIK = 1

1
V3l P(2:2)

An (o' (Dot dn™ D Tapp s (G (2) 7l KD

+ 00 (G (@Iptin’' D) Topospn (G, (2) 1K)}
= NI {¢n, (jp2 (2)j11}jp31> . T3/2 3/2 ]-pz (Z)JPIK) .
+ 0a” (G (Do} 7o' D) :Toppoiys (Gt (2 7IK) 3},

(3-16)
where N; is the normalization constant given by '
Ny={6P,(2: 2)}~ (3-17)
and
O’ (o' (i} Js'D) = /31N (" Db in'D) } (3-18)
@n’ (G2 (D)o} 7o' 1) = V31 - Nyn (G2 (2) jwb 7o),
with which Eq. (3:8) is reduced to
0" (o' (Dot dn' D) — 0a”" (5" (2) o} s’ D)
=iy WGP @D — o i @i D)
=1. (3-19)
From Eq. (3-13) the eigenvalue w,; is easily obtained:
5 2 )
wr=E/ + ~/ 4E," — {7§—x1’q2(Pp) u;v;} ,
with (3-20)

Ef=E,— %Xr’ff (pp)uy’vy.

1
Notice that I-dependence of the solution is completely expressed through y;/
defined in Eq. (3:14). In this sense, we can regard %, as the quantity which
represents an effective change of the quadrupole-force strength due to the cha-
racteristic three-quasi-particle correlation. As was pointed out by Kisslinger®
as the essence characterizing his ‘“intruder” states (which correspond to the
Tamm-Dancoff counterpart of the I=j,—1 modes under consideration), there
exists the simple property of 6j-symbols, i.e.,
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g |
{J,“” }>o for T=j,—1,
ljp 12 3E
{j”j”2}<o for Incj,—1
in I2 P

(3-21) o

So, we can easily see that
>y only when I=j,—1 and
x’ <y for Issj,—1. Thus, as E
is shown in Fig. 3, the I:jp

Fig. 3. Single j-shell-model solutions of dressed three-
quasi-particle modes in the case of j=17/2. Excita-
tion energies are written in unit of the quasi-particle

other states with I=gj,—1. energy E as functions of xq%x2v2

—1 state is especially lowered
in energy in contrast to the

§4. Anomalous coupling states as dressed three-quasi-particle modes

We are now in a position to discuss the anomalous coupling states in odd-
mass nuclei. As discussed in §1, we consider the odd-mass system in the
truncated shell-model space consisting of one major harmonic-oscillator shell (for
both the protons and the neutrons) and of a large spin, opposite-parity (proton
or neutron) level which enters into the (proton or neutron) major shell, and
suppose that the opposite-parity level is being filled (by the protons or the neutrons).
When we especially need to specify the opposite parity level and the single-
particle-shell-model state in the level, we use Roman letter p and its associated
Greek letter 7= (p, m,), respectively.

In this special situation in shell structure (for the appearance of anomalous
coupling states), the dressed three-quasi-particle modes become especially simple
from the parity consideration: In the P+ QQ model, the “physical” eigenmode
operators Y\l;x with w,;>0 (in Eq. (I. 9-4) in part I), which have the opposite
parity to that of the major shell, are simply reduced to

Y e=N, 10n1 (%) Tapa 52 (G (2)ulK):
+ Ni1gar($°): Tspp12(Jo' (2)jIK):

* & N(ab) pn:(p; ab) [ap' Ay (ab) b

- bz)é]F N(ab) pur (p; ab) [ay' As (ab) T, “4-1)
abyp

where D \wusnap indicates the summation with respect to the set of levels @ and
b except the opposite-parity level p. In Eq. (4-1), N; is given by (3:17), and
the correlation amplitudes ¢,;(ps) and ¢,;(»p*) are the same as those used in
Eq. (3-16), i.e.,
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Gur (P°) =0’ (J:p’ J= 2)]11@}1';1 ) ,} (4-2)
our (D) =¢." (o' (J=2)ju}Jn'I),
N(ab)={2/(1+0a)}", (4-3)
[ay'Ast (ad) Jix= > { 2jp,Mm,|IK a'Aly(ab),
— " ' (4-4)
[a, Aty (ab) = mZﬂ]ﬂ( 25, Mm | IK Ya, Ay _y(ab) - (— ). }

With definition (4-1), the normalization of correlation amplitudes becomes

the total seniority Av=> s4v,=3 to the state on which they operate.

G (B + X0 Gur (P ab) —gur (P — X5 gur(psab) =1. (4-5)
(abddp . (ab)==p

It should be noticed that the eigenmode operators Y,.;x obviously transfer

in part I.) The eigenvalue equation for the correlation amplitudes is now
written as follows:

Onthnz (£°) =3E b (1) —2{Q (p2) VCif* {sbnz ")+ / %T(ﬂnz( zf‘)}

—1Q(pp)V C_'I(a bZ;#pQ (a1b1) N(aiby) {pnr (5 a1by) + @ur (P a:b)) },

(4-62)
Onrnr ($%) = — Epgur () + N/ %x {Q(pp) VO {sbnz(zb‘”’) + 4/ %@nl(? 3)}
+ N/ %XQ () ('J‘Imlbzg#p Q (a:161) N (a:by)
X Az (5 @by + ¢ur(p; @by}, (4-6b)

wn1¢)nl(p: ab) = (Ep+ Ea + Eb) (,an(P 5 (lé)
—2Q (ab) N (ab) ( > Q(aby) N(aby)

a10)%p

X Az (P @1b1) + @ur (P a1by) }
— , 1
— 20 (ab) N (@8) Q (50T s (1) + Vs M} @6

wnI(DnI(p > ab) = (Eja - Ea _Eb) @nI(P; L‘Lb)
+2Q (ab) N(ab)( Z)# Q (a:6,) N (a.by)

ayby)%p

X Anr (5 @:by) t Pur (ps aiby)}

108 N (@) 0 (5pNTs | 9ua(2) 1y 50D ),

(See §9



510 A. Kuriyama, T. Marumori and K. Matsuyanagi

(with a, b3¢p) (4-6d)
where
Q(ab)=q(ab)§(ab), 4-7
Cr=3P;(2:2) = (1+ Ku—0;,7Lm)
=1+10{J:””2} —6jp1-20{J:?J:p0}2[1-!—2{]:“:?0}]*1. (4-8)
Jo» 12 Join 2 JoJn 0

In deriving Eq. (4:6), we have dropped the terms which come from the recoupl-
ing of the quadrupole force, as usual, in accordance with the inherent assump-
tion on the P+ QQ model mentioned in § 2. Formal structure of Eq. (4:6) is
as simple as that for the phonon modes in even-even nuclei, except for the fact
that only matrix elements concerned with the oppsite-parity level p are changed
due to the three-quasi-particle correlation.

Combining Eqgs. (4-6a) and (4-6b) and also combining Eqs. (4-6¢) and
(4-6d), we obtain :

{6S» =1} Br + 2peSpAr=0, } (4-9)
{XcSc - 1} AI+ chScBI: 0 »
where '
Lo=Xe=Xoe=1¥, (4-10)
AIE(Q;;#’,Q (ab) N (ab) {¢n1(p; ab) + ¢ur(p; ab)}, ,
— (4-11)
— 1
B=0( e NTelpua () o 50,
and
S,=2- Q¥ pp)-Cr {E,+ (1/3)wnz} (4-12a)

(2E,)' — (wnr— E,) ’

Se=2- Q'(ab) - (EatEy) (4-12b)
@050 (Eq+ Ep) — (0nr— Ep)*

Since Eq. (4-9) is linear and homogenious with respect to A; and B; we find
that the eigenvalue w,; are the solutions of

(2oSp—1) (eSe—1) — 12eSpSe =0 . (4-13)

The physical meaning of Eq. (4-13) is easily understood in the following way:
If %, were zero, we would have solutions when either %,S,=1 or %x.S.=1.
The former leads us to the solutions of Eq. (3-20) in the single opposite-parity
level p. The latter is, in its form, the very same as the wellknown dispersion
equation for phonon modes of the ‘“core”, which is composed of the neutrons
and protons in the truncated major shells with the exception of the opposite-parity
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level p. Thus we would have Zzwo low-energy collective states (due to the quasi-
particles in the level p and due to the core, respectively), if the “coupling” 7%pe
were zero. INow let us consider the effect on these states due to the change of
%pe from zero.” In this case, the product (%pSp—1) (xcS:—1) has to be positive
so that the lower level of the two ¥,.=0 states must be lowered in order to
make each factor of the product negative, while the higher level is raised mak-
ing each factor positive. For sufficiently large 7. such as the actual case of
Eq. (4-10), there will be essentially only one extremely lowered w,; left in the
energy region satisfying (w,;—E,)< the minimum value of (E,+ E;) .

In the actual case in which ¥p=%=%pe=%, Eq. (4-13) is simply reduced
to

1Sp+xSe=1. 4-14)
In order to compare solutions of Eq. (4-14) with those of the equation %S,=1

for the opposite parity level p, and to see the lowering effect on the level posi-
tion due to the core, let us adopt the adiabatic approxnnatlon

(0nr— E,) < the minimum value of (E,+E,). (4-15)

In this case we may write

Sp= n _‘Ep » nl—'—Ep 2,
» L)qp+$p(wl ) + (0 ) } (4-16)
ScZLJZZc+ %(wnI_Ep>2a
where
=2 .Q@rCr <, 2 Qp)Cr )
JP 3 Ep > L2 Q? 3 4E 9 >0
_2 Q'(pp)Cy
3 4E} >0,
0 (ab) , 4-17)
_ a
Jc—za%ﬁepE + E, 7 0
Q’ (ab)
Fe= “gﬂ’ (Eo+ Ep) >0 !
As a result we have from Eq. (4:14)
~ By By = Ap—Ae)
WrE) =g ey Nig eyt (Gre - GO

Comparing Eq. (4:18) with the adiabatic solutions of %S,=1, which correspond
to Eq. (4-18) with A,=%.=0, we can easily see lowering effects due to the
core. Since both A, and %, contain the factor &(ab) =1/+2 (#avs+vau;) through
the quantity Q(ab), the larger the &(ab) of the core, the lower the w,; becomes.
Thus in real nuclei under consideration, the problem of whether the dressed
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three-quasi-particle modes appear extremely low in energy will be determined by
two important factors: i) the enhancement factor &(pp)==4+/2u,v, in the oppo-
site parity level p which is being filled and ii) the enhancement factor &(ab) in
the core. |

§ 5. Excitation-energy systematies

We are now in a position to solve the eigenvalue equation (4-6) for the
dressed three-quasi-particle modes and discuss to what extent the proposed view-
point of the anomalous coupling states is supported by the results of numerical
calculations. '

The parameters which enter into the determination of the solutions of Eq.
(4-6) are the quadrupole-force strength x4 and the quantities related to the pair-
ing correlations (i.e., the parameters #, and v, of the Bogolyubov transforma-
tion and the single-quasi-particle energies E,), which are determined from the
single-particle energies €, and the pairing-force strength G.

" In order to see the essential effects of the three-quasi-particle correlation
originated from the quadrupole force and to fix the parameters as far as possible,
we use the same values of the pairing-force strength G and of the single-particle
energies €, as those adopted in the work of Kisslinger and Sorensen,” and also
make the same truncation of shell-model space as they have made. On the
other hand, the quardrupole-force strength y is regarded as a free parameter (in
each shell region) which should be determined phenomenologically except for its
usual mass-number depencence,”

L="%-0"* A" MeV,

where & is the harmonic-oscil- MeV MeV

lator range parameter.®

By the use of the FA-
~COM 230-60 computer of
the Kyushu-University Com-
puter Center, numerical cal-

culations have been performed

for the three shell regions L %o . Xo
or e 1oms, 730 240 750 260 270 0 70 230 20 250

125 127
ol € %A e

i.e., lhii-odd-neutron region,
19§»-0odd-proton region and

195.-0dd-neutron region. ‘Figf 4 @

- Figure captions are printed on the next page below.

*) Usually the reduced matrix element of the single-particle quadrupole moment, q(ad) in
Eq. (2-3), is calculated with the harmonic-oscillator-shell-model wave functions. Since g(ab) is pro-
portional to &7, the factor &% does not explicitly appear in the reduced matrix element of the
quadrupole force, 1/2-2¢g(ab)q(cd), and so only ¥y is regarded as a parameter.
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Fig. 4. Calculated energies of dressed three-quasi-particle modes as functions of %. Only the (j
—1) and (j—2) states are presented for simplicity. Single quasi-particle energies E, are de-
noted by broken lines. Energies of one-quasi-particle-plus-one-phonon states are also written
by broken curves, where phonon energies are calculated by the RPA.

In Fig. 4 the calculated excitations energies w,; as functions of the quadru-
pole-fore strength x(i.e., %,) are shown in some examples, together with the
one-quasi-particle-plus-one-phonon energies, wpnon + £y, (in which wph.. are calculated
by the conventional RPA for the neighbouring even-even nuclei) for reference.
It is seen that, due to the characteristic three-quasi-particle correlation, the I=
(jp—1) states can be lowered naturally with reasonable values of y, and energy
splittings between the I= (j,—1) states and the I3 (j,—1) states become large
according to the increase of y. The amount of the splitting also depends on
the magnitude of j, as expected from the discussions in § 3.

It is now interesting to see experimental trend of energy levels of the ano-
malous coupling I= (j,—1) states in sequences of the odd-mass isotopes since
the anomalous coupling states are found extensively in excited states according
to the recent progress of experiment. (See Fig. 5.) The experimental trend is
somewhat similar to that of the 2% phonon states in the sequences of even-mass
isotopes in the sense that the excitation energies are rapidly lowered when one
moves away from the closed shells. It should also be emphasized that, at certain
nucleon numbers, there often occurs the crossing of energy levels between the
anomalous coupling state and the single-quasi-particle I=j, state. (See Fig. 5.)
As has been mentioned in §1, this may be expected to be the appearance of an
instability of the spherical-odd mass nuclei and to be the onset of deformation.

General trend of the calculated w.; (for the anomolous coupling (j,—1)
states in the sequences of the odd-mass isotopes) with reasonable fixed values
of %, is in good agreement with the above-mentioned experimental trend, if not in
fine detail. "~ (See Figs. 6, 7 and 9.) we now proceed to discuss the results of
the theoretical calculations in each shell region in some detail.

1) The region of hnp-odd-neutron nuclei

This is the region in which the opposite parity level 14, is being filled by neu-
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Fig. 5. Experimental trend of energy levels
of the anomalous coupling states with
spin I=(j,—1). The level energies are

0.5+ 129 presented relative to those of single
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trons. In the Cd, Te and Xe isotopes, 9/2~ states are found in experiments” ™ at a
few hundred keV in energy above the 11/2~ single-neutron-quasi-particle states.

In Fig. 6 are shown the calculated energy levels wnr for the sequences of
odd-mass Cd, Sn, Te, Xe and Ba isotopes, respectively. The adopted values of
%o in this region are the same as derived by Baranger and Kumar' within a
few percent. It is predicted by the results of the theoretical calculations that
the excitation energies (w,;—E,) of the 9/2~ states are on the decrease as one
moves from the single-closed shell Sn isotopes to the heavier Te, Xe and Ba
isotopes, and in each sequence of the isotopes they are on the decrease as the
neutrons fill the opposite-parity 1Ay, shell toward its middle. This calculated
trend is naturally understood when we remember the enhancement factors of the
three-quasi-particle correlation discussed at the end of §4: The decrease of the
9/2~ energy from Sn to Ba isotopes can be well understood as due to the in-
crease of the factor &(ab) of the core, and in each sequence of the isotopes the
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decrease is due to the increase of the factor §(pp) in the opposite-parity level
1h1_1/2.
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Figure captions are printed on the next page below.
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Fig. 6. Calculated energies of the dressed three-quasi-particle states in the 147 ,5-odd-neutron region.
Single-quasi-

Adopted values of the quadrupole-force parameter %, are written in the figures.

particle energies of the level j, are written by arrows. It shold be noticed that all energies are
measured from the vacuum of their modes. Thus, the differences of these energies correspond
to the spectra of odd-mass nuclei. The symbol “ X ” means that the calculated energy of the

(jp—1) state becomes smaller than the single-quasi-particle energy E,, and in this case the

other angular momentum states are written by broken lines.

In the Sn isotopes, none of the low-lying 9/2~ states is experimentally ob-

served up to now.*

> The reason is well explained when we consider the 9/2-



Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II 517

states as the dressed three-quasi-particle states, because in such single-closed-
shell nuclei the enhancement factor &(abd) of the core (on the three-quasi-particle
correlation) becomes so small that, in the theoretical calculations, the 9/2~ states
are forced to lie at high energy, about 1MeV, above the 11/2- single-quasi-
particle states. In the Te and Cd isotopes (in which the two protons and
the two proton-holes are added, respectively, to the proton-closed shell in the
Sn isotopes) the low lying 9/2~ states found in experiment are well explained
by theoretical calculations with a reasonable value of % When we regard
the 9/2- states as Kisslinger’s “intruder states” composed of the neutrons in
(1Azip)’-configuration, it is hard to understand the (above mentioned) different
experimental situations between the Sn isotopes and the Te and Cd isotopes.

Contrary to the Te isotopes, the experimental energy change of the 9/2-
states in the Xe isotopes is rapid, and at the neutron deficient Xe' the 9/2~ state
becomes lower than the 11/2~ single-quasi-particle states. According to our
point of view, this may indicate the onset of deformation. These experimental
facts are just ones expected from the theoretical calculations, and the situation
can be seen to remain unchanged for a wide range of the parameter y. From
the theoretical calculations, similar experimental aspects may be also expected
in the Ba isotopes. So far there is no systematic experimental evidence that the
neutron-deficient odd-mass Xe isotopes, in which the 9/2~ states are lower than
the 11/2- single-quasi-particle states, have stable deformations. However, it is
interesting to notice that the adjacent even-even nuclei manifest quasi-rotational
spectra clearly.

i) The region of §in-odd-proton nuclei

In this region the opposite-parity 1¢5» level is being filled by the protons.
In experiments, the rapid drop of the 7/2% state in energy is observed as one
moves from Nb to Ag. And, as is well known, the 7/2% states appear below the
9/2% states in the heavier Rh isotopes than Rh'® and in all the Ag isotopes,
Ag”®~Ag™. In the theoretical calculations, the energies of 7/2% states, from
Nb* to Ag' and also for each isotope, go down as functions of the nucleon
number with fixed value of %, (Fig. 7), and so are in good agreement with the
experimental trend. The growth of three-quasi-particle correlation (i.e., the de-
crease of w,; with I=7/2) can be understood as due to the fact that two enhance-
ment factors (§(pp and &(ab)) act coherently as one moves from Nb to the
heavier odd-proton nuclei in this region. For nuclei in which the anomalous
coupling 7/2% state, appears as the ground state, we may expect instability of
the spherical shape. And, for such nuclei, we should be careful to take into
account the limit of applicability of the theory based on the BCS approximation
with the spherical base. Although the quantitative comparison between the
theory and the experiment near the critical point, w,;=E, with 1=7/2, is not
so meaningful, it is somewhat surprising that, with the value of x,=242 MeV
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Fig. 7. Calculated energies of the dressed three-quasi-particle states in the lggtp-odd-proton region.
Notations are the same as in Fig. 6.

which is just the value derived by the classical method® with the nuclear radius
parameter 7,=1.2 fm, the experimental behavior near the critical point can be

reproduced rather well by the theoretical calculations, as is seen from Fig. 7.
For some nuclei in which both 7/2% states and 5/2% states are observed in
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Fig. 8. Comparison of the experimental energy levels with the theoretical calculations in the case
where both the (j,—1) and the (j,—2) states are found above the j, states. For the quadrupole-
force parameter %y, the same values as Baranger and Kumar’s are adopted in the calculations
of this figure. The energies are presented relative to the 9/2* states and only the lowest (j,
—1) and (j,—2) states with positive parity are written. Here, the energies of 9/2* states are
approximated to be those of “pure” single quasi-particle states.

experiments, a comparison between the theoretical and the experimental values
is presented in Fig. 8, where the values of y, are the same as those of Baranger
and Kumar.®® Although it is always possible to fit the calculated energies of
the 7/2*% states to the experimental values by a suitable choice of yx, the 5/2F
states cannot be lowered to the values required by experiments with the same
value of y, For the 5/2" states, therefore, we may expect a possibility of
considerable admixture of the “dressed five-quasi-particle states”, as is suggested
from the recent experiment'™ in Tc® where considerable E2 enhancement from
the 5/2% state to the 7/2% state is observed. In this connection, it is worthy
of notice that, in the conventional phonon-quasi-particle-coupling theory, effects
of the so-called two-phonon states affect most strongly the I=(j—2) states.
Thus, when one tries to accout in detail for the whole spectrum of both the
I=(j,—1) state and the I3 (j,—1) states, it may be necessary to take into ac-
count such mixing effects of the elementary excitation modes (such as the one-
quasi-particle modes, the dressed three-quasi-particle modes and the dressed five-
quasi-particle modes) which are essentially based on the Hy type interaction and
have so far been neglected in our present first step approximation. In this case,
it might be necessary to extend the truncated shell-model space to include the
next major shell, as was asserted by Ikegami and Sano.'®

iti) The region of gse-odd-neutron nuclei

In this region, the anomalous coupling 7/2" states are observed below the
9/2% states in almost all nuclei, and therefore the instability of the spherical
shape may be expected. In some nuclei near Z=40, the excited 7/2* states above
the 9/2% states are experimentally found, This means that in such nuclei the
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Fig. 9. Calculated energies of the dressed three-quasi-particle states in the 1g3,-odd-
neutron region. Notations are the same as in Fig. 6.

spherical shape remains still stable. The above mentioned experimental trends
are also well reproduced by the theoretical calculations with the reasonable value
of %. (See Fig. 9.) '

Concerning the 5/2% states, experiments show that these states also appear
as the low-lying states, especially in the nuclei around N=41. Within our first
step approximation (in which the mixing effects of the elementary excitation
modes are neglected) the 5/2% states cannot go down to such low-lying experi-
mental positions in energy. The situation is the same as the case of the gi»-
odd-proton nuclei discussed in ii).

§ 6. Concluding remarks

Based on the characteristic experimetal fact that E2 transitions from the ano-
malous coupling states to the one-quasi-particle states with spin j, are strongly
enhanced while M1 transitions are moderately hindered, we have proposed a new
point of view on the structure of the anomalous coupling states. In order to
check on the proposed new point of view, we have made excitation-energy sys-
tematics by using the theory of collective excitations in spherical odd-mass nuclei
proposed in part I. From the numerical results, it is concluded that the excited
anomalous coupling 7= (j,—1) states can be recognized very well as the dressed
three-quasi-particle states and so the proposed new point of view is strongly
supported by the experiments. Thus, the importance of the three-quasi-particle
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correlation in the collective modes in odd-mass nuclei has been demonstrated.

The effects of the three-quasi-particle correlation (based on the Pauli-principle
between the odd quasi-particle and the quasi-particles composing the phonon)
have so far been neglected by the argument that a phonon contains only a small
amplitude for the presence of any particular quasi-particle.” However, this argu-
ment is not correct. The addition of the odd quasi-particle induces the three-
quasi-particle correlation, which strongly violates the concept of “phonon” in
odd-mass nuclei. Furthermore, the more the collectiveness of the “phonon” in-
creases, the more the new correlation grows up. ,

It has also been shown that Kisslinger’s “intruder” states? composed of
(jp)*-configuration can never exist purely, because of their strong interaction with

Table I(a). Amplitudes of the dressed three-quasi-particle mode with I=7/2" in Tel2,
Adopted value of %, is 247 (MeV) and the calculated excitation energy is 1.95MeV.
The values of forward amplitudes ¢,;(p;ab) are written in the second column, while
the values of backward amplitudes ¢,;(p;ab) are written in the third column, where
Gnr (P 2P)=0p1(p®) and ¢n1(p; pp) =¢,r($% in the text. In this state, the opposite-parity
level p is specified by the set of quantum numbers (neutron: 1hf;), and only the
quantum numbers a, & are written in the first column. These amplitudes are normalized
to one according to Eq. (4:5) in the text.

neutron
ab h}y/s 93 di d3e Frs2ds2 9127372 ds;adsse dssas1/2 dy 28172
Onr(p; ab) 0.607 | 0.091 0.041 0.274 0.025 0.255 —0.101 0.092 0.249
@1l psab) 0.153 | 0.060 0.030 0.121 0.017 0.147 —0.064 0.062 0.131
proton
ab h%iss 9312 i d3s Fr2ds/2 G122 ds/dsse ds/381/2 dy/zs1/2
Onr(psab)| 0.042 0.701 0.143 0.009 0.122 0.092 —0.027 0.047 0.012
onr(psab)| 0.031 0.190 0.069 0.007 0.049 0.062 —0.019 0.033 0.009

Table I(b). Amplitudes of the dressed three-qﬁasi-particle mode with I=9/2" in Tel?,
Adopted value of % is 247(MeV) and the calculated excitation energy is 1.57 MeV.
Notations are the same as Table I(a). ‘

neutron
ab h%uz 9?/2 dg/z d%/z Fr/2ds/ 9172372 dssadsys ds 25172 dy/zS1/2
Onr(psab)| 0806 | 0.111 0.052 0.293 0.031 0.300 —0.123 0.114 0.285
On1(p; ab) 0.300 | 0.089 0.044 0.189 0.026 0.223 —0.096 0.092 0.202
proton
ab htie 93 dis di F17265/5 1232 ds/zds/é ds 25172 dsses1/2
Opr(psab)| 0.053 0.601 0.158 0.012 0.125 0.114 —0.034 0.059 0.015
onr(psab)| 0.045 0.312 0.107 0.010 0.077 0.092 —0.028 0.049 0.014
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the “phonon” to form the new collective states, i.e., the dressed three-quasi-
particle states.  The situation is ‘illustrated in Table I, where one can see
that the amounts of the (j,)-component and of the other components in the
correlation amplitudes are in the ratio of about one to one.

Throughout this paper, we do not touch the mixing effects of the dressed
three-quasi-particle modes with the other elementary excitation modes (such as
the one-quasi-particle modes and the dressed five-quasi-particle modes.) The
mixing effects, which essentially come from the Hp type interaction in Fig. 2,
may be expected to become important for the I=¢ (j,—1) collective states, espe-
cially for the I= (j,—2) states. A more general calculation including the mix-
ing effects will be reported in another paper, together with various electromagnetic
properties of the anomalous coupling states.

lFinaﬂy the following should be emphasized: - When the anomalous coupling
I=(j,—1) state becomes the ground state, an instability toward deformation is
expected, and so these nuclei are outside of the applicé_bility of the present
theory with spherical bases. -Starting from this point of view; it would be de-
sirable to investigate theoretically the stability of the spherical BCS ground
state against the characteristic three-quasi-particle correlation.
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Various electromagnetic properties of the anomalous coupling states with spin (j—1)
are shown to be well explained by the new viewpoint of the dressed m-quasi-particle modes
proposed in a previous paper. In this point of view, the anomalous coupling collective
states with spin (j—1) are considered as the dressed three-quasi-particle modes, which are
regarded as a kind of elementary excitation modes in odd-mass nuclei. The effects of
couplings between dressed three-quasi-particle modes and one-quasi-particle modes are also
discussed in this connection, including those with spin j, (j—1) and (j—2).

§ 1. Introduction

In a previous paper, part I[”*% we have introduced a new point of view
on the structure of anomalous coupling states (ACS) with spin I=(j—1). In
this point of view, the ACS are considered as typical manifestation of the
“dressed” three-quasi-particle modes which can be regarded as a kind of ele-
mentary modes of excitations in odd-mass nuclei. The concept of the dressed
n-quasi-particle modes has been proposed in part I®’**¥ and related papers.”?
With the use of the conventional pairing-plus-quadrupole-force (P+QQ) model,
it has been shown in II that the excitation-energy systematics of the ACS with
spin j—1 (the 7/2* states in the Kr-Sr region, the 7/2* states in the Tc-Rh-Ag
region and the 9/2- states in the Te-Xe region) can be well explained by the
proposed new point of view.

Extensive data on the electromagnetic properties of the ACS are now being
accumulated and are providing us with important information which reveals vari-
ous aspects on the structure of the ACS."®* The characteristics of the electro-
magnetic properties of the ACS with spin j—1 may be summarized as follows:
1) Strongly enhanced E2-transitions between the (j—1) states and the one-quasi-
particle (1QP) states with spin j. The enhancements of the E2 transitions are

# A preliminary version of this work was reported at the Int. Conf. on Nuclear Moments
and Nuclear Structure; J. Phys. Soc. Japan 34 Suppl. (1973), 407.
*% This work is referred to as IL
**¥) This work is referred to as I. !
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comparable (or somewhat larger) to those of the phonon transitions in neigh-
bouring even-even nuclei.

2) Moderately hindered M1-transitions between (j—1) states and j states. In
some experiments, however, they are only weakly retarded.

3) The g factor of the (j— 1) states are nearly equal to (or slightly deviates:
from) those of the 1QP states with spin j.

The main purpose of the present paper is to show how various electro-
magnetic properties of the ACS mentioned above can be explained in a unified
manner. In order to evaluate any physical quantities unambiguously within the
framework of new-Tamm-Dancoff (NTD) approximation, we at first define the
concept of quasi-particle NTD space spanned by the introduced elementary ex-
citation modes.”® The quasi-particle NTD space is constructed in a complete
one-to-one correspondence to the quasi-particle-Tamm-Dancoff (TD) space (charac-
terizing the conventional quasi-particle representation). Therefore the dressed 7-
quasi-particle modes are reduced to the Tamm-Dancoff 7-quasi-particle states if
the ground state correlations are neglected. Then, any physical operators are
transcribed into the quasi-particle NTD space, so that any ambiguity does not
appear in evaluating the electromagnetic quantities of interest. In this way, the
coupling Hamiltonian between different types of excitation modes is also derived
unambiguously.

Within the framework of the P+ QQ force model, the theory is formulated
in an explicit form in §§2 and 3. In § 4, the mechanism of appearance of the
collective 3QP correlations, which is responsible for the special lowering of the
(j—1) states, and the process of their growing up are clarified. Furthermore,
the excitation-energy systematics of the ACS with spin (j—2) is explained by
taking into account the effects of the interplay between dressed 3QP modes and
1QP modes. In §§5 and 6, we present numerical results on the electromagnetic
properties of the ACS for cases without and with the coupling effects. The
results will clearly show how various electromagnetic properties of the ACS
mentioned above can be recognized in a unified way within the framework of
the proposed theory.

§ 2. Preliminaries

In this section we briefly recapitulate the theory and model on the ACS intro-
duced in I and II, as a necessary step toward discussion in the following section.

2-1 The Hamiltonian
We start with the spherically symmetric j.j coupling shell model® with the

* The single-particle states are then characterized by a set of quantum numbers: the charge
¢, n, I, j, m. Throughout this paper, these states are designated by Greek letters. In association
with the letter @, we use a Roman letter a to denote the same set except for the magnetic quantum
number m. We further use a subscript &, which is obtained from a by changing the sign of the
magnetic quantum number. .
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P+ QO force. Taking into account the special importance of pairing correlations,
first we perform the Bogoliubov transformation. Our Hamiltonian may be written
in terms of the quasi-particle operators a,' and a, as follows:

H=H0+HQQ
= Z Eaaafaa—%x ; :Q;MQZM: ) (2' 1)
a
where y is the strength of the quadrupole force, and E, is the quasi-particle
energy, determined as usual together with the parameters v, and u, of the
Bogoliubov transformation. The symbol:: denotes the normal product with respect

to the quasi-particles, and the quantity Qm is the mass-quadrupole-moment operator
in terms of quasi-particles,

Qo= 25 ¢(ab) [£(ab) {Alw (ab) + Ao (ab)}

+7 (ab) {Blx (ab) + By (ad)}] , 2-2)
where

q(ab) 57%<aurmub> ‘ 2-3)
and

s(ab)sv%wbmu,,) ,
2-4)
7(ab) E% (ttatts — 0a0s) .

The operators Ay (ab), Asu(ab), Bix(ab) and B,y (ab) are the conventional pair
operators defined by

Alu(ad) E%Z S Gaotnam sl TM daglas
Mmomg

Blu(ab)=— 3 {oomamel IMalds 2.5
momg

Asn(ab)=(—) """A;n(ab),
EJM(ab) =(-) I~¥Bu(ab) ,
where
dg=sgag=(—)"""Taz. 2-6)

The quadrupole force Hgq in Eq. (2-1), which represents the interaction causing
the breakup of the Cooper pair, can be divided into three parts depending on
roles they play in constructing the elementary excitation modes:

Hoo=H+ Hy, }

27
HS)Q)EHX‘FHV >
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where®
HX =X ; }_n: Q (albl) Q (‘lzbz) A;M(dlbl) AzM(dzbz) N (2 . 7a)
HV = % ; .,Z,, Q ((hbl) Q (ﬂzbz) {A;M (dlbl) AVEM (42172) +h-°-} ’ (2 : 7b)
H, yr= — 2X ; Zb: Q (albl) aq (Clzbz) 7 (azbz) {AEM (41171) B,y (azbz) + h-c-}
o (2-7¢)
with
Q(ab)=q(ab)é(abd) . (2-8)

The first part H) plays an essential role in constructing the dressed three-
quasi-particle modes as elementary excitations, while the latter part Hy plays an
essential role as coupling between the different types of elementary excitation
modes, for instance, interactions between the 10QP modes and the dressed 30P
modes, etc. For detailed explanation of the classification of various roles of the
interaction, see Ref. 3).

2-2 Model of the ACS as the dressed 80P modes

Let us consider the odd-mass system in the truncated shell model space
consisting of one major harmonic-oscillator shell (for both the protons and the
neutrons) and of a unique-parity level which enters into the (proton or neutron)
major shell, and suppose that the unique-parity level is being filled with several
protons or neutrons. When we especially need to specify the unique-parity level
and the single-particle states at the level, we use the Roman letter » and the
Greek letters 7, p, 0, etc., respectively. The Roman letters g, b, ¢, -+ and the
associated Greek letters «, 8,7, --- are used for the levels except the unique-
parity level and for the states at the levels, respectively. In this special situation
in shell structure (for the appearance of the ACS), the dressed 3QP modes with
parity opposite to that of the major shell become especially simple from the
parity consideration: In the P+QQ model, the eigenmode operators for the
dressed 3QP modes (defined in I-§ 9), which have parity opposite to that of the
major shell, are simply reduced to

1

Clix= NETE 2 P21k (m00) : 1'ys280 (m00) : + parx (m00) : Tsp217(m00) 3}
| 7Y

1 c c ~
T ”Z]ﬂr Wnix (mBY) aslagla, + ghrx (wY) ata e} 2-9

where the operator T's5,(m00). is the quasi-spin tensor of rank s=3/2 and its

® In the same way as in II, we have neglected the exchange term of the interaction Hgq in
Eq. (2:7), according to the inherent assumption of the P+QQ model.
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projection s, the explicit form of which is given in I-§ 3, for instance,

Tsyps2(m00) =a,'a,la,t,
Ts1(mp0) = N/ % {a.'@,@;+%,a,%0, +3,3,a," .
The three-body-correlation amplitudes satisfy the relations
PYiix (o) =0rhrx (m0) , Polix (m00) =0rptix (n00) ,

g (WrB) = — Yrrx @RY) ,  rrx(wrP) = — ¢nrx (TPY) (2-10)

where P is the permutation operator with respect to (7, p,0) and 0p is defined
by

@-11)

{ 1 for even permutations,
o=
—1 for odd permutations.

As was emphasized in I, the eigenmode operator (2-9) must include no zero-
coupled quasi-particle pairs, so that the correlation amplitudes have to satisfy
the conditions

; ‘/ngK (nﬁo‘) srr = Z @glK (T[ﬁo.) Sz = 0 ’
%} $nix (77-'33) Sg = mz,;: Pk (nﬂl?) sg=0. (2-12)

The expression (2:9) for the eigenmode operators with the conditions (2-10)
and (2-12) clearly means that the dressed 3QP modes are characterized by the
amount of transferred seniority 4v=3 to the state on which they operate.

The eigenvalue equations for the three-body-correlation amplitude should be
obtained so that C};x becomes a “good” approximate eigenmode satisfying

[(H,+H, Clix] =0nChix—Znix . (2.13)

Thus, in our NTD approximation, the ‘“interaction” Z,;x whose composition has
been explained in II is neglected in the first step in which the dressed 3QP
eigenmode Cl;x is determined. .

It is convenient to distinguish the eigenmode operators according to the cor-
responding energy eigenvalues @,, and Ony:

Y’IIK for wnzw"*;lim wn,=Ep+Ea,+Eb,
x=0
CLIK =

Aprx for  wu.=wn,; im v, =E,—E,—E,. (2-14)
xX—0

As has been discussed in I, the operators Y!;x are “physical” operators to create
the dressed 3QP states. The existence of “special” operators A,z means that
any state vector |@)> which actually has physical meaning must satisfy the sup-
plementary condition
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A,,OIK10>=O . (2'15)
Thus, the correlated ground state |@,> should be determined by the equations
Y,x|00)=0, Au:x|0)=0. (2-16)

It has also been shown in I, within the framework of the NTD approximation,
that the dressed 3QP modes satisfy the quasi-Fermion approximation, i.e.,

<mo| {Yn'I’K', Y;IK} | mo> = Onn 0110z~ s (2 . 17)

by the use of the orthogonality relation
(Forr Turx) = 2 {05 15 (00) Y3 1x (mO0) — onrx (ROT) orrx (mE0) }
Tpo
+ ”Z& {1 (@BY) Yorx @BY) — o (WBY) Phrx (WBY) }

=€,.0nn 0110 xx- (2-18)
with

1 for w.=0wn,,
GTL: (2'19)
—1 for wa=0n,,
which is obtained from the properties -of the eigenmode equation for the cor-
relation amplitudes.
The basic operators of the eigenmode, :7'y252(700):, :Tspia(m00):, alasa,’
and a,',d,, are expanded in terms of the eigenmode operators Cl;x uniquely:

1 Ty282(mp0) : = V3! ZI O21x (00) (Y-IIK —Anurx) ,
Ty (mpo):=— v/ 3! ZI @hrx (mp0) (Yirg — Anrx) »

B (2-20)
anfapfarf =42 ; nIx (=Br) (YIIK —Aux) ,

a,'dgld, = — V2 Z; @nrx (TPY) (YIIK—A'an) .

The part A,;x in (2:20) does not play any role in our physical space because
of the subsidiary conditions (2-16),

In actual calculations, it is convenient to. use the coupled angular-momentum
representation. Then, the physical eigenmode operators may be written as

Y ik =Niur(5°) : Topasa (G, (2) jpIK):
+ Neput (8 : T (G (27, 1K)
+ 52 N(ab) gur (53 ab) [ A @) i
— 5 N (@) gur (55 ab) [ Aa @) Tox 2-21)

where > () means the summation with respect to the set of levels (ab) and
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the following notations are used:

N(ab)=v2/(1+0u) , (2-22)
N;=1/v2C;, (2-23)
C,=1 10{1'? Jr 2} 5, 20 2.24

I + W12 0,1 4,1 ( )

and

(T apa2(Jp" (2) 7pIK) : = V2[ AN (pP) ap']1x
5 - (2-25)
Tonin(Gp* (2) 7p1K) : = — / ?2) [a,' A2 (2P) ]1x— ~/ % [B:' (££) @)1k - }

The correlation amplitudes ¢.;x in the coupled angular-momentum representation
are related with those defined in Eq. (2-9) by

Gnix (W0) = D3 Pnr(Jp" () Jo} Jp" D) {JjpMmo| IK ) G jym ,m,| JM ) , }
J=even (2'26)
On1x (71'87’) E{b;l (P, bC) <2ijmvr|IK><jbjcmﬁmr 12M> >
nI d E‘/37NI ol .112 2 .p -pBI ’
$nr(9°) Gnr(Jp (27t in'T) } @-27)
Gar(p; b6) =N (bc) s (93 bc)

and the same relations are obtained for the backward amplitudes ¢nr. It should
be noticed that the dressed 3QP modes Y};x can be simply expressed in terms
of only the special amplitudes with the intermediate angular momentum J=2,
as was shown in II. The eigenvalue equation for the correlation amplitudes is
now written as follows:

{2E, — wnt} 91 (2Y) =2Q (pp) VC1(A;+By) ,

{2E, + Onr} (434 @ = N/ %—XQ (2p) ‘/E (A;+Bp,

(2-28)
{(Es+Ey) — a1} n1(p; ab) =xQ (ab) N(ab) (A;+ By,
{(Ee+Eb) +0n} ¢ur(p; ab) =4Q(ab) N(ab) (A;+ By ,
where
A= (aZb; Q(ab) N(ab) {pn1(p; ab) + ¢ur(p; abd)},
_ (2-29)
B=0Q(2p) «/E{sbnz(p”) +4/ %{%I(PS)}
and

onr=0nr—E, . (2-30)
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The eigenvalue of Eq. (2-28) can be easily obtained by writing it in the follow-
ing form:

X_l = Sp + Sc
_2 QUNCHE, tob} | 55 Q'@H)- (Bt E) (1)
3 (2E,)*— (0nn)® @ (Eu+E)'— (0n)*

In the coupled angular-momentum representation, the normalization of correlation
amplitudes (2-18) for the physical solutions becomes

¢ur (2°) + (EZ” Yz (5 ab) — @ (p°) — (EZ” ¢nr (p; ab) =1. (2-32)

Combining Eq. (2-28) and Eq. (2-32), we obtain explicit expressions for the
correlation amplitudes:

O (P°) =M. Q(pp) \/C_'I/ {2E,— w1}

ou1(2%) =/ %MzmQ(pp) VCi/ 2E,+ s}

Onr (P? ab) =M;.0 (ab) N(‘lb) / { (Ea +E,) — (D;I} s
onr(?; ab) =M1, Q(ab) N(ab) /{(E.+ E,) +wn}
where the normalization factor M,, is given by

M=y (A;+By)

(2-33)

2 (2E,)*+8E,ul; + (0l)*
— (=~ C, D »
(5000 (CEY — ()"
’ Q2 (ab) (Ea + Eb) - .
+don {(Ea+Eb>2—<a>;,>2}2> ' 2-34)

As will be discussed in the next section, our eigenvalue equation (2-28) possesses
real solutions in so far as the condition

2 (S,+8)>0 (2-35)
do
is satisfied.

§ 3. Coupling between single- and dressed-three-quasi-particle
modes and the transcription of physical operators
into “quasi-particle NTD space”

So far we have treated only the parts Hy and Hy, i.e., the constructive
force (of the elementary modes of excitations), in the interaction Hye. They
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have determined the dressed 3QP modes, which inherently introduce a model
subspace called the quasi-particle NTD subspace. The next problem is to treat
the part Hy, i.e., the interactive force (between the different types of elementary
excitation modes), by finding a method of transcription of any physical operators
into the quasi-particle NTD subspace, within the same NTD approximation em-
ployed to construct the modes.

The “quasi-particle NTD subspace” under consideration should be composed
of orthonormalized basis vectors,

{|0§1)>Eaa7|@0>, Wg}K>EYIIK|@o>} . 31
Within the basic approximation of the NTD method
O (n/2) =<0 ay'a,|0:)~0, 3-2)

the orthonormality of the basis vectors,
<@,§l) I q)g)> = 6aa’ ’ <w'§?’)l'x’ I@S}K> =0na 01Ok~ s
{0P08>=0, etc., (3-3)

is proved to be satisfied. The unit operator of the extended subspace, that is,
the projection operator onto the subspace is defined by

1= 20 02)<02] + 25 1030x)<0%%x| . (3-4)

It must be emphasized that the single-quasi-particle (1QP) states a,f|@,)> in the
quasi-particle NTD subspace should possess the eigenvalues E,, in spite of the
presenée of the interactions Hy and Hy,® and are orthogonal to the spurious
states (due to the nucleon number fluctuation in the quasi-particle representation).
This may be recognized by noticing that

1-[H,+H, a,'1100p=1-E.a,! 0, (3-5)
and
1-8_a,1|0p=1-[5_, a,1|0sp=1-2,| 0y =0, (3-6)

where S_ denotes the generators of the quasi-spin space defined by I-(3-21).
Equations (3:5) and (3:6) hold because the correlated ground state |@,> satisfies
the conditions (2-16) and S_'|00>=0, under the basic approximation (3-2).

Let 6,»,, be any single-particle operator of rank 1(s~0). This operator can
always be written in terms of quasi-particle operators,

PS N P~
O)\.p A(”) + 01(,«)

Il

_ 5 £alOB>  (#avs+ (=) vatts) ¢ a1 e
@ v 21+1 NG (AL (ab) + (=) "A,.(ab))

*) The details on this point will be discussed in a forthcoming paper.®
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a0, 15>

= Joi+1 (#atis— (=) T0,5) Bl, (ab) , 37

where (—)” denotes the phase factor of operator 6,“, under time reversal defined
by '
TO,T'= (=)0, (=)". 3-8
The transcription of operator O\X,, into the subspace can be done unambiguously:
O\w“’auz 1 6)./41 .
= ag, <a)c(tl)| axpl @g’)>au1’aa’ + 7§r <QSI)K| 6:»,;[ @gf)z'x'> YIIK Y,k
n’I’K’

+ ZIK Ko O\xpl 0x>a,' Yax+he} (3-9

where we have used the fact that the eigenmode operators a,' and Y},x can be
expressed in the “quasi-particle NTD subspace” as

a,' =090, =a,!|0:)<0| ,
Yire=|00x){0o| = Y}:x| 0:){Dy| . (3:10)
The transcription coefficients in Eg. (3-9) are evaluated by using the quasi-
Fermion approximation (2-17):
010,025 =04 {a, [Oi,, al]-} 100>,
<0 ’O\xplmfl)x>:<@ol {@a, [O\Ap, Yii]l-} 4100,
O8] Ol 01> = <0| {Yorx, [Ory Yirw 13410 . (3-11)
For details of the theory, see Ref. 3) and also a forthcoming paper.?

In completely the same way, our original Hamiltonian H is expressed, after
transcription, as

H->H=1-H-1=1(H,+H +Hy1
=2 E.aa,+ %(Dnz Y ixYurx

+ 1; Xnr(Yiixa,+a,! Yarx) , 3-12)

where we have dropped the constant term related to the energy of the correlated
ground state. The third term of the transcribed Hamiltonian represents the
interaction between the 1QP modes and the dressed 3QP modes, and comes
from the Hytype (original) interaction which has not played any role in con-
structing the elementary excitation modes. This shows that the Hjy-type interaction
manifests itself, after the transcription, as a coupling between the different types
of excitation modes. It should be noticed that we have obtained exactly hermitian
property of the coupling term. Thus, the theory can clearly overcome the non-
hermiticity difficulties of the eigenvalue equation of the conventional higher
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RPA. The reason is that we have properly taken into account the relations
between the eigenmodes and the structure of the correlated ground state (pre-
scribed by the eigenmode), in the .evaluation of the coupling Hamiltonian.

In the P+QQ model, the coupling strength %,; is given by

_ 2Y ’
Xnr= — %" 6fp'1 : L %  (Upthy— Vp0p)

x [Q (ep) VCi {(bnz @)+ ~/ %@.I (;b”)}
+ Q@) Wh (5380) + g (23 50} |

rY,|p’
= —6,-,,,-@"21—5]1?- (it —0pr0) Mi (3-13)
where M, is defined by (2-34). We will consider the effects of this coupling
term in §4, where an important difference with the conventional phonon-quasi-
particle coupling theory® will be shown.

§ 4. Characteristics of the excitation-energies

As was already shown in II, the excitation-energy systematics of the ACS
with spin (j—1) can be well reproduced in theoretical calculations. We pre-
sent, therefore, only some numerical examples here. Figures 1 and 6 show the
growth of 3QP correlations in the ¢y,-0dd-proton region. The addition of only
two protons to Nb* is sufficient to bring on the strong growth of 3QP-correla-
tions in Tc%® and, finally, we can clearly see completely different situations in
Ag-isotopes, where only the 7/2* states are extremely low in energy. The
collective character of the 7/2* states may also be recognized when we com-
pare the excitation-energy systematics of the 7/2* states with those of the 2+
phonon states in even-even nuclei. Figure 2 clearly shows the similarity (as
functions of neutron number N) between them. These two characteristics are,
as was discussed in II, due to the two enhancement factors, &£ (pp) at the unique
parity level p and &(ab) in the core, respectively. Depending on these enhance-
ment factors in the eigenvalue equation (2-28), the excitation-energies w.r of
the dressed 3QP modes become small and, finally, they arrive at a critical point
from which there appear complex eigenvalues. The critical energy wii=wei—E,
is determined from the characteristic properies of our eigenvalue equation (2-28)
and is given as the solution of

i(S,,+Sc)=0. 4-1)
dow

The lowering of the excitation energy (of the mode with spin (j—1)) clearly
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shows the growth of collective correlations in the state considered, and the ap-
pearance of the complex eigenvalue indicates that there may occur a new type
of instability of spherical BCS vacuum due to the characteristic 3QP correlations.
Figure 3 shows the behaviour of the dispersion equation (2-31) schematically.
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0.0
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0.0
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From the figure we can see that stable
solutions of Eq. (2-28) extist as long
as the condition we<w,; is satisfied,
that is, all eigensolutions of Eq. (2:28)
are real even if the energies of ACS
with spin (j—1) are lower than those
of 1QP states with spin j7* In the
following, therefore, we shall present
numerical results not only for the ex-

Fig. 2. Comparison between the excitation-
energy systematics of the ACS with spin
(7—1) and those of 2*-phonon states. The
presented phonon-energies are the averaged
values between the neighbouring even-even
nuclei, i.e., @2+ (N, Z) =%} {ws (N, Z—1) + 0 (N,
Z+1)}. The energies of the ACS with spin
7/2% are presented in relation to those of 1QP
states with spin 9/2*.
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Fig. 3. Schematic representation of the dispersion equation (2:31) from which the
eigenvalues of the dressed 3QP modes are determined.

* Of course, in such a situation, the quantitative validity of the NTD approximation is not

expected to be satisfactory, and rather strong “non-linear effects” (the effects of the

term Zux in Eq. (2:13)) may become important.
of the qualitative characteristics (the stability of spherical BCS vacuum holds barely in the very

limited region ol < whr<<0).

“interaction”

Nevertheless we can expect some persistency



792 A. Kuriyama, T. Marumori and K. Matsuyanagi

cited ACS but also for the ACS that

appear below the 1QP states with J ! Y;IICPo), 9.~
spin j. E2

Now let us turn to consider the ) .

mixing effects due to the coupling term ! qj 1%,
2ontk,a Xt (Vg a, + a,'Y,;x) in the
transcribed Hamiltonian (3-12), with
the effective coupling constant ¥,; given
by Eq. (3-13). The characteristic of
the coupling term is its inclusion of the

(first step approximation)

0j,71+ (Uptty—v,v,) factor, which comes

.
. . . . j- 4 + ;. qr
from the (original) Hy-type interaction. I-1 ! M l\?) a{‘lcl" IDo>
For the modes with I=j,, we have M ! E2 ,\,‘«:/
: + T “a +
upz-—'vpz’«xo j Gl |¢)0>+ a]Y] I@o)
in the special physical situation in which
high-spin, unique-parity level p is half- (second step. approximation )
ﬁl.led' Remember thz_it the lowering of Fig. 4. Schematic representation of the basis
(J—1) states occurs in odd-mass nuclei states and of the coupling effects, which
in which a level of high_spin with oppo- we consider in this step of approximations.
site parity in the major shell Mev
is being filled. For the modes
with I+j,, the mixing effects 1.0

are expected to be rather small,

since a single-particle level »’

(which has the same parity

with the level p) with spin

Jpr=17j, does not exist in the 05

same major shell but lies in

the next upper major shell.
Including the mixing ef-

fects, the states of interest are

changed as

Yik|0p—v1—af Yi| 0
+aal. |0, ,

a0y —>vV1—alal|0>
+ ;Y }n, |05

0.0

(4 . 2) Nb, Te, Rh, Ag-region
@

with I=j,,= (j—1) or (j—2), Fig. 5.
where we have considered only (Figure caption is printed below on the next page.)
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the lowest (collective) solution
for the dressed 3QP modes
and omitted the suffix ». The
energy shifts in this approxi-
mation due to the coupling
effects are shown in Fig. 5 and
the mixing amplitudes « are
presented in Tables III and V.
There are three points to be
noticed: 1) The mixing ampli-
tudes a; of dressed 3QP modes
for the 1QP states are, general-
ly, about half as large as those
given by phonon-quasi-particle-
coupling calculations of Kissl-
inger and Sorensen.” Cor-
respondingly, we have obtained
much reduced energy shifts of
the 1QP states. This is because
the effective coupling constant
¥r with I=j should become
about half as large as that of
the conventional phonon-quasi-
particle coupling theory, if we
take into account 3QP cor-
relations accurately and remove
the spurious states due to the
nucleon number nonconserva-
tion. The characteristic de-

Fig. 5. Energy shifts due to the coupl-
ing effects ‘of the dressed 3QP
modes with the 1QP modes. The
energies of ACS in the absence
of the coupling effects are given
by white circles and are connected
by broken lines, while the energies
of the ACS in’the presence of
the coupling effects are given by
black circles and are connected
by solid lines. All energies are
presented in relation to. those of
1QP states with spin j, in each
approximation.
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49
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0 wr- Ej
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pendence of ; on the (u,’—wv,?) factor is, however, the same as that of Kisslinger
and Sorensen.” 2) The mixing amplitudes ;- are generally the small as expected
and the assumption of the purity of the ACS with spin (j—1) as the dressed 3QP
modes is not violated by the coupling effects. 3) The mixing amplitudes «;.; are
rather large and, correspondingly, notable energy shifts due to the coupling effects
are obtained. This is because of the large matrix-elements {p'IPYS)p> with

MeV
1.5 j 9/2*
9/2* i n*
7 12t ———e 872
92! 7 -7 13/2* J— 1/72*
11.0 11/2: P e 1/2° .- .
13/27 ) . 5/2* - / e 13/2
5/2 . - 72 N . +
7/2* mm—" 5/2* > 5/2
10.5 . +
R — 7/2
+
loo o2 - - a2* A 92t
exp. cal.l cal.2 exp. cal.l cal.2
93 95
NP5y 43Tcs)
(@)
MeV
1.5 —_- w2t
_— - et
1.0
f —— 13/2%
," ——5/2%
{05 /
1
’
’
+ 1
00 o2t -- o/2*
exp. cal.l cal2
99
43lcse
(b)

Fig. 6. (Figure caption is printed below on p. 796.)
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Fig. 6. (Figure caption is printed below on the next page.)
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Fig. 6. Comparison between the experimental energy levels and the theoretical calculations for both
cases, i.e., without the coupling effects (cal. 1) and with including the coupling effects (cal. 2).
The energies are presented in relation to the 1QP states with spin j. Only the calculated results
on the lowest-lying collective states in each spin are written in the figure. For reference to
the experimental data, see the caption of Fig. 1.
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| jor— Jol =2 (when compared with the case |j,r—j,| =1) in the effective coupling
constant ¥X; In particular, remarkable energy-lowering of the (j—2) states has
been obtained in numerical calculations for the nuclei around neutron number
N=41 (the beginning of the g3, shell). This trend comes from the increase of
the (w4, —v,v,) factor toward the beginning of the shell, just corresponding
to the experimental trend. At the beginning of the unique parity shell, however,
the degree of energy-lowerings is not so large as observed in experiments, pre-
sumably because of the present limited truncation of the quasi-particle NTD
subspace. Thus, in contrast to the ACS with spin (j—1), rather strong mixing
effects operating between different excitation modes may become important for
the ACS with spin (j—2), as was asserted by lkegami and Sano.®

In Fig. 6, we present some calculated results on energy-spectra and compare
them with experimental data. In all calculations, including those of electro-
magnetic properties, we have adopted the following procedure: We use the same
values of pairing-force strength and of single-particle energies as those adopted
in the work of Kisslinger and Sorensen,” and also make the same truncation of
shell-model space as they have made. With these parameters, firstly we fix the
strength of the quadrupole force % so as to reproduce the experimental value of
o/ with I=(j—1) and, secondly, calculate the energies @,/ with Is=(j—1) by
the value of y thus obtained in each nucleus. Consequently we obtain calculated
energy spectra denoted by cal. 1) in which the energies of the states with
I=(j—1) are fitted to the experimental values and those with Is=(j—1) are
not fitted. In the next step, we include the coupling effects with thus determined

Xo
zr - Nb. Te xe
Te* * *
Te* Xe
300 4 Sr. .
Te
Kr. .
sr Nb, T¢ Rh Te
Ge Se*
____________________________ Te, Rh Cd Cd
L Ger T T T T T e
Ge Ag-
e Se Rh* Ag: .
Se Rh» Ag
200
1001
70 80 90 100 1o 120 130

Fig. 7. Values of parameter y, chosen so as to bring the energies of the ACS with spin (j—1) into
agreement with the experimental data. The parameter yp is related to the quadrupole force
strength x through x=x0b™*A~%3, where &2 is the harmonic-oscillator range parameter and is
taken to be 1.241/3. The broken line shows the value expected by the classical arguments.
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parameters and then obtain energy spectra denoted by cal. 2). In this step, the
mixing amplitudes o are estimated by taking the single-particle energies of level
p’ from the work of Uher and Sorensen” and also by approximating the occupa-
tion probability of level p’ to be zero, i.e., v,,~0. In Fig. 7 are shown the
values y which reproduce the experimental values of w,/ with I=(j—1). It is
seen that the values y,(=yx:5*A"*) approach the value yx,=242 (MeV) expected
by the conventional arguments in the regions far from closed shells.® On the
other hand, they become large in the neighbourhood of closed shells. This may
be a natural consequence of the one-major-shell truncation in constructing the
dressed 3QP modes. It should be noted that the values of %, thus determined
are the same as used in fitting the 2+ phonbn states in even nuclei within a few
percent. This means that any unreasonable parameters have not been used in
the course of the calculations.

With the energy-eigenvalues mentioned above, the values of B(EZ2) and
also of the other electromagnetic quantities will be evaluated in the followings.

§ 5. Electromagnetic properties first order approximation——

In this section, we consider the electromagnetic properties of the ACS with-
out including coupling effects, that is, by regarding the ACS as the pure dressed
3QP modes defined in § 2.

5-1 EZ2-transitions between the ACS and the 1QP states

As was already stressed in the introduction, the collective structure of the
ACS with spin I=(j—1) has been recognized through the recent observations
of the strongly enhanced E2-transitions between the ACS and the 1QP states
with spin j. As usual, electric quadrupole operator is given by

0,=00+0P
= 2 eQ(ab) {Alu(ab) + Ay (ab)} \

+ 22 e.q(ab)y(ab) Bl (ab) , G-
where e. (t=1/2, —1/2) are effective charges for neutrons and protons re-
spectively;

ep=e,=e -,
em=¢e,=e¢(1+a) (5:2)

with the polarization charge e-«. Following the procedure given in § 3, we get
the reduced E2-transition probabilities under consideration:

1
2I+1

B(E2; I-j,) = [KOL 0108 |?
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=le.nQ (1) VCr {sbnz(p“) + ~/ %%z(p’)}

+ (qu; €.anyQ(ab) N(ab) {pnr(p; ab) + @nr(p; ab)}|?.
(5-3)

Inserting the solutions for the.amplitudes (2-33) into (5-3), we finally obtain
B(E2; I-j,) =M},|e.(nS,+ eS. (proton) + e,S, (neutron) |%, (5-4)

where M;, and S,, are given by (2-34) and (2-31), respectively. It is inter-
esting to notice that formally Eq. (5-3) has a structure similar to the correspond-
ing expression obtained by the conventional RPA in even-even nuclei, in spite
of the essential difference due to the incorporation of the 3QP correlations. For
the E2-transitions between the ACS and 1QP states, we may, therefore, expect
the well-known enhancement associated with the structure of Eq. (5:3). In
particular, we may have the usual relation; the lower the excitation energy of
the ACS, the larger the B(E2) values. Such an enhancement, caused by the
collective ground-state correlations due to the QQ-force is a direct and natural
consequence of the present theory, contrary to Kisslinger’s (Tamm-Dancoff)
3QP “intruder” states.” As are shown in Table I, the calculated values of
B(E2; I—j,) are of the same order of magnitude as those of the phonon transi-
tions in the neighbouring even-even nuclei. As a consequence of the 3QP cor-
relations, the B(E2; I—j,) with I= (j,—1) are stronger than the other I~ (j,—1)
transitions (see Table V). Although the present accumulation of experimental
data on these transitions is not sufficient to allow us systematic comparison, we
can see that the calculated results are in good agreement with the experimental
values known at the present time, with the value @==0.5. The current rapid
growth in the measurement of these transitions may be expected to elucidate
further the many interesting systematic trends.

5-2 M1 -transitions between the ACS and the 1QP states

The magnetic dipole operator in the quasi-particle representation is given by

A A0 AL
Au= A5 + iy

= 5 m (@) (wvn — o) {Al(ab) — Auu(ad))
+ Zh} M (ab) Biy(ab) , (5-5)

where

M (ab) =m (ab) (uus+ vavs)

=1 .
m(ab) = ¢§< lxlo> (5-6)
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Table I. B(E2) values for transitions from the ACS with spin (j—1) to the 1QP states with
spin j. The second column labeled o}, lists the excitation energies of the ( j—1) states
in unit of MeV. The third column labeled B(E2)¥ lists the calculated values of B (E2;
Jj—1->j) in the absence of the coupling effects and the fourth column labeled B(E2)®»
lists the calculated values of B(E2; j—1->;) in the presence of the coupling effects, both
in unit of €2X 1075 cm* for polarization charge @=0.5 and are compared with experimental

data B(E2)ex=r,

Isotope o4 B(E2)V B(E2)? B(E2)exp
aNb?8 0.74 24 23 2.25+0.16%
Nbes 0.72 3.5 33
4T 0.34 5.2 5.2
T 0.22 8.1 8.0
Tc® 0.14 114 11.2 13.541.5"
4sRh%® 0.14 9.3 9.2
Rhtot 0.02 14.4 14.2
Rh1o0s —0.05 21.0 20.6 9.59
Rh10s —0.15 39.2 377 >31%
#Aglo? —0.03 20.1 19.1
Aglo® -0.04 23.6 22.3 2749
Aglit —0.07 29.2 275 20.19
32Ge™ 0.07 19.8 174 9.1+0.99
Ge™ —-0.07 19.0 18.3
Ge™ —0.22 31.6 30.3
345e77 —0.02 18.6 18.0
Se® —0.13 23.1 22.5
Seft —0.19 37.1 34.3 5.8+1.39
36Kr83 0.01 13.5 129 2.61.50
35188 —0.02 11.1 10.9
Sr8s 0.23 6.0 59
402187 0.20 5.2 5.1
45Cd113 0.34 9.8 8.3
Cdus 0.33 94 8.7
s2Lel2s 0.18 10.7 10.6 11.5+0.58
Tet2? 0.25 8.3 8.1
Tet29 0.36 6.2 5.8
Telst 0.85 2.8 2.6
54X e18! 0.18 15.8 14.6
Xelss 0.51 75 6.6

a) Ref. 10) b) Ref. 13) ¢) Ref. 15) d) Ref. 17) e) Ref. 18) 1) Ref. 20) g) Ref. 25)

and p=¢,l+¢,s, in unit of nuclear magneton e#/2Mc. The reduced M1l-transi-
tion probabilities from the ACS to 1QP states are expressed as

. 3 1 N
B Ml;I——? — e m(l) 0;3) 2‘ 5.7
( Jn) T (K021 210525 5-7)
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Since the dressed 3QP modes Y};x in the P+QQ force model contain no com-
ponents of the type of A{-al, it is obvious that the matrix elements in 67
should vanish. We thus obtain an important property of the ACS:

B(M1;I-j,)=0, (5-8)
that is, in the first-order approximation in which the ACS with I= (j— 1) are
regarded as pure dressed 3QP modes, the Ml-transition between the ACS and
1QP states with spin j is forbidden. The attenuation of the M1-transitions is
indeed observed in experiments and is a sensitive criterion for the purity of the
ACS as the dressed 3QP states. In some nuclei, however, it is only weakly
retarded. In order to explain the M1 -transitions, therefore, we must consider
the coupling effects of the dressed 3"QVP modes with 1QP modes. The effects
will be considered in the next section.

5-3 Magnetic dipole moments of the ACS
The magnetic dipole moments of the ACS are measured by
b=L00x| 4| 0$}x>  with K=I. (5-9)

The procedure given in § 3 leads to the following expression for the magnetic
moments under consideration:

/l:gI'I, (5'10)
with
gIzg(0)+ I(I+1) +jp(jp+1) —6 (1)+ I(I+ 1) +6—jp(jp+1) Je.
? 2I(I+1) ? 2I(I+1) ¢

(6-11)

The partial g-factors in this equation are given by
99 =0,{0n: (P> —0a: (Y}, (5-12)
(l) =0y Z {¢'n1 (95 bc)*— ¢n1 (25 60)% (6-13)

and

o= 10 33 M(pe) (% 5 e

X [Qur (B3 ca) Pur (5 ab) — gur (P; ca) pur (p3ab)], (5-14)

respectively. Here g, indicates the g-factor of a single-particle at the high-spin,
unique parity level p. The meaning of each term in Eq. (5-11) is clear. The
first term, ¢3°, comes from the quasi-particles at the unique parity level p. If
we restrict our shell-model space only within the unique parity level p, which
is being filled, 93’ becomes equal to ¢, (because in this case ¢2;(5%) — ok (Y =1).
The second and third terms are of the same form as in the Lande formula; the
second term comes from the odd-particle at level p and the third term comes from
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the quasi-particles in the core, respectively. It is important to notice that the
contributions from the quasi-particles in the core (the amplitude of which is

Table II. Gyromagnetic ratio g;_; for the ACS with spin ( j—1). The values are written in

unit of nuclear magneton eA/2Mc. The calculations were done using the effective spin
g factor g,*1f=0.55,, therefore, the g factors of the 1QP states with spin j were assumed
as

1gese proton state: g,=1.23, 1gg/; neutron state: g;=—0.23,

1hy1/2 neutron state: g;= —0.19.
The column labeled g3, lists the calculated values in the absence of the coupling effects,
while the column labeled g5, lists the calculated values by replacing the values g. defined
in (5-14) with g.=Z/A. The column labeled g%, lists the calculated values in the pre-
sence of the coupling effects and are compared with the experimental data 958,

Isotope g5ty g 97 9528 g5°
aNb9s 1.27 132 131 137
Nbes 1.26 131 1.30
8T 1.22 1.27 1.26
T 1.22 1.27 1.25
T 121 1.25 1.23 0.750.26% 1.260
»sRh® 121 1.25 1.24
Rhiot 1.19 1.23 1.22
Rhios 118 1.22 1.20
Rhios 1.14 118 116
#Agl 118 1.22 121
Agl® 118 1.22 1.21 1.224-:0.037>
Agltt 117 121 1.20
32GeT —0.28 —0.25 —0.22 —0.20
Ge?s —0.27 —0.22 —0.20
Ge” —0.26 —017 —015
3Se” —0.28 —0.23 —0.21
Se™ —0.27 —0.21 —019
Sest —0.26 —0.16 —0.14 .
4eKr® ~0.28 —0.24 —023 { Z o000 —0.2159
365183 —0.28 —0.23 —0.22
Srés —0.28 —0.25 —0.24
wZr® —0.28 —0.24 —0.24
5Cd1s —0.25 —0.26 —0.25 —0.200
Cdus —0.25 —0.25 —0.25
s Tel2s —0.24 —0.21 —0.21 —0.204:0.007 —0.17-:0.030
Tel2t —0.24 —0.22 —0.22 —0.170.019
Tet2o —0.24 —0.23 —0.22 —0.210.019
Tetst —0.24 —0.25 —0.25
saXeld! - —0.24 —0.22 —0.22
Xel3s —0.24 —0.25 —0.25

a) Ref. 12) b) Ref. 16) c) Ref. 19) d) Ref. 21) e) Ref. 22) ) Ref. 26) g) Ref. 20)
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represented by ¢n;(p;bc) and ¢h;(p; bc)) are accompanied with the kinematical
factor, which becomes small especially for = (j—1). This means that, in some
situation, the quasi-particles in the core give rise to only small effects to the
total-g-factor and the magnetic moments of the ACS are determined mainly from
the quasi-particles at the unique parity level p (i.e., by the first and the second
term). Therefore, the observed value of g; nearly equal to ¢, does not necessarily
means the simple (j"); configuration. Even if the wave functions under con-
sideration be far from those of the simple (j*); configurations, the calculated
magnetic moments give nearly the same values in experiments. In Table II are
shown the calculated g-factors of the ACS. In this calculation, we have used
the effective spin g-factor 9:°£=0.55 g,. Of course, better values should be obtain-
ed by taking the empirical values for ¢, directly. However, our present aim is
to show qualitative equality between ¢,_; and ¢,, Table II should read to show
to what extent the values of ¢;_; deviate from the values of g,. Also the values
of ¢;-, calculated using the classical approximation on ¢., g.=Z/A, are presented
for the same purpose.

§ 6. Electromagnetic properties including coupling effects

. In this section, we explicitly take into account the interplay between dressed
3QP modes and 1QP modes and consider various corrections to the electro-
magnetic properties of the ACS evaluated in the preceding section.

6-1 MI1-transitions between the ACS and the 1QP states

The interplay of dressed 3QP modes with 1QP modes originates from the
third term of the effective Hamiltonian (3-12) in the quasi-particle NTD subspace
under consideration. As a result of the coupling effects, the wave functions
should be changed into the form (4-2) and, therefore, we can expect that the
M1 -transition may take place through the part #® in the Ml-operator, as shown
in Fig. 4. Including the coupling effects, the reduced M1-transition probabilities

are now given as

B(M1; j—1-) =Z3n—-ﬁlaf—x¢mf<¢§1’llﬁ|1@§1)>
oV 1—ai_ 0R1a10P))*, (6-1)
where
OP|AOLY = V3 M (pp7) (6-2)
and

<OP)A108) = 3(2I+1) (2I' +1)

x|Meep) {15 2

B R GRERL YA
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(5 5O G 21 (25 4]
o (23 5001 (23 b3} +10 2 oL 5 a1y aT

><[gb'p(p;ca)gb}(p;ab)—-(o'p(p;ca)(o’,(p;ab)]], (6-3)

Table III. B(M1) values for the transitions from the ACS with spin (j—1) to the 1QP
states with spin j. The values are written in unit of (er/2Mc)?. In this calculations,
the single-particle reduced matrix elements were calculated using ¢,°ff=0.55g,. Columns
2 and 3 list the mixing amplitudes @, and a;_, defined by (4:2), respectively. Columns
4 and 5 list the values of the first and second terms in (6-1), respectively. The column
labeled by B(M1)ee! lists the calculated values of B(M1; j—1-4) and are compared
with the experimental data B(ML)ex»,

Tsotope a @y My My B(M1)yes1 B(M1)ex»
aNb® ~0.29 —0.18 0.68 1.86 0.193
Nbs —0.29 —0.17 0.66 176 0.175
Tc% —0.12 ~0.19 0.66 0.62 0.049
Tew —0.13 —0.19 0.65 0.69 0.053 )
Tcw —012 —0.19 0.67 055 0.044 {8:852};’8881!,)
sRh® 0.03 —0.18 0.54 —0.15 0.005
Rhot 0.03 ~0.19 057 ~0.13 0.006
Rh1os 0.03 —0.20 0.59 —0.10 0007 | 0.0930.0006»
Rh1os 0.04 —0.23 0.67 —0.13 0.009 <0031
wAg 0.19 —0.18 040 | —064 0002 | 0.0419-£0.004»
Agi® 0.20 —0.17 0.38 —0.70 0.003 0.038
Agitt 0.20 —017 038 —082 0.006 0.069
2Ges —030 022 —0.84 —164 0.182
Ge™ —011 —0.20 —0.70 —051 0.043
Ge™t 0.04 —022 —0.66 0.22 0.006
wSe™ —o011 ~0.19 —065 —051 0.040
Se™ 0.04 —0.19 —055 0.19 0.004
Sest 0.21 —0.20 —0.46 1.20 0016
oK 0.19 —014 —032 071 0005 | 0.0204-:0,005%
ST 0.03 —0.15 —0.46 0.08 0.004
St 0.15 —012 —027 037 0.0003
oIt 0.10 —0.12 —0.27 0.36 0.0002
£Cdi —0.39 —0.09 —036 —217 0.153
Cdus 028 —0.09 —035 —151 0.082
s Tel2s 0.03 —0.08 —0.25 0.11 00005 | 0.0065-:0.0003
Tet2t 013 —0.07 —0.19 0.45 0.002
Tet2 0.24 —0.06 —0.13 0.84 0.012
Tetst 0.25 —003 —0.06 1.05 0.023
seXelst 0.27 ~0.06 —015 113 0.023
Xelts 0.36 —0.04 —0.08 153 0.050

a) Ref. 14) b)

Ref. 15) ¢) Ref. 20) d) Ref. 25)
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with I=j,, = (j—1) and I’=j. The first term in Eq. (6-1) represents the con-
tribution due to the admixture of the 1QP modes with spin j,r=j,—1 (from the
next upper major shell) to the ACS with spin I=j,—1. The second term comes
from the admixture of the dressed 3QP mode with spin I’=j, to the 1QP state
with spin j,. Because the second term contains the (u,’—wv,’) factor through
the mixing amplitude «;, the value depends quite sensitively on the nucleon-
occupation probability of the unique-parity level p. The mixing amplitude «; in
the second term in Eq. (6-1) becomes large as one moves away from the special
physical situation (for the appearance of the ACS) mentioned before and, further-
more, changes its sign on both sides of the half-shell, while the first term, in
(6-1) preserves its sign through the whole range. As a result, we can expect
relatively large M1l-transition probabilities at the beginning of the shell, as is
.seen from Table III. In this calculation, we have not directly considered the spin-
polarization effects and, instead, have used the effective spin g-factor ¢, °£=0.55¢,
for the single-particle matrix elements, because we are interested in the qualita-
tive trends of the Ml-transition systematics, rather than numerical agreement
with the experimental value in each nucleus.

6-2 Electric quadrupole moments of the 1QP states

As a result of the coupling effects, the admixtures of dressed 3QP modes
to 1QP states with spin j give rise to important contributions to the electric
quadrupole moments of 1QP states. The corresponding effects have been ex-
tensively studied in the framework of the quasi-particle-phonon-coupling theory.”
As was pointed out in §4, however, the mixing amplitudes «; of the dressed
30QP modes should become about half as large as those of the conventional theory.
The quadrupole moments are given by

16 1(27—1 .
0= Ay 5y LA - ) 010109
+ 20,V 1= af0P|QI0P) + K0P |D10P)] . (6-4)

The second term in Eq. (6-4), which is related to the E2-transition probability
given in § 5-1 as

KOPICIOPY =V 2j+1) - B(E2;j—J) , (6-5)

gives the main contributions to the modified quadrupole moments of the 1QP
states and the effects of the third term are negligibly small. Therefore, only the
values of the second term are presented in Table IV. The effects are, in general,
about half of those of Kisslinger and Sorensen.”

6-3 Some comments

1) In the same way, corrections to the B(E2) and the g factors (evaluated
in § 5) due to the coupling effects can be calculated and are presented in Tables
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Table IV. Quadrupole moments of the 1QP states. The values are written in unit of ex1072¢
cm?.  Columns 2 and 3 lists the values of quasi-particle moments and the contributions
from the admixed dressed 3QP states, respectively. The fourth column labeled Qo list
the calculated moments for polarization charge a=05 in unit of eX10-2¢ cm? and are
compared with the experimental data Qoyp.

Isotope Qs.p Qeon Qiot Qexp
4 Nb9 —0.16 —0.08 —0.24 —0.22
Nbs —0.16 —0.11 —0.27
4 Tc% —0.08 —0.03 —0.11
T —0.08 —0.05 —0.13
TcP —0.08 —0.06 —0.13 +0.342
»Rh° 0.02 0.01 0.03
Rhto1 0.02 0.01 0.04
Rh103 0.03 0.02 0.04
Rh10s 0.03 0.02 0.05
1 Aglo? 0.13 0.10 0.22
Agloo 0.13 0.11 . 0.23
Agitl 0.13 0.12 0.25
32Ge™ —0.04 —0.26 —0.31 —0.22
Ge® —0.02 —0.08 —-0.10
Ge™ 0.01 0.03 0.04
345e™ —0.02 —0.10 —-0.12
Se?® 0.01 0.03 0.04
Sebt 0.04 0.16 0.20
3 K183 0.04 0.14 0.18 +0.272
350183 0.01 0.02 0.03
Sr8s 0.04 0.08 0.12
102187 0.04 0.05 0.09
45Cd118 —0.06 —0.33 —0.39 —0.71»
Cdits —0.05 —0.23 —0.28 —0.55D
52 Tel2s 0.01 0.03 0.03
Tel2? 0.03 010 0.13
Tel29 0.06 0.17 0.23
Tetdt 0.08 0.16 0.24
saXeldl 0.06 0.26 0.33
Xelss 0.08 0.33 0.41

a) Ref. 12) b) Ref. 29)

I and II, respectively. In general, these corrections are not important as to
change any qualitative conclusions given in § 5.

2) The admixture of the 1QP states from the next upper major shell in
the ACS may be directly checked with the spectroscopic factors of one-nucleon-
transfer reaction. For the (d,p) reaction leading to the ACS, it is easy to show
that the spectroscopic factors are given by (asuy)’~af within the approximation
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of the NTD method. Concerning the ACS with
I=(j—1), it is well known in experiments that
the spectroscopic factors are very small and, there-
fore, are consistent with the theoretical predictions
(see Table IIT). On the other hand, several states
with anomalous spin (j—2) have been observed
in low-energy excitations by the (d,p) reaction
(especially in Ge-Se region), with fragmented
spectroscopic factors in each nucleus.” This ex-
perimental fact is consistent with the result of
§5, in which a rather strong coupling effect
operating between the different types of excitation
modes has been expected for the states with
I=(j—2).

3) In order to estimate the quandrupole
moment of the ACS, we should extend our quasi-
particle NTD subspace to include the dressed 5QP
modes, because even a small mixing of such
higher collective states is sufficient to produce a
large quadrupole moment in a way similar to the
case of quadrupole moment of the 1QP states,
discussed in § 6-2.

4) In order to show various electromagnetic
properties of the ACS with I=(j—1) in com-
parison with the other Is~(j—1) states, we have
summarized numerical results on some typical
nuclei in Table VI. In our theory, no artificial
division of the collective degree-of-freedom and
the particle degree-of-feedom are done a priori,
and the theory includes both shell-model like state
and fully collective states in a unified way. Fur-
thermore, since no optimum choice of the P+QQ
force parameters has been tried in this calcula-
tions, the Tables should read to show the qualita-
tive predictions of the theory.

§ 7. Concluding remarks

The proposed new point of view on structure
of the ACS has been checked through the analysis
of their electromagnetic properties by the use

Table V. Energy shifts of the ACS

with spin (j—2) due to the
coupling effects of the dressed
3QP modes with the 1QP
modes in the next upper major
shells. The second column lists
the mixing amplitudes a;-5 and
the third column lists the calcu-
lated values of the energy shifts
dw;_y. The values of Uher and
Sorensen® were used for the
single-particle energies in the
calculations.

Qj-g do;-9

aNb? —0.31 0.25
Nb#9 —0.32 0.27
43 Tc® —0.31 0.23
T —0.31 0.25
Tc9 —0.32 0.28
»sRh® —0.30 0.19
Rhtot —0.30 0.20
Rh108 —0.29 0.19
Rh105 —0.28 0.19
wAgl" —0.25 0.14
Aglo® —0.24 0.13
Agtit —0.23 0.12
32Ge™ —0.50 0.88
Ge™ —0.48 0.60
Ge™ —0.47 0.45
345€e"? —0.47 0.56
Se™ —0.46 0.42
Sebt —0.46 0.34
36 K183 —0.45 0.32
96518 —0.44 0.38
Sr8s —0.44 0.29
402187 —0.43 0.27
Cd118 —0.22 0.23
Cdits —0.20 0.19
52 Lel12s —0.16 0.10
Tel2? —0.14 0.07
Tel2® —0.12 0.05
Tetdt —0.08 0.02
seXeldt —0.13 0.06
Xels —0.10 0.03

of the P+QQ force. The effects of the couplings of the dressed 3QP modes
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with spin I and the 1QP modes with spin j,.
were also discussed in order to investigate
From the numerical results, it was shown that

perties of the ACS with

A. Kuriyama, T. Marumori and K. Matsuyanagi

=1 in the next upper major shells
the 1QP components in the ACS,
the various electromagnetic pro-

spin (j—1), especially B(E2), g factor and B(M1),

Table VI. Some numerical examples of the electromagnetic properties of the ACS. The
first three columns list the isotope, the observables and the spin of the state, respectively.
Column 4 and 5 list the calculated values for two alternative approximations:

cal. 1) The electromagnetic properties in the absence of the coupling effects.

cal. 2) The electromagnetic
The units are ¢2x10-%0 cm¢ for B
The polarization charge a=
The procedure of the calcul

of g, are taken directly from the experiments on the 1QP states

calculation of the g factors of the ACS; 137
(Tet25), The spectroscopic factors for (d, p) r

Sy~ (@ty-1)2.

properties in the presence of the coupling effects.

(E2), eh/2MC for ¢ factors and (e:/2Mc)? for B(M1).
0.5 and the effective spin ¢ factor 9:°1=0.55g, were used.
ations are the same as in Table I~V, except that the values
‘with spin j, for the
(Nb%), 1.26 (Tc%®), —0.22 (K1) and —0.17
eactions are calculated by the approximation

Isotope Observable Spin cal. 1 cal. 2 exp.
e
5/2*—>9/2* 1.1 1.6 2.8-+0.2%
7/2*—>9/2* 24 2.3 2.254+0.16»
B(E2) 9/2/*—9/2* 0.4 0.1 0.2190.026
11/2*->9/2+ 0.7 0.6 1.06=£0.092
13/2*—>9/2* 1.1 1.1 1.76+0.12»
5/2* 2.16 211
bos
N 7/2* 1.47 1.45
g 9/2/* 1.17 1.18
11/2* 1.01 1.01
13/2% 0.95 0.95
B(M1) 7/2*->9/2* 0.0 0.193
S 7/2*% 0.0 0.03
5/2*—>9/2* 3.2 4.0 4.54-0.5»
7/2*—>9/2+ 114 11.2 13.541.59
B(E2) 9/2/*—9/2* 1.0 0.9 '
11/2*—>9/2* 2.1 2.1
13/2*>9/2+ 35 35
5/2* 1.67 1.65 1.44£0.129
43T
7/2% 1.28 1.27 0.75+0.26°
g 9/27* 1.10 1.10
11/2* 1.05 1.05
13/2* 1.05 1.05
B(M1) 7/2¥>9/2* 0.0 0.044 0.076-£0.009
— T
s 7/2+ 0.0 j 0.04

a) Ref. 10) b) Ref. 13)

c) Ref. 12) d) Ref. 14)
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Table VI. (continued)

Isotope Observable Spin cal. 1 cal. 2 exp.
5/2+->9/2* 37 3.2
5.8+1.3
7/2+—9/2* 135 128 {2‘6 =18
B(E2) 9/2/%->9/2* 26 2.1
11/2*->9/2* 3.0 29
13/2*->9/2* 3.9 37
_ 5/2* —0.46 —0.44
e 7/2¢ —0.22 —0.22 —0.268=£0.001
g 9/2/* —0.14 —0.14
11/2* —0.10 —0.10
13/2* —0.09 —0.09
B(M1) 7/2+—>9/2* 0.0 0.005 0.0204-£0.005>
S | 7/2+ 0.0 0.02
7/2->11/2" 45 46
9/2-—>11/2- 10.7 10.6 11.5:£0.59
B(E2) 11/2/7->11/2- 25 25
13/2-—>11/2" 35 35
15/2-->11/2" 46 46
_ 7/2 —0.38 —0.38
i€ 9/2" —0.19 —019 | —0.204=£0.007
g o11/2 —0.11 —0.11
13/2" —0.06 —0.06
15/2- —0.05 —0.05
B(M1) 9/2-—11/2- 0.0 0.0005 |  0.0065--0.0003%
S 9/2- 0.0 0.006

a) Ref. 18) b) Ref. 20) c) Ref. 19) d) Ref. 25) ¢) Ref. 22)

can be explained in a unified manner within the framework of the proposed
microscopic model. ’

We have been considering the ACS with spin (j—1) as typical phenomena
in which the introduced new elementary excitation modes (the dressed 3QP
modes) manifest themselves as relatively pure eigenmodes, owing to the special
situation in shell structure. The physical condition for the enhancement of the
3QP correlations, however, is not specific to the ACS. Rather, the existence of
the odd quasi-particle near the Fermi surface (the chemical potential in the sense
of BCS theory) is responsible for the enhancement of the 3QP correlations.
Thus it is to be expected that the 3QP correlations may play significant roles
in low-energy collective excitations of almost all spherical odd-mass nuclei.
Together with the excitation-energy systematics made in the previous paper 1I,
therefore, the present results on the analysis of the electromagnetic properties
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of the ACS strongly supports our essential assumption, (that is, the elementary
excitation modes characterizing the low-lying states in spherical odd-mass nuclei
are 1QP modes, dressed 3QP modes, dressed 5QP modes, etc.). A general
formulation of the theory and its application will be made in a forthcoming paper.®
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" The aim of this paper is to give a systematic formulation of microscopic description of

the collective excitations in spherical odd-mass nuclei. The theory: can be regarded as a
natural extension of the conventional quasi-particle-random-phase approximation for spherical

" even-mass nuclei .into the case of spherical odd-mass nuclei. In the same manner as the
conventional random-phase approximation for even-mass nuclei leads us to the concept of
“phonon”, the. theory necessarily leads us, to the concept of a new kind of fermion-type
collective excitation mode. Recent rapid accumulation of experimental data seems to be
revealing the systematic presence of this kind of collective mode in many odd-mass nuclei.

§ 1. Introduction

In previous papers®* we have concluded that ‘the appearance of the low-
lying anomalous coupling states in odd-mass nuclei have to be regarded as the
typical phenomena in which a new kind of fermion-type collective excitation mode
_ (ie., the “dressed” three-quasi-particle mode) manifests itself as a relatively pure
eigenmode. It has also been emphasized that the three-quasi-particle correlation
characterizing this new collective mode is not specific for the. anomalous coupling
. states but more general in odd-mass nuclei. Thus, we have suggested that the
new collective mode may also be expected to exist in almost all spherical odd-
mass nuclei and to play an important role in their low-lying collective excitations.
In fact, recent rapid accumulation of experimental data seems to be revealing
the systematic presence of such a kind of collective excited state in many odd-
mass nuclei,”

The aim of this paper is to give a theoretical foundation to such a new
concept of elementary excitation mode as the general one in spherical odd-mass
nuclei, by developing a systematic formulation of the theory of collective ex-
citations (the essential idea of which was proposed in Part I® with the single-j-

* A part of this paper was reported® in the “Symposium on In-Beam Spectroscopy” held at
the Institute of Physical and Chemical Research, August 31 and September 1, 1972.



1820 A. Kuriyama, T. Marumori, K. Matsuyanagi and R. Okamoto

shell model). T};e' theory can be regarded as a natural extension of the con-
ventional quasi-particle-random-phase approximation (RPA) for spherical even-
even nuclei into the case of spherical odd-mass nuclei, In the same manner as
the conventional RPA for even-even nuclei leads us to the concept of “phonon”
as a boson, the theory necessarily leads us to the concept of a_nevfr kind of
fermion-type collective excitation mode.

The formulation of the theory is developed in a general form as far as
possible, starting with the j-j coupling-shell-model Hamiltonian® in the quasi-
particle representation:

H=Hy+Hy, Hg=Hy+Hy+Hy,

Hy=3}E.a,'a,, ’

Hy= 3 Vx(aB, 10)alasaray

Hy= a;ﬂ Vv(aB, 70) {a.'ag'as'ar' +hic.},

Hy= d;rl Vr(aB, v0) {a.'as'asta, +h.c.}, ,(1 -1)
v:rhere ] . ”

Vx(@B, 10) = Va® (@B, 10) + Vx® (@B, 19)

=CV pprs* (Ualbsthotha + V2 050c03)
+2CV 32, (UavsthoVa+ VathyVotls) , .
Vv (aB, v0) Ecvaﬁrﬁ" (%attyc74) ,
Ve(aB, v0) EZCV‘W; . (uau»u;va —v0vetg) . - (1-2)

Here E, is the quasi-particle energy, determined as usual together with the
parameters v, and #, of the Bogoliubov transformation, and ag'=(—)7"™g!
The matrix element of a general effective nuclear potential C/,,, satisfies the
antisymmetry relations ’

‘.Cvaﬁra = CVﬁura == Cvaﬁsr'= CVﬁasr .

* The single-particle states are then characterized by a set of quantum numbers; the charge
g,n,l,j,m. Throughout this paper, these states are designated by Greek ‘letters. In association
with a letter @, we use a Roman letter a to denote the same set except for the magnetic quantum
‘number m. We also use a subscript —a; which is obtained from @ by changing the. sign of the
magnetic quantum number. We further use the notation f(@&)=(—)/s~"ef(—a), where f(@) is
an arbitrary function of @. It is possible to treat all matrix elements: of the Hamiltonian as: real
quantities if the phase convention is suitably chosen. In this paper, we always assume this to be
the case.
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) §2. Quasi-particle-new‘-Tamm-Dancoﬂ' space

2.1 The gquasi-particle TD: space

An essence of our theory is to make the explicit use of a concept of quasi-
particle-new-Tamm-Dancoff (NTD) space. To obtain a first understanding of
‘the concepts of quasi-particle NTD. space and of physical operators defined in
. it, let us start with the gquasi-particle-Tamm-Dancoff (T'D) space -characterizing
the conventional ‘quasi-particle representation.

It is well-known' that the use of the quasi-particle representation (based on
the BCS theory) can be regarded as an attempt to characterize both the ground
state "and the excited states in terms of the seniority number v=>),v,, the
value of which corresponds to the number of quasi-particles. Thus, the energy
spectrum of H, in odd-mass nuclei is quite characteristic as shown in Fig. 1
and the corrésponding states with a fixed odd number of quasi-particles, n(=3_, 7,)
=y, span .the n-qu_asi-parﬁcle TD subspace. The quasi-particle TD space for
odd-mass nuclei may therefore be characterized by the orthonormal state vectors
with'pdd numbers of quasi-particles:

- lv=1;a)=a,l0),
1

lv=3 ;aBT>IEﬁau*ap*ar*l 0, :
’ > 2-1)
lv=5;aBrde) E«/%da’aﬁ*ar*aa*“e”“) .

: /
where |0> is the BCS ground state.

In order to require explicitly that any .state in the quasi-particle TD space
- must be orthogonal to any spurious state arising from the nucleon-number mon-
conservation (in the quasi-particle representation), it is convenient to define the
quasi-particle TD space precisely by adopting the concept of the quasi-spin
tensors. The concept ha_sz been introduced through the quasi-spin formalism®'®
of the seniority' coupling scheme. Let us define the quasi-spin operators of the
orbit  in the quasi-particle representation:

3, (@) =222, 3 {jajaama)J=0, M=0palal,,

g—— (d).=2—1/2 '-Qal/z Z <jajamu;md||J= 0, M= O>aagaa1 >
SO (d) = 2_1 * {Z aaTaa - a,} ’ lQqua. + 2—1 ’ (2 '2)

which satisfy the commutation properties of angular momentum operators

~

. [§+ (d) ). S—- (b)] = 26111130.(“) B
[S5(@), 5. )] = +0u5.(a) . (2-3)
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The eigenvalues S(a) {S(a) +1} and So(a) of the operators §*(z) = [S.(a)S_ (a)
+5, (@ {So(a) —1}] and So(a) are known to be related to the seniority number-
v, and the quasi-particle number 7, of the orbit a, respectively, through

S(@) =4(La—va), So(a) =§(n.—2,). 2-9
The quasi-spin operators thus defined characterize the transformation properties
of physical operators. under rotations® in the quasi-spin space belonging to the
orbit a: We can define the quasi-spin-tensor operators (in the quasi-particle

representation), 7', of rank s (with its component s,) in the quasi-spin space
of the orbit @, as usual, by the commutation relations

[8:(@), Tu] =T, '

[3. (@), Tu] =V(F5) GES0 T D) - Tonras. (2-5)
The single quasi-particle operators a, and ay(=( —)’““’;'“a_a) are therefore
regarded as spinors in the quasi-spin -space of the orbit a:

Typp(@)=a,', Tis-ys (@) =as. (2-6)

With the quasi-spin spinors, we can construct a quasi-spin tensor of.rank s in
the quasi-spin space of the orbit a, Ty, (ata - atss) ;** which is composed of pro-
ducts of #=2s quasi-particle operators, by the standard vector-coupling procedures;
for example, -

Ts/z, 3/2 (lelazas) = al,aL,aL, ’

1
Ton1n(aaonas) =——(al,al,aa,+ at, as,al, + anal,al)

/3

1 '
T3/2, -1/2 (alaza3) == (a}}la&,aa, + aaxazlzads + a@xad:azla) ’

V3
Ts/z, —8/2 (041052053) = dalaé?,aaz. .

Now, the quasi-particle TD space for odd-mass nuclej characterized by (2-1)
is precisely defined in terms of a set of state vectors

|1)=2S;a1af2"'a8:a, ﬁlﬁZ"'B&w '".> .
= O:T”[aflaz' **Qlzs,y So (a) =3Sas 13132' : fﬁﬂw So (b) =38p; '] |O> s (2 ° 7)

) It is well'’known that the Bogoliubov transformation
o' =uaa," + veaa=Ua,'U-*
simply corresponds to a special one of rotations in the quasi-spin space. of the orbit a through an
angle 6, (us=cos 6,/2, Ve==sin 0,/2): ..
U=I] exp{-itaSy (@)} =exp{~i 31 6.5,(@)},
where
Sy(@)=(1/2i) {8. (@) -5-(a)}.
** The subscript i=1,2,3, -+ of @ are used when the specification .of ‘the single-particle .states
with different magnetic quantum numbers in the same orbit @ is necessary.
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where
O, etz - Qtas,, 50(@) ; BiBa**Basyy 0(B) 5 ++*; 0105 Ozag5 50(d) ]
=[(25)!(25)! -+ (250)!] ﬂT = (s Qlae,)
X T oy 0 (BB Ban) - T'sg s> (3102 0sa) 2-8)
with 25=2(sq+sSp+ - +5;)=v in odd numbers. In Eq. (2-8), we have used a
definition

?o"",, (uaw—aw)= Y Ploas aularay as) T (e —an), (2-9)

/g’ agy’

where the operator P (the matrix elements of which are P(ayas Qs @y’cts’ - lar))
is a projection operator by which the quasi-spin operators S, (@), go(a) are
removed out of the quasi-spin tensor T, (@.s - @) completely. Therefore
P(a,qs-Qs| s’ -+ atas) is closely related to the coefficient of fractional parentage
(c.f.p.) with seniority v,=2s for '(j,)*-configuration, and its explicit form for
s=3/2 is given in Appendix I. By definition, the operators O,' in (2-8) never
contain any component of the nucleon-number-fluctuation operator™®

N-N=3 (. {280(@) + &} +2 T #4048, (&) +5-(@)},

and we obtain
S_(a)|v=2s; ai0ts**Qasgy BiB*Basyy = p=0. . (2-10)

This means that any state in.the quasi-particle TD space never contains ‘J*=0%’

quasi-particle pairs. In this sense we may call the quasi-particle TD space an
“intrinsic’> space. - Here it should be noticed that, for such a class of excited

states |¢pa,,> as the pairing excitations arising from the motion of S, (@), we

have S_ (a)]¢,m>q&0 This means that the class of states |gp.p are always

orthogonal to any state in the

quasi-particle TD space. We } I%‘a:a;'é a; a5 ag 10, v=5

therefore may call the class of

states of the pairing excitations - al

which do not carry any: seni- Lot ok o* 10D, v=3

ority number as .““collective” } @a, 9 o 102,

states. Needless to say, a spe-

cial one of “collective” vibra- 24

tions with zero energy is known

as due to the nucleon-number } atlo), v=

non-conservation. What we are

considering in this paper are Fig. 1. Energy spectra of H, in odd-mass nuclei.

* ‘We assume that 6‘,,,,—6‘1, 75 in our -shell model subspace under conslderatlon This is satis-
ﬁed in most actual cases.
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the “intrinsic” excitation modes which are orthogonal to the “collective” modes,
and investigations of the “collective” modes and of the interplay between the
“intrinsic” and the “collective” modes will be discussed in a.separate paper.

Since the quasi-particle TD space is characterized by the seniority number
v=7z as shown in Fig. 1, it may be a better approximation to diagonalize the
quasi-particle interaction Hi, in (1-1) in the subspace with a fixed number of
quasi-particles. This is well-known as the quasi-particle Tamm-Dancoff (TD)
approximation. Among the matrix elements of H;, in the subspace with the
definite quasi-particle number, the non-zero ones come from only the part H,
which conserves the quasi-particle number. Therefore, the eigenmode-creation
operators X in the TD approximation (with’ the definite odd quasi-particle
number #n=25=3, 2s5,) are given by the linearized eigenvalue equation,
[H0+HX’ X:l] ;, ;?}XJE.: B}

oP>0 SEREY
with '
Xh= Z,, 7Y [aﬁaz"'afz:u 51')(‘.1) =Sas s 6165"'62:.,,, So(d)’ =54]
@y, o, 03
Xosf[alas"'aﬂtu s0(@) =543 -3 0102+ Oeg, S0(d) =s4] . (2-12)

Here A denotes a set of additional quantum  numbers to specify the eigenmode.
The operators X}, satisfy the anti:commutation relation in the following sense:

{Xrl‘)l-’ X;‘r’<>~'} +IO> = 6;;'6“/10> ’ )
X8 Xhet = {Xor, Xens} =0, { (2-13)

where the subscript > (or <) of s>, (or s2) denotes the relation s=>s’. Thus,
the set of states X}|0> with 2s=7 in odd numbers provides a complete set of
orthonormal bases of the quasi-particle TD space. for odd-mass nqclei:

KO{Xny X} 4|05 =8 suBrns . - ‘ (2-14)

Now it is clear that the quasi-particle TD space for odd-mass nuclei may
also be characterized with the operators defined by "

Xh=X}05<0], X,n=]05{0|X, - (215

with 2s=7 in odd numbers. By definition, the operators X}, satisfy the equations
[Ho+ Hy, X}] =0@X}  (09>0) ' (2-16).

and

{Xn., Xsf'x'} +IO> = 6u'6).x' O> » .
{Xttb X:’l’} += {Xn., X:').'} += 0. ' (2 . 17)

The unit operator 1 in the quasi-particle TD space. for odd-mass nuclei is given
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by
=2 X§Xa, (2-18)

where Y ;; denotes the summation with respect to 2s in odd numbers. With the
use of the operators. X}, H,+ Hjy in (1-1) is now written as

Hy+ Hy=21 0 X X Xa . 2-19

Thus, using the ‘“elementary excitation” operators X} (of H,+ Hy) instead of
the quasi-particle operators -a,!, we obtain another representation of arbitrary
operator F in the quasi-particle TD space for odd-mass nuclei:

- F=1F1 =ZAZIJ AN F|s 2> XX e r (2-20)

with [s2)=X}|0).
2.2 The quasi-particle NTD space -

Now it is well-known that, in such a finite quantum system as nucleus, the
ground—state correlatlon is particularly important as a collective predisposition:
which admits the correlated excited states to occur from the ground state.
‘Ac>tua'lly,, we thus have to take account of the special importance of both the
seniority classification and of the ground—staté' correlation simultaneously, in a
way that the essential ph;rs'ical notion obtained in the quasi-particle: TD space
still. persists in a certain form. The guiding principle to introduce the quasi-
particle NTD space is lying in the fact that, in the new-Tamm-Dancoff (NTD)
method, the quasi-particle. correlations which are attributed asymmetrically only
to the -excited .states in the TD calculations are symmetrically incorporated in
the ground state through the ground-state correlation, The quasi-particle NTD
space’ for odd—mass nuclei is thus defined with a set of basis vectors, ’

Y00 (2-21)

with 25 in odd numbers, where Y}, are creation operators of “dressed” n (=2s)-
quasi-particle modes constructed within the framework of the NTD method with
the: ground-étaté- correléltion,‘ and |0,y is the corresponding correlated ground
state. Contrary to the BCS ground state |0, the state |@,) is not with a def-
inite seniority number because of the ground-state correlation. In spite of the
breakdown of ‘the .seniority number, in the quasi-particle NTD method we can
still characterize the excitation modes by the amount of seniority dv (=2s=mn)
which ‘they transfer to the ground state |(op.

In the completely same way as the conventmnal spherlcal tensor. operator
is characterized by the amount of angular ‘momentum it transfers to the state
on which it act, the quasi-spin tensor operator T, is characterized by the amount
" of the transferred seniority Jv=2s to the state on which it operates. There-
fore, we can define the dressed 7z (=2s)-quasi-particle modes YJ; in terms of
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the direct products of the quasi-spin-tensor operators defined in each orbit with
the total transferred seniority Jv=25=3], 2s,:
Yh= 2 > Wax[alas"'azq.,,so(a);"';5152"'5m¢,30(d)]

@y By 89(a), o, 8o(d)
X O ai0te - Qlaag, 50(@) 53 0102+ Osag, 50(d) ], (2-22)

where O,'[a, s0(@); ++; 04, 50(d) ] is defined in (2-8). Within the framework of
the NTD approximation, the eigenvalue equation which the amplitude ¥, [a, so(a);
=304, 50(d)] must satisfy is given, as usual, by :

[Ho+ Hx+ Hy, Y] =0,Y4 (2-23)

with 0,,>>0, where the part H, of the quasi-particle interaction Hi, in (1-1)
introduces the ground-state correlation.

The part. Hy is known to be essential together with Hj in constructing
the collective excitation modes within the framework of the NTD method, and
so we call the parts Hy and H, the constructive Sorce (of the collective ex-
citation modes). The part Hy in (1-1) changes the number .of quasi-particles,
and so has no contribution in the TD. calculation with a definite number of
quasi-particles. In so far as the NTD method -is adopted (in describing the -
dressed n-quasi-particle mode) as an improvement of the TD method (for zn-quasi-
particles), therefore, the part Hy does not play any important role, contrary to
the constructive force Hy and H,. The part Hy plays a decisive role as es-
sential coupling between the various dressed n-quasi-particle modes, and so we
call it the interactive force® ) ‘

The dressed n-quasi-particle modes Y} (with 2s=#) have to satisfy -the
fermion-type anticommutation relation in the quasi-particle NTD space,

{YN’ Y;'< F4l0= 6::’61)..'.Im0> ’ : 2-29)

just as the z-quasi-particle modes X% (with 2s=7) in the quasi-particle TD-
space satisfy (2:13). This requirement is a counterpart of the eigenvalue equa-
tion (2-23) in prescribing the elementary excitation modes in terms of the con-
cept of transferred seniority. When (2-24) is satisfied within the framework
of the NTD approximation, the set of states. Y5|@> with 2s=7 in odd numbers.
becomes a complete set of orthonormal bases in the quasi-particle NTD space
for odd-mass nuclei:

$Oof{Yu, Yiu} 4| O0) =000, _ (2-25)

and, in the same way as (2-18), the unit operator in the quasi-particle NTD
space for odd-mass nuclei is given by

*" It should be also noticed that the matrix elements of Hy contain the reduction (u, v) -factors
which can be quite small in the middlée of the shell, while the matrix elements of Hy and Hy in-
volve the enhancement (u, v)-factors which are close to unity for low-lying states in the middle .of
the shell.
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1:21‘" YiYa, . (2-26)
where
Yhi=Yh0p LB, Yo=|00)<0|Y, . (2-27)

In terms ‘of the elementary excitation operators Y}, any physical operator Fis
easily transeribed into the quasi-particle NTD space:

-F>F=1F1= 33 2 <0 Yo FYL| 0D YEY i . (2-28)

‘Thus, the actual problem is how to estimate the matrix elements {@, Y,.F Y |@op.
As will be shown in §5, howeVer, a simple rule will be found when the anti-
commutation relation (2-24) is satisfied. ‘

In the following sections we study concretely the quasi-particle NTD sub-
space which consists of the dressed quasi-particle modes with the transferred
seniority 4v(=2s) =1 and 3, because we are considering the low-lying collective
excited states in odd-mass nuclei.

§3. Structure of the dressed 3-quasi-particle modes

According to the definition (2-22), the eigenmode operators~ of the dressed
3-quasi-particle modes (which satisfy Eq. (2:23) with 25=3 within the NTD
approximation) are written in an explicit form:

C,\! ‘=%§’,Z o (aBr) - P(aBr) aslag'a,’

aBr

_+ 713:' 20 0O (o) - T.S/& ~1/2(Qatats)

1023

+ L— 2 %.(8) (a5 7) - 70110 () ar
V2 i3

+ 35 A+0a) -0 (@B 1) -2, P(aB) asas . @G-

Here the symbol ., denotes the summation over the orbit-pair (ab), m,, m,
and- 7, and

P(aBy)a,lagat= EZ‘. P(aBrla’f’r")akalal,
al Irl
- P(a)asaz= 3} P(@Pla'8)awaz, . 3-2)

where the operators P’s denote the projection operators by which any quasi-
spin operator is removed out of the products of quasi-particles (a,!, a,) on which
they act, and their explicit forms are given in Appendix I. Direct calculation
of Eq. (2-23) with (3:1) leads us to the following eigenvalue equation which °
the correlation amplitudes have to satisfy
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w[ f ]=BD :ﬂ[:] e

where ¢, and @, denote the matrix notations symbolizing the sets of amplitudes
¢ (aBr) and {0,® (@), 0.® (@e; 1), 0. (@B; 1)}, Tespectively, and the ex-
plicit forms of matrices D, d and A4 are givep in Appendix II. The projection
operators P involved in these matrices guarantee thatv‘tlhev correlation amplitudes
automatically satisfy the relations - - E "

o (aBr) = a;,r PlaBria’B'r) o (@B,

() = 3 Plawmalar’ay'ay’) o ® (oo’ '),

n®(aBs7) = 2 P@Bla’8)p® (@), 349

which mean that the correlation amplitudes never contain any component due

to the nucleon-number-fluctuations (i.e., due to the quasi-spin operators).
Equation (3-3) has the same formal structure as the one given in Past I

for the case of the single-j-shell model, and tells us. that with the definition of

the metric matrix
1 0] - . :
= , 3.5
o 2 e

the correlation amplitudes satisfy the orthonorinality relation in the sense

[42, o] T[ &

N

] =&l , (3-6)

where ¢, is the sign function with ley] =1 and ¢, 7 denotes the: transposed matrix
of ¢,. Due to the introduction of the backward-going components, the eigenvalue
equation (3-3) has “extra” unphysical solutions which have the-large amplitudes:
@, and the small amplitudes. ¢, As long as the eigenvalues o, are real, the
physical solutions have the large amplitudes ¢ and the small ‘amplitudes @
Thus the positive ¢, corresponds to the physical solutions, and we -can. classify
the eigenmode operators C,' in (3:1) as follows: '

Y.t for =1,

ci={ @7

A,, for ¢ ,=-1, .
The physical dressed 3-quasi-particle states are given as
12> =Y,1|0:), , " 3-8y

where |0,) is the correlated ground state (within the framework of the NTD
approximation). The existence of the extra eigenmodes A}, which have no

* Hereafter the unphysical solutions are specified by the subscript. ,.
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.physical meaning, imposes an important condition upon the state vectors in the
quasi-particle NTD space: Any state vector |@) which actually has physical
meaning must satisfy the supplementary condition

A, |0>=0. (3-9)

§4. Structure of the ground-state correlation

Now, it is quite important to examine the compatibility of Eqs. (3-3) and
(2-24). In this.section, we shall show that the requirements (2:24) is satisfied
within the NTD approximation when we properly take account of characteristic
of the introduced ground-state correlation.

First of all, let us investigate the characteristic of the ground-state cor-
relation (due to the ‘dressed 3-quasi-particle modes). The structure of the
ground-state correlation should be determined in principle through the properties
of -the fundamental eigenvalue equation (3-3). As is seen from Eq. (2-23), the
fundamental equation contains only the matrix elements of the constructive force,
Hy and Hy. The diagrams considered in the correlated ground state |@,) are
therefore closed .diagrams. which are composed by combining only the matrix
elements of Hy and Hy, so that |@,) may be generally written as a superposi-
tion of 0-,; 4, 8-quasi-particle states:.

105=Cil0>+ 3} C:(aBrd)a.taga'ey!|0>

+ 23 Ce(aBricpmy) atagatas’astata,ta,t 0D+ “-1)
where -C, is the constant related to the normalization of |@,). The coeflicients
C’s in (4-1). should be -determined by the conditions Y;|@,>=0 and A,,|0 =0,
within the framework of the NTD approximation (which we have used in ob-
taining the fundamental equation (3:3)). This procedure suggests that, with
the basic approximation in the NTD method 7,<282% (ie., O (n,/2£) =~0), the
.correlated ground state |0,» may be approximately written in a symbolized
form®

|B6>=Cy exp [ﬁk IIMCEIL) aufaﬁfar'fa,*] 0>=Ce”|0>,  (4-2)
. a@Pr
where the constant £ and X;_o(aByd) are defined through the relations

1. _Ci(aBrd)
‘\/4—:!k xJ=0(aBT6) - Co k]

;;T‘a Xi-o(aBrd) =1.. (4-3)

* Here 7o and 28 are defined-through {®i|a.'as|@0)=0.s"70/28, so that 7, denotes the aver-
age number of quasi-particles in the ground state and 29 denotes the total number of single-particle
states under consideration. - N i
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Needless to say, %j_, (aBy0) has never contain any component due to the nucleon-
number-fluctuations, so that it has to satisfy .

X,,=o (afﬁ)"a) =¢'W;J’P (C(BT(?] a'ﬁlr’a’) xJ-=o a’ﬁlrla’) . (4 . 4)

The ground-state correlation written in the symbolized form (4-2) should be
interpreted so as to be. characterized by the following prescriptions:
@ For an arbitrary operator O, we have

6[ wo> = Co 66’.7] 0>

-

=CoeW{’O\+‘[6, W] —'I—%[[(’)\, W1, W]+ }. [0S

=Ce”{0+[O, W1H O_.> . (the NTD approximation) (4:5)-

(ii) Since the basis operators characterizing the ground-state. correlation are
Olsla, s0(a); Bi, 50(B); 74, 50(c)] (Eq. (2-8) with s=3/2) which construct the
dressed 3-quasi-particle modes and since the operators Olplau, s0(a); Bi, 50(b) 5 Tis
()] are antisymmetric with respect to the indices belonging to the same
single particle orbit, all quantities which appear in the last expression of Eq.
(4-5) must keep the same property. According to the prescription (i), the sup-
‘plementary condition (3-9) with (4-2) leads to a relation

¢, — k€, =0 (4-6)

with ‘

Cosravaray=3V2P(aB7) Ls—o(fE &s’) 0y PT (ot 'y’

Casr,arayr=6P (aBY) Xs-o (@BET") 0,0 P™ (a’ cts’) ,

Catrarsrrr=6P (BT) Ly (@BE'B') 0,y (1 + 8orsr) “2P7 (0 B"),

(tomo(@Ba By = (=) =" (=) =m0, o (at, B, — !, — B7)).
For simplicity, here we have used the following abbreviations:

P(afr)f(abBr,a’87) P (’'8'7")

= ,.Z, y 22 P @Br|wo) f(wo, wy'e’) P (wy'o’|a’8'r’),

P(apr)f(aBrla’8’r") PT(a’f")
=2 2 P(aBrimo)f(uwo, wy'r) Py |a’f’), “4-7
where f(afyr,a’f’r’) is an arbitrary function with respect to (afr,a’B’r").
Combining Egs. (4:6) and (3:6) and using the symmetry property of X;_,(aBrd)

with respect to the permutation of (aBr0d), we obtain an equation to determine
%7-0(aPrd) in terms of the physical amplitudes:

o —kC'P,=0. “-8)
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Special importance .of the prescription (ii) manifests itself when we evaluate,
for example, the following expression:

(¥, a1} 105 = {22 52 0,0 @81 g

+‘\/—2 ”Z‘,'r 67—1,¢). (TszT#?;ﬂ?Iaff

+ X2 0 n® (1i72; @) astas!
Tils®
(¢+a)

O (s 1) agland} |0y . 4.9
+(a;)r' m(ﬂk (aB,'r)agad}l o 4-9)

In this case we have.to evaluate the first term. With the aid of the prescrip-
tion (i), we obtain first :

23 Ot @ BT apa| B0
=6k - Z Brrtsmo(@BE'B") s (@ B'7") aclag| Bo)

a’Br””

Then, the prescription (ii) leads the right-hand side to
V6k E 'Z Orr k(@B B7) . (@’ B'1") aslas'| Oo)

= ‘\/6k Z arnP (TITZT'S) Z 61 r;x-f-o (TITZaZ’B I) ¢7~ (a’B, ,) aTIa Im0>

Tilel's

+2v6k 2] 07, P(rivs) Z 61'1175.7_0 (Tza‘i"lg Nu(@’Br") ar*a&“[ 0.

&
P (aB) 'Gr 1 Qroer
+24/6k 6 e 3@
'\/ (a,bzﬁec)m 2 rrihvd= o(aﬁaﬁ)‘/b.(alg'f)a aﬁl 0>
=— 2 Omn® (TszTa) “?‘1“7’I|m0>
‘\/3 Falels
+_' Z 611'1(0). (Tl‘ri’a)aﬂaﬁflw(»
4\/6 Tﬂ";:c)
L2 s 5 e®@BsT) g
+ /6 (‘f{;%:,) 67’7 \/1+6a'b' b aEl 0> )

where wevhave used Eq. (4-8) in the last expression. Thus, we finally obtain

H,Z,': , Orrthn (@’ B'T") Qg | Do)

= \/—3 rZ 0. rr.(h( ) (71797's) aﬁaﬂl 0o

+— 20 O D (11785 @) a;,a,{l@&
‘\/ 6 TxT:
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- G (o’ 27« st .
+ 2 > 5, BT g (4-10)
Ve & v tery V1t0w '

so that (4-9) simply becomes )
Y, @ l0p=0. - - (4-11y

We are now in a position to show that the requirement (2-24) is satisfied.
Direct calculations with the aid of Eq. (4-10) lead us to B

{Y-X-", Y‘-)-T}+ I w0>

= L;r I (@BY) - (@BY) + %‘IZBT 0 (@BY) adtags Y] Orih (@B77) Qgy

a’B’r’

+ “/73§r o (a@By) a,'as {”Zr 01 08 (1arers) arlast

- -

5 ' P51y
F V2 T 00 (rites ) agdart +v2 30 5. 0 @B s 1}
ng’ 1P (TIT?- ) aay, (a,ﬁZ,W T 1/1 T 6@" 5Qa

+ \/73 - {Tg 0rr, @ (rarsrs) arar,+v2 ”Za 5”1(0;.(2) (Tlfz; a) ar,as

(@B)r’ 1 + 60,0

_ [©)] i
V2500 O gy} 33 00 @7V apar ] 0

= (e — @i@) |00) =05, B, (4-12)
where we have dropped all terms with O (n/29) ~O (K*/28) ~0 according to
the basic approximation in the NTD method, and" have ‘used Eq. (3-6) in the
last relation.”

The ground-state-correlation function Xs-o(aBr0d) has to satisfy Eq. (4»'45,
so that we obtain, with the aid of (4.5), )

S_(@)|0y=0, | (4-13)

where S_ (a) is defined in Eq. (2-2). Equation (4-13) means that the correlat-
ed ground state has no ‘zero-coupled quasi-particle pairs. With the aid of Eq.
(4-13), we have

S-@ Y310y =[3_(a), ¥,11|0) . (4-14)
Since the inner product of the state vector on the righthand side of Eq. (4-14)
is of the order of O (7,/22)~0, we can also see that the dressed 3-quasi-particle
states have no zero-coupled pairs under the basic approximation O (n,/280) =0,
ie., ) ' )
S_(@) Y\l Gp=0. (4-15)
It is further seen that the “ome-quasi-particle” states Y.lis el Op=a,l| 0,> (with
4v=1) also have no zero-coupled pairs, ie., ’
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S_(a)ad| O =0, (4-16)
because we have
- 8_(@) g0 =[3-(a), al|Bo) =Basas| Oo)

the inner product of which is of order O (7,/22)~0 by definition {By|a,'as|d,)
=0.s-70/29. Therefore, our -quasi-particle NTD subspace, which consists of
the modes with the transferred seniority 4v(=2s)=1 and 3, does not include
any zero-coupled quasi-particle pair within the basic approximation O (7,/22)~O0.
It is, thus, orthogonal to any ‘pairing-vibrational “collective” state.

" §5. Transcriptiori of Hamiltonian and electromagnetic
multipole operators into the quasi-particle NTD subspace

"The basis vectors of the quasi-particle NTD subspace under consideration
are

{ Yhnd@d=alI05, Yiwml0>=Y105 }, 6-1)

the orthonormality of which is satisfied (under the basic approximation O (n,/29)
=~0) because of Eqs. (4:11) and. (4-12). The unit operator in this subspace
is defined by ;

1=Z aaTaa_l"‘; YL?YL ’ (5'2)
where .
b at=a|0p<0|, Y,'=Y,\!0)<0i} . (5-3)

The elementary excitation operators (a,!, Y,") in the quasi-particle NTD sub-
space satisfy the relations

a,|0p = Y,[0»=0 59
and
(¥, Y3} 4] 00) = 810,100 ,
{aa, ag't+|00) =004l Oo) ,
Yy, a0} 4| 0p=0. (5-5)
The non-repeatability of the excitations is a trivial result and is expressed as _
Y'Y 0 =a,lay |0 =a, Y !0 =0. (5-6)

Now let us consider the transcription of a physical operator F (such as
the. Hamiltonian and the electromagnetic multipole operators) into the NTD
subspace. According to Eg. (2-28), to do this, it is necessary to evaluate the
matrix elements <@, Y,FY},|0> within the framework of the NTD approxi-
mation. For this purpose we have fully to use the properties of the eigenmode
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operators, such as Eqgs. (4-11) and (4:12), and so rewrite the matrix element
in the following two forms: .

0| Y i F Y 00| 00>
_ {@ol {[¥s, F1, Y3 b4 106> + <00 F{Y 0, Y }4 |00}, (5-7a)
OJ{Yo, [F, YT} [0+ 00| { Yo, Y0} FlOy . (5:7h)

The evaluation of the first terms, which include a double commutator, is easily
performed. As for the second terms, it is convenient to use the form in (5-7a),
because we generally obtain

{Y:<l, YJ>1’}+|06>#0 for s=s’,
ie.,
0| {Yesz, Y }s7#0 for so=s,

which is in contrast with the simple relation (2-24), i.e.,, (4-11). Therefore,
we adopt the form (5-7a) and easily obtain

{00l YouF Y | O0) = {Ou| {[ Vs, F1, Y b 1009 + 0000 KBil F|Orp . (5-8)

This means a prescription rule in evaluating the matrix elements {0 Y,.F Y| 00y
At first we perform the calculation of the commutation relation between the
physical operator F and the eigenmode operator of the higher transferred
seniority number, and then take the anti-commutation relation with the one of
the lower transferred semiority number.

Using the prescription rule, we obtain

0| Yo- HY, N Oo) (=<00] Yy (Ho + Hx + Hy) Y, 00))
= {ox + <O H|0o)}0sr-
{Oi]agHa,'| 00 (=il ag(Ho+ Hx+ Hy)a,!|0o))
={E.+ <0 H| 0} 0. . (5-9)
and" : .
0| Yy Ha,|0o) (=<0 Y, Hra,!|0))

=28 ; (tarthyrVetha—VorVpther0a) VY o grrrathr (@ B777)
al /r'
+2v2 3 {(Ueve—vitte) + 20000 (Uartha — VarVa)} TV gyrayayatr (0’ s’ as’)
ay’ag’ay’

—4 3 [#aVar (Uathe —VaVe) *Vgyrayrar + (Uhr —v%) (Uave+ vathe) QY piragral

Xon®(@’a’; 1)

+4 ( Z E(ua’ub’uc'va — 'va,v,,,-ac,ua) Ney, a8 e
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®) 727« we?
-2 (ua;'(),,,uc,u,, - 'aa,u,,/vc,'aa) . Cvaafﬂmrf] ﬁ\/l(%%‘r) . (5 . 10)
a’b’

According to Eq. (2-28), we can thus obtain the explicit form of the transcribed
Hamiltonian in the quasi-particle: NTD subspace: .

H=1H1=U-1+H®+ H%
=U-1+3 Eala,+ L oYY+ 3 Vi (@, - {Volag+a, 'V}, (5-11)
where
~Vint (le, l) E<@o|_ Y,.Haatl wo> ( = <mol aaHYLTI wo))

and U is a constant related to the energy of the correlated ground state. As
is seen from the matrix elements Vi, (@, 1) given in (56-10), the effective inter-
action H™ between the different types of modes results only from the inter-
active force Hy of the original interaction.

‘The electromagnetic multipole -operators are the one-body operators which
are generally written as

Qﬁ?=azﬂ: (@l OSR1B) c,lce
=X {08 (aB) (a,as' + azas) + 08 (aB) artas)

+3 @Olayvs 122, 5-12)

where the double symbol (=) is related to the conventional transformation prop-
erty® of the multipole operators with respect to the time reversal, and Qf% (ap)
and Off (aB) are defined respectively by

Q°£il) (aﬁ) = —%(QIQE;)IE) (uawb =+ vuub) ’
OfR (aB) = (2| OR1B) (watts Fvavs) . (5-13)

By definition, Q% (aB) satisfies the relation O Ba) = — 0% (@B) and OfR (aB)
satisfies the relation QfR (&) = +0Q% (aB). With the aid of the prescription
rule (5-8), we now obtain the transcribed electromagnetic operators in the
quasi-particle NTD subspace:

O -QiR =108
=CiR1+ 33 O (af) aslag+ T3 O (1) T, 1Y,

12 {08 (ad) a.' Y, + OfR (1) Yi'a,} . (5-19)

* The time reverse of the electromagnetic multipole operator Qi is characterized by
TQiuTt=7-(—)¥*Q;_x, where r==+1. The operators Qf% and Q§R denote those with r=+1 and
r=—1, respectively. '
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Explicit expressions of the coefficients C§R, O$R (aB), QR (A’) and QR ()
are given in Appendix III ’

§6. Concluding remarks

On the basis of the quasi-particle NTD method, we have developed a
systematic microscopic theory of describing the collective excitations in spherical
odd-mass nuclei. The theory have led us to the concept of a new kind- of fermion-
type collective excitation mode, in the just -same manner as the RPA for even-
even nuclei leads us to the concept of ‘“phonon’” as a boson. As will be
discussed in the next paper,” recent accumulation of experimental data seems
to confirm the systematic presence of such a kind of collective excited state in
many odd-mass nuclei.

So_ far, the collective excited states in- odd-mass nuclei has been conven-
tionally described in terms of the language of the quasi—particI‘e—phondn—coupling
theory.” Needless to say, the framework of our theory includes'that of the
phonon-quasi-particle-coupling theory as a special approximated one. In this point
of view, it is quite interesting to -investigate microscopic,strdcturg of Vbreakinlg
and persistency of the conventional “phonon-plus-odd-quasi-particle picture”, in
the light of our theory. " This will be made in a forthcomigg paper. ’
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Appendix I , L

In Eq. (8:2) we have used the projection operators, P(afy) and P(ap),
given by : .

Plapnf(apn = 2. P(aBrle’8'1)f (@87,
P(aB)g @)= 3 P(aBla’8)g (@8, (AL1)

by which arbitrary functions f(afy) and g(@B) are antisymmetrized with respect
to (a,B,7) and (a,B) respectively, and any angular-momentum-zero-coupled-pair
component is removed out of the antisymmetrized functions f4(af7) and ¢*(apB)..
Here we define their explicit expressions. ' .

The antisymmetrization operator of three-body system is given by

P@BrlaBr) =% 3 Bp Guabesb),  (AL2)

3! P@Br)
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where 3 p g denotes the summation over all the permutations with respect
to (a’,8’,7?) and 0p takes the value +1 for even permutations and the value
—1 for odd permutations. As is easily seen, this operator satisfies the relation

of projection operator:
o P4 (aBrla”8r") P4(a"B" " |a/B'y) =P*(aBrle’B'r).  (AL-3)
In. the coupled—angulaf—momentum representation, the antisymmetrization operator "
(AI-2) is represented by
A(ab(J)cla’t’ (D))= 23 - 2 - z?:,w(j,,j,,mamﬁlJM)

Mgmgmy Mo’ Mg’ My’

X (JiMm\IK) (o dy'my mg! | T M?) (J5 M'm,’| IK)

X P“(aBrla’8r") . (AI-4).
In. this representation, with the aid of Eq. (AI -4) the projection operator
Pi(ab(J)c|a’®’ (J’)c’), which removes out any angular-momentum-zero-coupled-pair
. component (from the functions on which it operates), is easily obtained by
Py(ab(J)cla’d’ (J")c’) =P (ab(J)c|la’d’ (J)¢’)
(0 for asbc,
A (ab (T)c|la’b’ (T e)0xn for a=bc,
| PA(ab (0)c|a’d’ (J?)c”) Py (ab (J)c|a’d’ (0)c’)
7 (ab (0)¢c|a’d” (0)c”)

for a=b=c,

| = (e erenyelie b I pA G ©)plae @)e)

I je
. for a=c+b,
— ()2 1) {JI" Ja "g | Pt o alat e’y
) Je
\ for a=tb=c.
(AI-5)

With the ‘expression. (AI-5), the. projection operator P(afr|a’f’r’) in (AI-lj
~"(in the m-scheme), is. defined through the relation

Pi(ab (Dc|a’d’ (T)e)y= 3 - 3 : 25 Cadvmams| JM)

MMMy Mg’ Mg’ My’
X (JjeMm,|IK) (jo'Jo'mo mg’ | M’) (J'j.’ M'm,’| IK) P(aBrla’B'Y’) .
The projection operator P(af8) of two-body system is defined in a similar
way and its explicit' form is trivial.
Appendix II

Here, we write down the explicit forms for the matrix elements of D, d
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and 4 1n the eigenvalue equation (3-3).
With the definitions
Vaiae =2V (aB, /") + Va® (aB, o’ f’) — V® (Ba, a’f’), (AIL-1)
Vil s=2Vy @B, &) + 2V @, ) —2V (aff, B’ |
—2VyBa’,af’) +2Vy(BF', aa’) +2Vy (aar, BF7),  (AI-2)

where Vy®(aB, a’f’), Vi® (@B,a’f’) and Vy(ap, a’f’) are defined by (1-2),
the matrix elemepts of 3D, d and A4 are given by

3D, afr a’8’r’ =P (algT) { (Ea + Eb + Ec) 6aa’6bﬁ'arr' +3 Va(;.;zt);ﬂ’arr'v}P T (Cl'ﬂ ,T’) ’.
da;u.ag, a’as’ay’ =P (alaﬁas) {E66a1a1'6a,a.'6a,a;’ + Va(lzszl’a,’aa.a.’}P T (Oﬁj,aﬁz,as') ’

d“:“:f. @ ’as’r? = P (Czlaz) {Ecaazax'augag'arr’ + 2 Va(.fg,’r’aala,’}PT (CK1’O!2’) s

T 2 Q7
ddﬁ)’; a’B’y’ - (Ea + E], - Ec) 6@'633'677' + 2M (F) 6"/M

V1+0., T 000
dala,a,,al’a{r' = ‘\/EP(alazas) Vagﬂiu.'r’aa,al’PT (afllag() >
' P (2’8"

da agay, a’ By’ = 2P Va(fz)a’ ’612 N e St

@3y, @’ BT v (Ohazafa) sage’ 870 agr ‘\/ I+ O

PT(a’h’
ddxuﬂ',d'ﬂ’r’ = 2P(alaf3) Va(’fgiﬁradlr;%af': s |
Ay, ayvayay = V3P (aBr) Va(ﬂl?tg'a,'6ru.'P T (6_!1'0!2'6153') »
Aaﬁr, ayayyr = V6P (aBr) Va%,'r'aral'P T (“1"12,) s
T ¢ 7 Q7 3 -

Agy, aprr=v6P (aBr) Va(g)z'ﬁ'afr' P (@ B—)— . ' (AII-3)

V1480

Here we have used the abbreviations for the projection operators in (4-7), for .
simplicity. :

Appendix III

Here, we write down the explicit expressions of the coefficients in Eg.
(5-14):

Ci?sg(alQﬁ)Ia)v:-ljl , (AIIL.1)

QSR (@) =<0l @, Q84| 00) — C530,5 | |

=<00| {20, Q8R], 25} 10> =05 (@) , (AILL-2)
Q8 (Aa) =<0, Y, 08 a,!|0: "

={Oi|{[Y>, O], a1} .| 0>
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=B 3 008 @B (@B

+ {;/2 37 8., 08 (acts) o1 ® (uctats)

L2120 1)

423 000, 052 (1) 00 ® (ata; )

@y dsr

(a-0)
o 3) 2R . ap?
+2 3 0,0 (ap) e @S am-3)
@B VI1+0as

Q82 A7) =< 04| Y, 082 Y}| 00) —C5i05s
=<0 {[ Y5, O8], Y1}.105
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X 0 gy O gy PT (O’ s’ t8”) 0 (0t 0ts ats”)
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X P05/ @) O @) Burb e g e (s )

=23 220 ® (aze; 1) P (o) {1 F 1) Q%l? (a101”) 0 gy Orre
+ Qﬁl} Gr)o u;u;’aulug' - Qﬁl) () 6«.7’6 rua’}

xPT (' a”) 0 ('’ 5 17)

~2 5T 0n® @83 1) Q8 (104 D Do

F QLH'(Cmfz') aﬁr'aru,'}P (o' as’) (09) (/a5 1")
+0.® ('’ s 1) P’ as’”) {08 (') 0 aay0gr’

FOR @) Darbra) 2B o (a1 |

Vv 1 + 6ab ¢”
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With the aid of microscopic theory of collective excitations in spherical odd-mass
nuclei proposed by Kuriyama, Marumori and Matsuyanagi, structures of low-lying collective
5/2* states in odd-mass I, Cs and La isotopes and of collective 3/2* states in odd-mass
Mo and. Ru isotopes are investigated. These collective 5/2* and 3/2* states, which are
hard to, understand within the framework of the conventional quasi-particle-phonon-coupling
theory, are identified as a new kind of fermion-type collective excitation mode. The change
in microscopic structure of these states depending on the mass number is also investigated
in relation with the shell structure.

§1. Introduction

From among complicated spectra of the low-energy excitations in odd-mass
nuclei with mass numbers around A~100, recent experiments reveal noticeable
“collective” behaviour of the first 3/2* states in odd-neutron nuclei and that of
the second 5/2% states in odd-proton nuclei, which are difficult to understand
within the framework of the conventional quasi-particle-phonon-coupling (QPC)
theory:® In odd-neutron Mo and Ru isotopes with N=53,55 and 57, there
systematically appear “collective” 3/2* states with enhanced E2- and hindered
M1-transitions to the single-quasi-particle (1QP) 5/2* states.®™® (See Fig. 1(b).)
In odd-proton I, Cs and La isotopes, the second 5/2* states display the enhanced
E2- and retarded M1-transitions to the 1QP 7/2* states, indicating their strong
“collective” nature characteristically.”~® The excitation energies of the second
5/2* states (measured from the 1QP 7/2* states). decrease as the neutron num-
ber goes from the magic number N=82to N=72. (See Fig. 1(a).) Furthermore,
the first and the second 5/2* states are lying close, proposing an interesting prob-
lem of clarifying the difference of their microscopic structure.”

Recently we have proposed a new systematic microscopic theory of describing
the collective excitations in spherical odd-mass nuclei®™ The theory can be
regarded as a natural extension of the conventional quasi-particle-random-phase
approximation (RPA) for even-mass nuclei into the case of spherical odd-mass
nuclei. In the same manner as the conventional RPA for even-mass nuclei leads us
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Fig. 1(a). Experimental trends of the excitation energies of the 5/2:* states (solid lines)
and of the 3/2,* states (dotted lines) in odd-mass I, Cs and La isotopes.”~® The en-
ergies are presented relatively to those of the 1QP states (broken lines).

Fig. 1(b). Experimental trend of the excitation energies of the 3/2* states (solid lines) in
odd-mass Mo and Ru isotopes.?~® The energies are presented relatively to those of
the 1QP states (broken lines).

to the concept of “phonon” as a boson, the theory necessarily leads us to the con-
cept of a new kind of fermion-type collective excitation mode, ie., the “dressed”
three-quasi-particle (3QP) mode. In the light of this theory, in previous papers™®:™®
we have obtained a conclusion that the appearance of the low-lying anomalous
coupling states (ACS) in odd-mass nuclei have to be regarded as a typical phe-
nomenon in which the new kind of fermion-type collective mode manifests itself
as a relatively pure eigenmode. It has also been emphasized that the physical
condition of the enhancement of the three-quasi-particle (8QP) correlation (char-
acterizing this new colletive mode) is not always specific to the ACS but also
more general in odd-mass nuclei. Thus, we have suggested that the new col-
lective mode should be expected to exist in many spherical odd-mass nuclei and
to play an important role in their low-lying collective excitations.®

The main purpose of this paper is to propose an interpretation to identify
the above-mentioned (collective) first 3/2* states (in odd-mass Mo and Ru iso-
topes) and the (collective) second 5/2* states (in odd-mass I, Cs and La isotopes)
as evidences for the presence of this new kind of collective mode. The first
motive for this identification is directly obtained when we notice a similarity
between the above-mentioned electromagnetic properties of the collective 3/2%
and 5/2* states and those of the ACS with spin I=j—1: Characteristics of
the electromagnetic properties of the ACS are 1) much enhanced E2-transitions
to the 1QP states with spin I=j which are comparable in magnitude with those
of phonon transitions in neighboring even-even nuclei and 2) hindered corre-
sponding M1-transitions. Of course, there is an important difference in shell
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structure between the collective 3/2* and 5/2% states and the ACS: In the
case of the ACS the special situation of shell structure is the existence of a
high-spin unique-parity orbit which is being filled with several nuclenos, while
in the case of the collective 3/2% and 5/2*% states many shell orbits with the
same even parity are lying close and equally active for the 3QP correlation.
In this point of view, it is quite interesting to see to what extent we can per-
sist in the similarity between the ACS and the collective 3/2* and 5/2* states.
In this paper, therefore, special interest will be taken in investigating micro-
scopic structures of the collective 3/2* and 5/2*% states and their change de-
pending on the mass number.

In § 2, the dressed 3QP modes as the new type of collective modes in odd-
mass Mo, Ru, I, Cs and La isotopes are presented by the use of the conven-
tional pairing-plus-quadrupole-force model. In § 3, a criterion in investigating
the similarity and difference between the 3QP correlations characterizing these
new modes and those characterizing the ACS is given, and in §§3 and 4 dis-
cussion on the calculated results is given. In § 5, coupling effects between 1QP
‘and the dressed 3QP modes are examined. In contrast to the case of the ACS,
the dressed 3QP mode investigated in this paper is lying close, in energy, to
the 1QP mode with the same spin and parity. For instance, the first 5/2% states
and the collective second 5/2% states in I, Cs and La isotopes are lying espe-
cially close to each other.” At first sight, therefore, the two 5/2% states seem
to couple strongly with each other. However, it will be clarified that there
exists an interesting mechanism to make the coupling effects weak. The con-
cluding remark is given in §6.

§ 2. Dressed 3QP mode as a new type of collective mode

According to the general theory,' the creation operator for the dressed 3QP
mode is given in terms of the quasi-particle operators (a,!, az=(—)7*"™=q_,)*
as follows:

1
Yix= 73 2 ¢ix (aBr) - P(aBr) adaga,!

1
+
UIZV)M/I—FO‘M

+ :/é:, 23 gaf (neats) P (ancnats) 71§ H{auas,2a,

O (uy; ) P(w) a,lalat

+aaa, a5, + az,ax,a,l}:

* The single-particle states are characterized by a set of quantum numbers a={n, [, j, m,
charge g}. In association with a Greek letter @, we use a Roman letter a to denote the same set
except for the magnetic quantum number m. We further use a subscript —ea, which is obtained
from a by changing the sign of the magnetic quantum number.
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‘\/? aiaar

+1 2. 0P (auate; 1) P () i_ Hadas, + aza,t}: ap
(ac) ‘\/2 .

%JFT oiP (@B; P (ap) a/tanas
ab

(@t 0ke
1 @ ,
—— Y ;P ta. 5 2.1)
+ gs‘r Wil (w; ) P(w)ataza @1

Here a, 8 and 7 denote a set of quantum numbers of the single particle states
for protons (neutrons) and # and y those for neutrons (protons) in the case of
odd proton (neutron) nuclei. The subscript £ (=1,2,3) of @ is used when the
specification of the single-particle states with different magnetic quantum num-
bers in the same orbit ¢ is necessary. The symbol Y7, represents the sum-
mation with respect to the orbit pair (ab), m,, mg and 7, and we have used the
notation -

P(afy) alas'at= ; PlaBrla’f' 1) alagal,
gy
P(ap) axaz= %},P (aBla’B) axag. , 2-2)

where the operators P denote the projection operators by which any angular-
momentum-zero-coupled-pair component is removed out of (alag'a,’) and (axaz)
respectively. The projection operators P, the explicit forms of which are given
in Appendix I in Ref. 11), guarantee the dressed 3QP modes to be orthogonal
to both the spurious states (due to the nucleon-number non-conservation) and the
pairing vibrational modes.

The collective modes given by Eq. (2:1) are characterized by the amount
of seniority 4v=3 which they transfer to the correlated ground state.® The
first two terms on the right-hand side of Eq. (2-1) represent the forward-going
components and the others are the backward-going ones originated from the
ground-state correlation. It is evident that the ground-state correlation is es-
sential to bring about the collectivity of excitation modes in the doubly-open-proton-
neutron systems such as nuclei under consideration. As was shown in §3 of
Ref. 11), within the framework of the new-Tamm-Dancoff approximation (i.e.,
the quasi-particle RPA) we obtain the eigenvalue equation which the correlation
amplitudes should satisfy:

[31) —A][ nz]:wﬂ_rﬁnz]’ - @3
AT —d Prr Prr

where ¢,; and @,; denote the matrix notations symbolizing the sets of the for-
ward amplitudes {¢$? (afy) and ¢ (uv;7)} and the sets of the backward am-
plitudes {p{? (utts) , (e 1), 0P (@B 1) and o (uy; 1)} respectively, and
the explicit forms of matrices D,d and 4 (and its transpose A7) are given in

Appendix II of Ref. 11).
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A program code named BARYON-1 has been constructed to solve Eq. (2-3),
and in the actual calculation the conventional pairing-plus-quadrupole (P+QQ)- -
force model has been adopted. Since our aim is not to obtain a detailed
quantitative fitting with experimental data but to get an essential understanding
of structures of the collective 3/2* and 5/2* states which are hard to under-
stand within the framework of the QPC theory, we have used the same values
of the single-particle energies and of the pairing-force strength G as those adopted
in the QPC theory of Kisslinger and Sorensen,” except for the quadrupole-force
strength X. We have also made the same truncation of shell-model space as
they have made: The shell-model subspace for I, Cs and La isotopes consists
of the orbits {7; 197z, 2d5s, 1hiise, 2dis, 3siey and {v; 2d3s, 197, 3sihe, 1h5i/e, 2dis},
and the subspace for Mo and Ru isotopes is composed of the orbits {r;1fs.,
2Dz, 2012, 1957} and {y; 2di)s, 1975, 3sie, L iy, 2d3s} .

The calculation of Eq. (2-3) may be performed in two steps: In the first
step the matrices 3D and d are diagonalized, and then the resultant total matrix
is treated as the second step. The two-step-diagonalization procedure.is, of course,
equivalent to the direct diagonalization. In this paper, however, we have adopted
the following approximation: In the second step, the resultant matrix is trun-
cated within 50 dimensions, i.e., 10 and 40 dimensions for the forward and back-
ward parts respectively. Accuracy of this approximation in numerical calcula-
tions has been checked by comparing some results with the corresponding ones
of full calculatibns, and has been assured to be satisfactory except for some
special cases where the excitation energy of the dressed 3QP mode is lying
extremely close to the critical ‘point for the instability of the spherical BCS
vacuum,

§ 3. Structure of collective excitations in
odd-proton I, Cs and La isotopes

a) Collective 5/2% states

In Fig. 3, the calculated excitation energies of the collective 5/2," states
as the dressed 3QP modes are shown by solid lines. The energies are measured
from those of the 1QP 7/2* states (denoted by broken lines). The experimental
trend®™® that the excitation energies of the collective 5/2,* states (measured
from those of the 1QP 7/2* states) decrease as the neutron number goes away
from the magic number is well realized in a rather magnified way. Such mag-
nification is inherent to the new-Tamm-Dancoff approximation (i.e., the RPA)
with P+ QQ force which we have adopted, as is well known in calculating the
phonon energies in even-even nuclei in terms of the RPA with P+ QQ force.
It is clear from Fig. 3 that the first 7/2,* and 5/2;* states correspond to the
1QP states (broken lines) related to the orbits 1¢;, and 2d., respectively.

Before discussing the calculated B(E2)-values-in Table I, it may be impor-
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Fig. 2. Graphic explanation of the E2-
transition properties.

normal positive parity), many shell

tant to set up a criterion for investigating
the similarity and difference between the
3QP correlations characterizing the new
dressed 3QP modes and those character-
izing the ACS. As has been shown in the
previous papers,””™ in the case of the
ACS; the triggering effect of the 3QP cor-
relations: which strongly violates the con-
cept of “phonon” in odd-mass nuclei is
restricted among quasi-particles in a specific
high-spin and unique-parity orbit which is
being filled, because of the parity-selection
property of the quadrupole force. On the
contrary, in the case of the dressed 3QP
mode under consideration (which has the
orbits with the same even parity (such as

972, dije, dije and siry) are lying close and equally active for the 30QP correlations.
A criterion useful for discussing the newly produced 3QP correlations is given

0.5+

0.0+
(MeV) N=74 76

I (Xo =250)

Cs (Z 0 2235) La (Zo 2230)

Fig. 3. Calculated excitation energies of the dressed 3QP modes with I"=5/2* (solid lines)
and with I*=3/2* (dotted lines), in odd-mass I, Cs and La isotopes. They are measured
from those of the 1QP states (broken lines). The adopted values of the quadrupole-
force-strength parameter y, (defined by x=yb*A™®, b* being the harmonic-oscillator-
range parameter) are written in unit of MeV and the cross symbol X indicates a com-

plex eigenvalue due to too strong x,.
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as follows:® “If the 3QP correlations mainly come from a specific orbit, for -
instance, the 1¢,, orbit when we consider the collective 5/2,* states, we may
say. that the structure of the 5/2," states is similar to that of the ACS. As has
been shown in Ref. 13), an important characteristic in this case is that the
value of B(E2;5/2,*—7/2,*) (i.e.,, B(E2;I=j—1—j)) is greatly enhanced com-
pared with the values of E2-transitions to the other 1QP states, for instance,
B(E2;5/2,*—5/2,%) (i.e., B(E2;I=j—1—j%j)). (See Fig. 2.) On the other
hand, if the 3QP correlations among quasi-particles in the different orbits are
of importance, the EZ2-transitions to the other 1QP states, for instance, B(EZ2;
5/2,"—5/2,*) have to be also strongly enhanced. In this case, therefore, we
may say that the structure of 5/2," states differs considerably from that of the
ACS.” Needless to say, the eigenmode operator (2:1) covers these two cases,
so that we can achieve, with the aid of this criterion, an essential understanding
of the microscopic structure of the new collective excited states.

Now, the calculated B(E2)-values in Table I(a) demonstrate that the B(E2;
5/2,*—7/2,*)’s are stronger by about one order in magnitude than the other
B(E2;5/2,*—5/2,%)’s. Thus we can conclude that the structure of the 5/2,*

Table I. Calculated B(E2)-values from the 5/2:* states (a) and from the 3/2,* states (b) as
the dressed 3QP modes in odd-mass I, Cs and La isotopes (in unit of €*-107*° cm*). The
harmonic-oscillator-range parameter 5*=10 A3 fm? and the effective charges ¢,*f=1.5¢ and
e,°f=0.¢, are used. The values of % are the same as the ones in Fig. 3.

\

(@)
5/2:*>7/2,* 5/2s*—>5/2,*
Cal. Exp. Cal. Exp.
1297 6.8 2.1+0.4 01"
181] 45 0.0
BiCs 10.7 23w 04
13Cs 8.8 10.41.22 0.2
188] o 157 0.7
185 8 82 269 04 1.59
)
3/21¥—5/2,* 3/2:%>7/2,*
Cal. Exp. Cal. Exp.
b} 1.9 24 7.0£0.82
ta1] 03 2.0
1810 9.0 1.7
133Cs 35 1.8 7.2+0.8%
188] o 151 11
1357 g 10.2 ) >4.89 1.0

a) ﬁef. D. b) Ref. 8). c) Ref. 9).
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states is similar to that of the ACS with spin I—= J—1. (In this case, 5 corre-
sponds to 1¢;5.) In fact, microscopic” structure of the calculated amplitudes of

Table II. Main correlation amplitudes of the dressed 3QP modes (defined through Eq. (2-1))
in Cs, La and 1. The first and second lines specify the types and the components in the
coupled-angular-momentum representation, respectively. The abbreviations such as

{(05) T} = {(ds s 12) 1-3911} ,
{(55) 7} = {(ds s 2) 1=4g2s2}
{777} = {(g'l/z) 8} sttt , etc.,
are used. The values of the forward-going amplitudes are listed in the third line, while

those of the backward-going in the fourth line. To specify the kind of the backward-going .

amplitudes, we use the same superscripts (II) and (III) Fhat specify the kind of the ampli-
tudes in Eq. (2-1).

(a) 5/2,* state in *'Cs

(zzm) type (wr) type
1y {657 {75y {775 {(T3} | {1, 11)7} (@Y7 {17 {BDT {11,115}
082 030  —017 011 —010 062 031 —023 019  —010
0.30 {0;’0101) { =004 4 5 {‘0‘04“1’ 045 022 —01l 010  —009
0:21aD | 0,08 0.00(m>

~

(b) 5/2:* state in ¥La

(nnrm) type : (vyr) type
717y G} {D5}  {(D3} {73 | {AL 17} {(33) 7 AT {6@D7T {d1,11)5}
081 043  —021  —014 —013 071 036 —027 021  —0.5
032 {0-02 @ { —0.04® {‘0-05“1) —006®| 052 025 022 013  —0I2
029 |—0.09a> |—0.33@

(c) 3/21f state in *°]

(nrm) type (vyr) type
{777} {5 {(7H’B5}  {(BB)T} {655} | {1,117} {(1L,11)5} {(33)7} {(33)5} {a3)n
—057 043 0.10 0.20 015 | 055 0.33 029 017 —015
~0.08 {0'02“]) 0.03@ {0.0101) 006 | 022 0.19 011 010 —005
0.16 0.08(D

(d) 3/2:* state in *°La

(zrm) type (wvr) type
{(77)5} {655} {657 {657y {777} | {(11,11)5} {(33)5} {(13)5} {AL,1D7 {(37)5}
0.64 0.59 0.21 0.16 —0.14 0.72 0.36 —0.20 0.20 » 0.20

0.08M  —0.05 0.50 0.24 —0.22 0.14 0.14
0.40aD 0.03

{0.02(11) 0.94 {0.05‘11)
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the 5/2,* states (as the dressed 3QP modes) is very similar to that of the ACS
which has been investigated in the previous papers:® The forward-going am-
plitudes of (nmm)-type with the largest {m (¢/2)"} component and of (yyr)-type are
strongly coupled ‘with each other and the backward-going amplitudes of (yym)-
type become larger as the neutron number decreases. Some examples of the
main amplitudes in Cs and La are shown in Tables II(a) and IL(b).

It is rather a wonder that the overall similarity between the 5/2% states
and the ACS persists in spite of the different situation in their shell structure.
The reason is understood as follows: In I isotopes, the chemical potential for
protons lies close to the 1¢;, orbit and the energy difference between the 1QP
19, and 1QP 2d,, states is relatively large (i.e., 4E~400keV), so that, real-
izing the similarity to the ACS, the component {r(92)’} in the forward amplitudes
¢$%-ss (in Eq. (2-1)) reaches the maximum. As the proton number increases,
the chemical potential shifts up and the energy difference between the 1QP
19;; and 1QP 2d,, states decreases to about 4E~100keV in La isotopes. In
La isotopes, we may thus expect the components {m(9:2)’ds;2} and {m gr/e(dss2)’
to grow up appreciably. However, this trend is actually not so appreciable as
expected, as is seen from Tables II(a) and II(b). This is due to the following
facts: i) The considerable -smallness of the value of spinflip matrix element
(2dsP*Yel1¢,) in comparison with that of mnon-spin-flip one (197:|7*Y2l1¢.s),
ii) the special favouring of the I= (j—1)-coupling in the (gy)’-configurations
and iii) the prohibition of (dss)*configurations with spin I=5/2.

b) Collective 3/2% states

Here it is interesting to notice that, in addition to the collective 5/2,% states
discussed above, experimental data®~® reveal the systematic presence of the 3/2;*
states the excitation energies of which (measured from the 1QP 5/2,*-states) de-
crease as the neutron number goes away from N=282 to N=72 with the same trend
as in the case of the collective 5/2;* states. (See the dotted lines in Fig. 1(a).)

Regarding the 3/2,* states as the dressed 3QP modes, we have also cal-
culated their excitation energies and B(E2) values. (See the dotted lines in
Fig. 3 and Table I(b).) To see the qualitative trend of the decrease in the ex-
citation energies, we have used, in Fig. 3, the same values of the single-particle
energies as adopted by Kisslinger and Sorensen” in their QPC theory, although
the special lowering of the excitation energies (of the 3/2,* states) sensitively
depends on the adopted single-particle energy difference between the 2d;» and
19;. orbits. If the adopted single-particle energies are modified slightly from those
used by Kisslinger and Sorensen,” we can easily realize the appearance of the
3/2,* states below the collective 5/2,* states, without changing the characteristic
of the 5/2,* states mentioned above, in agreement with the experimental positions.

According to the criterion discussed in § 3 a) (on the structure of the dressed
3QP modes), the calculated B(E2)-values in Table I(b) suggest that the 3QP
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correlations among quasi-particles in the different orbits are rather strong in the
3/2,* states compared with the collective 5/2; states: The values of B(E2;
3/2,*—5/2,*) and B(E2;3/2,*—>7/2,*) are both enhanced, with ratios changing
from I isotopes to La isotopes. Main amplitudes of the 3/2,% states in I isotopes
as the dressed 3QP modes are shown in Table II(c), from which we can easily
see why the competition between the two E2-transitions (to the 1QP 5/2,* and
1QP 7/2,* states) is remarkable in I isotopes. As the proton number increases,
the chemical potential for protons shifts up toward the 2d,, orbit (from the
197/, orbit), so that in La isotopes the component {7 (9:/2)°} in the forward am-
plitudes ¢{P s, (in Eq. (2-1)) is diminished and the component {7 (dy:)*} grows
up. (See Table 2(d).) The increase in B(E2;3/2,*-5/2,*) in La isotopes is
clearly due to the growth of the 3QP correlation in the 2dy;, orbit. In this
sense, we may say that the 3/2,* states in La isotopes have a structure similar
to that of the ACS with I=j—1 (where j corresponds to the 1QP 5/2* state),
although the component {7(d;)’} is not still maximum but coupled with the
other components, e.g., {m(0:)’ds;}, rather strongly.

§ 4. Structure of collective 3/2,* states in
odd-neutron Mo and Ru isotopes
The calculated results of the collective 3/2,* states in odd-neutron Mo and

Ru isotopes as the dressed 3QP modes are shown in Fig. 4 and Table III. The

E

' 4
0.0l PO o ‘.. ......
(MeV) 53 55 57

Mo(X.=240) - Ru(X,=240)
Fig. 4. Calculated excitation energies of the.dressed 3QP modes with I*=3/2* (solid lines)
in odd-mass Mo and Ru isotopes. See the caption for Fig. 3.
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Table III. Calculated B(E2)-values from the 3/2* states as the dressed 3QP modes in odd-mass
Mo and Ru isotopes (in unit of €*-107* cm*). The parenthesized numbers in the fourth
columm indicate the spins of the final states. The parameters used are the same as in

Table 1.
3/2,v—>5/2,* other transitions
Cal. Exp. Cal.
Mo 20 5.3 0.3(7/2:%), 03(1/2:
Mo 4.4 I 0.1(7/2:%), 04(1/2:%)
*Mo 6.2 0.4(3/2,%), 03@1/2:*)
*’Ru 49 749 0.2(7/2:*), 08@1/2:*%)
“Ru 11.3 13.1© 1.9(7/2,%), 2.9@1/2:%)
11Ru 139 5.7% 0.7(7/2,%), 0.8(1/2:%)

a) Ref. 2). b) Ref. 3). c) Ref. 4).

excitation energies of the 3/2,* states and the values of B(¥2;3/2,*—5/2,%)
are reproduced very well. Thus, the 5/2,* and 3/2,* states are identified as
the 1QP and dressed 3QP states, respectively. Futhermore, the special en-
hancement of B(E2;3/2,*—>5/2,*) shown in Table III (when compared with
the other B(E2)’s) suggests that the structure of the 3/2,* states is similar
to that of the ACS with I=j—1. (In this case, j corresponds to the 1QP 5/2*
state.) From Table IV, we can easily see the similarity of the 3/2,* states to
the ACS, although the fine structure is different appreciably as a result of the
30QP correlations among quasi-particles in the different orbits with the samie
parity (dss, Siz, 9772 and dyjs).

Table IV. Main correlation amplitudes of the dressed 3QP modes with
I=3/2* in Ru isotopes. Notations are the same as in Table II.

(a) 3/2;* state in *"Ru

(vw)- type (nny) type
{655} {(65)1} {(99)5} {991}
0.89 —053 0.70 —0.15
0.32 {‘0-22“]’ 0.47 ~0.30
—0.27m

(b) 3/2;* state in ' Ru

(vw) type (nrv) type
{(65)1} {655} {76} {11,115 {(55)7} » {095 {1 {ON7F {135}

—0.87 0.68 0.32 0.19 0.19 0.98 —0.22 0.18 0.13

{‘0-4901’ 0.35 {0'02(“’ 017 {0-06“1’ 086  —022 022 0.16
—o.11a 0.320 0.10aD
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§ 5. Coupling between the dressed 3QP and 1QP modes

In contrast to the case of the ACS, the dressed 3QP states, especially the
collective 5/2,* states in I,.Cs and La isotopes, are lying close, in energy, to
the 1QP states with the same spin and parity. It is, therefore, inevitable to
examine their coupling effects. According to the general theory," the original
Hamiltonian is transcribed unambiguously into the quasi-particle-new-Tamm.-
Dancoff subspace, the basis vectors of which are {a,}|0,> and Y},£|0>}. 10y
donotes the correlated ground state.) The transcribed Hamiltonian is of the
form™

H= Z E.a,a,+ Zn:(wu Yiix Y.k + ZI:K Vint(a; nl ) {YJIKaa +a,t Yoz}, (5 D

where
- at=a |00, Yiix=Y]:x|0{D,| . (-2

The third term of the transcribed Hamiltonian (5-1) represents the interaction
between the dressed 3QP and 1QP modes, and comes from the Hy-type original
interaction (shown in Fig. 5), which has not played any role in constructing the
dressed 3QP modes. The effective coupling strength Vin(a;nl) is thus com-
posed of the matrix elements of Hy accompanied by the amplitudes of the dressed
3QP mode Y[k, and its explicit expression is given in Eq. (5-10) of Ref. 11).

The results of calculations of the coupling effects due to the interaction
in (5-1) are shown in Table V. It is noticeable that the coupling effects are
very small even in the situation where the two 5/2% states are close to each
other in energy (i.e., 4w~0.01 MeV). The mechanism to make the coupling
effects (between the dressed 3QP and 1QP modes) so small has to be found in

Fig. 5. Graphic representation of the matrix elements of the quadrupole force. The quad-
rupole force (in the quasi-particle representation) is conventionally divided as Hoo=H,
+Hy+Hy. The part Hy represents scattering of the pair of quasi-particles coupled to -
J*=2* and the part Hy represents a pair-creation and a pair-annihilation of quasi-particles
coupled to J*=2*. The parts Hx and Hy play an essential role inconstructing the
dressed 3QP mode and are called the constructive Sorce. The part Hy represents the
coupling between a quasi-particle and ‘the pair of quasi-particles coupled to J*=2*. This
part plays a decisive role as essential coupling between the different types of elementary
excitation modes, for instance, the interaction between the 1QP and the dressed 3QP
modes, and is called the interactive force.™»

Y

Hx
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Table V. Calculated results for the coupling effects. In the third column are listed the com-
ponents of the 1QP modes, while in the fourth and fifth columns those of the lowest dressed
3QP modes and of the next higher ones, respectively. In the sixth column are listed the
values of the energy shifts due to the coupling effects in MeV.

Nucleus State art| @) Y100 Y4100 4o

1201 5/2,* 0.90 —0.18 0.39 —0.23

5/2:* 0.15 0.98 0.10 0.01
110 5/2* 0.93 0.01 0.35 —0.14

5/2s* —0.01 1.00 —0.01 0.00
10 5/2,* 0.97 0.07 —0.25 —~0.08

5/25* —0.06 1.00 0.03 0.00
18] 5 5/2,* 0.96 0.15 —0.26 —0.09

5/2:* —0.14 0.99 0.06 0.01
1] o 5/2;* 0.99 0.01 —0.13 —0.02

5/2;" —0.01 1.00 0.00 0.00
Mo 3/2,* 0.24 0.97 0.01 —0.12
Mo 3/2,* 0.10 0.99 0.01 —0.01
“Mo 3/2,* 0.60 067 . —0.33 —0.31
"Ru 3/2,* —0.17 098 0.00 —0.05
*Ru 3/t 0.37 0.90 0.17 —025
101Ry 3/2,* —0.39 0.86 ‘ 0.27 —0.12

the microscopic structure of the effective coupling strength Vi(a;zI). From
the microscopic structure of the effective coupling strength between the dressed
3QP 5/2;* and 1QP 5/2,* modes in the case of the P+QQ force, we can find
the following origins to weaken the coupling: 1) The important matrix ele-
ments of Hy (of the quadrupole force) in the effective coupling strength, which
are accompanied by large components of the amplitudes of the dressed 3QP
5/2* mode, always contain the spin-flip matrix element {2dsslr*Y5)|1975) which is

dsve desz  |dse
H Hy
dsgz ot Js/2 | 972 ds/2 ot 972|052 ds2 ot 972 |ds/2 ’
{a) (b) (c)

Fig. 6. Example of the important matrix element (of Hy) which contributes. to the effective
coupling strength with I*=5/2*. Matrix elements (a) and (b) are of exchange with
- each other. The effects of such mutually exchanging parts to the effective coupling
strength are not constructive but destructive to each other. It should be noted that, in
the case of calculating the E2-transition (c), such destructive effects never appear be-

. cause one of them (a) is forbidden.
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considerably smaller compared with the diagonal matrix element {10,.|7°Y,|10:/).
It is interesting to remember that the considerable smallness of the ratio of
2dysa| Y3100 to <191.2lr*Y5l19ssp is also one of the important origins to bring
about the ACS-like structure for the collective 5/2," state. 2) The pairs of
matrix elements of Hy (such as Figs. 6(a) and (b)), which are exchangeable
for each other, have to be always involved in the effective coupling strength,
because the antisymmetrization among the three quasi-particles composing the
dressed 3QP (5/2%) mode is properly taken into account. Actual calculations
tell us that the effects of such exchange parts on the effective coupling strength
(between the dressed 3QP 5/2,* and 1QP 5/2,* modes) are not constructive
but rather destructive to each other. It is interesting to notice that this important
reduction effect of the effective coupling strength never appears in the conven-
tional QPC theory, because the antisymmetrization between the “odd” quasi-
particle and the quasi-particle pair composing the ‘“phonon” is not taken into
account in the evaluation of the coupling strength in the QPC theory. 3) In
addition to these effects, it should be also pointed out that effective coupling
strength depends characteristically on the reduction factors (w;u;  —v;v;) which
become especially small in La isotopes. ' ‘

All of these effects cooperate so as to weaken the effective coupling strength
between the 1QP 5/2," state and the lowest dressed 3QP 5/2,* state. As a
result, the 1QP 5/2,* mode becomes to couple rather with the next higher
dressed 3QP 5/2,;" mode, as shown in Table V. '

§ 6. Concluding remarks

We have shown that the collective 5/2% states in odd-proton I, Cs and La
isotopes and the collective 3/2% states in odd-neutron Mo and Ru isotopes are
identified as the new collective ‘“elementary” excitation mode, i.e., the dressed
3QP mode. We have also shown that the physical condition for the appearance
of the dressed 3QP modes is not specific to the ACS but quite general in
spherical odd-mass nuclei. The presence of -a high-spin unique parity orbit in
the major shell, such as in the case of the ACS, is not a necessary condition
for the realization of the dressed 3QP modes. Rather, the important condition
is the proximity of the chemical potential to the orbit of the odd quasi-particle
and its relation with the neighbouring shell structure. Even if many orbits
with the same parity are lying close to each other and the energy separations
between the orbit of interest and the others are not so large as in the case of
the ACS, one cannot expect diminution of the important role of the 3QP cor-
relations in the specifc orbit. Furthermore, the physical condition (in the shell
structure) to weaken the effective coupling strength between the 1QP mode and
the “collective” dressed 3QP mode (with the same spin and parity) is' common
to that for the realization of the ACS-like dressed 3QP mode. Thus, the dressed
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3QP modes similar to the ACS can exist as relatively purel elementary excita-
tion modes over a wide range of spherical odd-mass nuclei.

Here it should also be emphasized that, even if the special role of the 3Qp
correlation in the specific orbit is relatively relaxed, this does not necessarily
mean that we return to the physical situation which can be treated within the
framework of the QPC theory. Rather, it may indicate the necessity of inves-
tigating the roles of the 3QP correlations newly arised in the different orbits.
Importance of such effects has been briefly mentioned for the case of the 3/2,*
states in I, Cs and La isotopes. This will be discussed in a forthcoming paper'
in connection with the investigation on microscopic structure of breaking and
persistency of the *“phonon-plus-quasi-particle picture” based on the semi-phe-
nomenological approaches. !~
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§1. Main motive

In the past decade the studies on nuclear structure have found the concept
of phonon as an elementary mode of excitation in the nuclear system in-
creasingly significant. On the other hand, the studies have suggested that
the simple phonon model (based on the harmonic approximation) cannot give
a satisfactory description of rather complicated anharmonicity effects, i.e.,
deviations from the simple phonon model are quite essential in a finite many-
body quantal system such as the nucleus. Furthermore, the recent rapid
accumulation of experimental data suggests the existence of certain ‘“hidden
regularities’” in the complicated anharmonicity effects. Thus, one of the
important subjects in current nuclear study is the sublation (aufheben) of the
very concept of elementary modes of excitation in connection with the
structure of the anharmonicity. Concerning such a subject, several annual
research projects have been organized in Japan by the Research Institute for
Fundamental Physics since 1969. Some important problems to be attacked
at the first stage of the study were set up in the beginning of the research
projects. One of them was to investigate the possibility of proposing an
algebraic method of pair operators, which starts with the special nucleon-pair
operators as the basis operators instead of the “phonon’ as an ideal boson.?
Along this line, the algebraic method is being extensively investigated by
Yamamura et al.?) Another problem was to construct a microscopic theory
by which the structure of the complicated anharmonicity effects can be in-
vestigated in a simple systematic way. The essential part of our investigation
concerning the present paper has been performed as a part of the research
along this line.

In order to explain the situation at that time, we start with a brief survey
of the results of analyses of the anharmonicity effects in even-even nuclei by
Yamamura, Tokunaga and Marumori3 in 1967 in terms of the boson expansion
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method.® They first classified the anharmonicity effects into two charac-
teristic types; i) Ainematical effects, i.e., effects due to the Pauli principle
among the quasi-particles belonging to different (bound) quasi-particle pairs
which are regarded as ideal bosons (i.e., “‘phonons’) under the quasi-particle-
random-phase approximation (RPA), and ii) dynamical effects, i.e., effects
due to the residual interaction which has been omitted in the RPA. After
calculating the kinematical and the dynamical effects (in the pairing-plus-
quadrupole-force model) with the use of a perturbation theory based on the
boson expansion method, they arrived at the following conclusion®: The
simple ‘‘two-phonon’ concept (as a possibility of repeating the excitation of
an ideal boson twice) is actually broken in the following sense. i) Both the
kinematical and the dynamical effects become unexpectedly large in the absolute
values when the ‘“phonon” energy under the RPA comes close to the actual
experimental value. ii) When the energy of the ‘“two-phonon’ state under
the RPA is close to those of the non-collective two-quasi-particle states, the
coupling between the ‘“‘two-phonon’ state and the non-collective two-quasi-
particle states due to the dynamical effects becomes too significant to be treated
by the perturbation theory. In this case, which occurs most often in actual
nuclei, we are forced to make a diagonalization of the coupling, which leads
to a strong mixing of the two states and breaks the simple ‘“‘two phonon”
concept.

From this conclusion, one may naturally expect that the (quasi-particle-)
higher-random-phase approximation (HRPA)% is promising in taking these
significant anharmonicity effects into account, because it does not use the
picture of repeating the ‘phonon” excitation twice. It is known that in the
HRPA (the second RPA) the kinematical effects on the so-called ‘“two-phonon”
states due to the Pauli principle among the four quasi-particles are fully taken
into account. Furthermore, the dynamical effects, i.e., the coupling between
the two-quasi-particle excitation modes and the “two-phonon” modes are
properly considered.*) Unfortunately, such a merit of the HRPA is merely
one of formal logic. Actually we encounter the well-known formal difficulty
which is inherently connected with the non-symmetrical form of the secular
matrix coming from the linearized equation of motion for the eigenmode
operator of the HRPA. The other rather serious formal difficulty in the
HRPA is also known to arise from the spurious-state problem, which originates
from the nucleon-number-non-conservation in the quasi-particle basis. As
is well-known, it is one of the important advantages of the RPA that both the

*) Since both two-quasi-particle and four-quasi-particle amplitudes (in the sense of the new-Tamm-
Dancoff (NTD) approximation with the ground-state correlation) are taken into account in the
eigenmode operator of the HRPA, the excitation energies of both the first and the second excited
states (which roughly correspond to the “one-phonon’ and the ‘‘two-phonon” states of the RPA,
respectively) are simultaneously obtained through the (linearized) equation of motion for the
eigenmode operator in the NTD approximation.
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“phonon” states and the (correlated) ground state are orthogonal to the
spurious states within the framework of the approximation. However, the
HRPA never leads us to either the “physical” excited states or the “physical”’
ground states which are orthogonal to the spurious states. Thus, we may
conclude that, without overcoming these difficulties in essence and not in
superficies, we cannot enjoy the above-mentioned essential merit of the HRPA
in treating the anharmonicity effects. Nevertheless, any theories or methods
overcoming the difficulties had not yet been achieved at that time. This was
the reason why the authors’ first task in collaboration with Kanesaki, Sakata
and Takada®"~9 was to construct a new systematic microscopic theory which
overcomes the difficulties in the HRPA and to treat both the kinematical
and the dynamical anharmonicity effects in a simple systematic way.

§2. Outline of theory

In contrast with the HRPA, the underlying philosophy of our theory
is not to intend a dérect, formal diagonalization of the Hamiltonian within
a subspace characterized by the eigenmode operator of the HRPA, but rather
to start with an extraction of the basic physical elements from the subspace.

Our first task is to develop a method which enables us to uniquely separate
the spurious components from the quasi-particle states and to precisely keep
the one-to-one correspondence between the seniority number and the quasi-
particle number. This problem is studied in Chap. 1 of Part II. According
to the method developed in Chap. 1, we can regard the space of states described
by the quasi-particles as a product space composed of “‘intrinsic” and ““col-
lective” spaces. The ‘‘intrinsic”’ space consists of the states which never
involve /=0-coupled quasi-particle pairs, while the “collective” space consists
of the states which include only /=0-coupled quasi-particle pairs and are
always orthogonal to the ““intrinsic’ states. Needless to say, all of the spurious
components belong to the “collective’ space, and a special one of “collective’
vibrations (under the RPA) with zero energy in this subspace is known to be
due to the nucleon-number non-conservation.

Secondly, in the “‘intrinsic”’ space, we construct the correlated z-quasi-
particle excitation modes (with »=2, 4, 6, --- for even-even nuclei and with
n=1, 3, 5, :-+ for odd-mass nuclei) within the framework of the new Tamm-
Dancoff (NTD) method with the ground-state correlation. The creation
operators of these excitation modes consist of #-quasi-particle (creation and
annihilation) operators accompanied by the correlation amplitudes involving
the ground-state correlation in the NTD sense. The excitation modes are
hereafter called the “dressed” #-quasi-particle (#QP) modes, and their detailed
formal structure is studied in Chap. 2 for odd-mass nuclei. In order to
specify the dressed QP modes precisely in the “intrinsic” space, as is shown
in Chap. 2, it is decisive to use the concept of spherical tensors in the quasi-
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spin space which has been introduced through the quasi-spin formalism (for
the pairing correlations).1® The dressed 2QP mode (with the lowest energy
eigenvalue), which is the simplest one among the dressed QP modes, is nothing
but the “phonon’ under the RPA. In this sense, we may say that our theory
can be regarded as a natural extension of the RPA. The dressed 4QP states
(with the lowest energy eigenvalues) correspond to the ‘“‘two-phonon’ states
of the RPA, but the kinematical effects due to the Pauli principle among the
four quasi-particles are fully taken into account in these states.

With the aid of the dressed QP modes, we can introduce a set of ortho-
gonal basis vectors consisting of the (correlated) ground state and the dressed
nQP states. We call the space spanned by the orthogonal set the quasi-
particle NTD space. Within the framework of the NTD approximation,
this space is, by definition, orthogonal to the ‘“collective’” space which involves
all of the spurious components. The basic physical idea underlying the intro-
duction of the quasi-particle NTD space is as follows. Let us recall that the
use of the quasi-particle basis can be regarded as an attempt to classify both
the ground state and the excited states in terms of the seniority number v,
keeping one-to-one correspondence between the seniority number and the
quasi-particle number z. Then, the orthogonal basis vectors characterizing
the quasi-particle basis are the BCS ground state (with »=0) and the z-quasi-
particle states w7tk the condition n=v. These orthogonal basis vectors with
the definite quasi-particle numbers z=» span the ‘“‘quasi-particle Tamm-
Dancoff (TD) space”, which is merely the “intrinsic’’ space mentioned above.
Now it is well known that, in a many-body quantal system such as the nucleus,
the ground-state correlation is particularly important as a collective pre-
disposition which allows the correlated excited states to occur from the ground
state. 'We must therefore take account of the importance of both the seniority
classification and the ground-state correlation simultaneously, in a way that
the essential physical concept obtained in the quasi-particle TD space would
still persist in a certain form. The guiding principle to introduce the quasi-
particle NTD space lies in the fact that, in the NTD method, the quasi-particle
correlations which are asymmetrically attributed to only the excited states in
the TD calculations are symmetrically incorporated in the ground state through
the ground-state correlation. In contrast with the BCS ground state in the
quasi-particle TD space, the ground state in the quasi-particle NTD space is
not with a definite seniority number because of the ground-state correlation.
In spite of such a breaking of the seniority classification, in the quasi-particle
NTD method we can still characterize the excitation modes, i.e., the dressed
7nQP modes by the amount of seniority dv=7 which they transfer to the
correlated ground state.

Our third task is to find a method of transcription of the physical operators
in the quasi-particle TD space into the quasi-particle NTD space. The
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transcription should satisfy some self-consistency conditions within the frame-
work of the (employed) NTD approximation under which the quasi-particle
NTD space has been introduced. Details of the method of transcription is
also discussed in Chap. 2. It is shown that, after the transcription into the
quasi-particle NTD space, the residual interaction which has been omitted
in constructing the dressed QP modes manifests itself as a coupling between
the different excitation modes. In our theory, the dynamical effects are then
obtained by diagonalizing the coupling. The eigenmode creation operator,
which is obtained by diagonalizing the coupling within the quasi-particle
NTD subspace (composed of the dressed 2QP and dressed 4QP states), is
formally of the same form as that of the HRPA, when written explicitly in
terms of the quasi-particle operators. Nevertheless, in our theory, the
difficulties inherent to the HRPA never appear because of our proper choice
of the quasi-particle NTD space. From this point of view, the microscopic
structure of the so-called “‘two-phonon’ states is being investigated by
Iwasaki, Kanesaki, Marumori, Sakata and Takada.ll)

§3. Dressed 3QP mode as a new type of elementary
mode of collective excitation

According to our theory, the simplest of the collective excitation modes
in even-even nuclei is the dressed 2QP mode (with the lowest energy eigenvalue)
as a “bound” state of two quasi-particles, which is nothing but the ‘“phonon”
under the RPA. In the case of odd-mass nuclei, the simplest of the collective
excitation modes is the dressed 3QP mode (with the lowest energy eigenvalue).
Thus, in the same manner as the RPA for even-mass nuclei leads us to the
concept of ‘“‘phonon’ as a boson, the theory may necessarily lead us to the
concept of a new kind of fermion-type collective excitation mode, i.e., #4e
dressed 3QP mode as a “bound’ state of three quasi-particles. So far, the
collective excited states in odd-mass nuclei have conventionally been described
in terms of the quasi-particle-phonon-coupling (QPC) theory of Kisslinger
and Sorensen.!? From this point of view, it is quite interesting to investigate
whether or not this new kind of collective mode systematically exists in many
spherical odd-mass nuclei, playing an important role in their low-lying collec-
tive states.

There was already a positive reason to expect the presence of the new
kind of collective mode. In 1967, Bohr and Mottelson!® emphasized a
signifiecant effect of quasi-particle-phonon coupling, which had been com-
pletely omitted in the conventional QPC theory of Kisslinger and Sorensen.
They have shown the extreme importance of this new effect in terms of the
perturbation theory based on the self-consistent particle-vibration-coupling
approach® (i.e., the ‘“nuclear field theory’’), and have suggested that ‘‘the
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conventional description of collective excited states of almost all spherical
odd-mass nuclei is significantly affected by the inclusion of the effect”. It
has also been demonstrated that the new effect essentially originates from the
Pauli principle between the quasi-particles composing the phonon and the
odd quasi-particle (i.e., the kinematical effect among the three quasi-particles),
and brings about a significant three-quasi-particle correlation. Now, ac-
cording to the nuclear field theory,!4 the strength of the particle-vibration
coupling, £, is obtained by dividing a standard coupling matrix element by the
phonon energy 7Zw. In situations where f&1 (, the weak coupling case),
we can safely treat the coupling by the perturbation theory.l® For f>»1
(, the strong coupling case), the particle produces a static shape deformation, and
the coupled system must be treated by a separation between rotational and
intrinsic degrees of freedom. The nuclear field theory has clarified that, in
contrast with the case of octupole mode where the values of f;—3 are typically
about 0.1 to 0.3, the coupling strength for the quadrupole mode, f;—2, may
become larger than unity. This implies that, for the quadrupole mode, the
new effect bringing about the significant three-quasi-particle correlation should
be taken into account not by the perturbation approximation but by diagona-
lizing the Hamiltonian in a suitable subspace. The dressed 3QP mode just
satisfies this requirement, because it fully takes into account the kinematical
effect among the three quasi-particles within the NTD approximation which
is not the perturbation approximation. From this point of view, our theory
includes the possibility of such an intermediate coupling case where the internal
structure of the phonon itself is affected to form the dressed 3QP mode as a
bound state. (See Fig. 1.)

Along this line of thought, investigations of microscopic structures of
low-lying collective states in spherical odd-mass nuclei have been made.
We have then obtained the conclusion that the appearance of the low-lying
anomalous coupling (AC) states with spin /=j7—1 can be regarded as a typical
phenomena in which the new kind of collective mode (i.e., the dressed 3QP
mode as a ‘“bound” state of three quasi-particles) manifests itself as a relatively
pure eigenmode.18) It has also been shown that the physical condition of the
enhancement of the three-quasi-particle correlation (characterizing this new
collective mode) is not specific to the AC states but more general in odd-mass
nuclei.’® Thus, we have suggested that the new collective mode exists in

dresseﬂ
odd quasi-particle 3QP mode

Fig. 1.
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many spherical odd-mass nuclei and plays an important role in their low-
lying collective states. It seems that recent experiments are revealing the
systematic presence of this new kind of collective mode from among compli-
cated spectra of the low-energy excitations in spherical odd-mass nuclei. The
detailed review of these investigations!®~19) js the main subject in Chaps. 3
and 4 in Part III.

The framework of our theory includes the QPC theory as a special weak
coupling case in which the characteristic three-quasi-particle correlation is
seriously reduced by some physical conditions in shell structure. Therefore,
our theory enables us to investigate the microscopic structure of the breaking
and persistency of the conventional ‘“‘phonon-plus-odd-quasi-particle picture’.
This investigation is the subject of Chap. 5.

The investigations of collective excitations in spherical odd-mass nuclei
in Chaps. 3, 4 and 5 have been made with the use of the pairing-plus-quadru-
pole (P+QQ) force.20) Since we have widely employed the characteristic
properties of the quadrupole force, it is indispensable to examine whether the
conclusions obtained from Chap. 3 to Chap. 5 are specific to the P4+ QQ
force or not. This is the problem which is studied in Chap. 6.

§4. Coupling between pairing mode and dressed nQP mode

According to the method developed in Chap. 1, we can regard the space
of states in terms of quasi-particles as a product space consisting of the
“intrinsic”” and ‘‘collective” spaces. In this representation, the original
quasi-particle interaction is classified into three types: The first represents
an interaction causing mixing among the “intrinsic’’ states, the second among
the ““collective’ states and the last between ‘‘collective’’ and “‘intrinsic’ states.
The first-type interaction in the “intrinsic’’ space can furthermore be divided
into two parts: One of them is the so-called constructive force which is responsi-
ble for constructing the dressed #QP modes, and the other the so-called
interactive force which manifests itself as the coupling among the different
#nQP modes after the transcription into the quasi-particle NTD space. What
we have investigated in Part III as the dynamical effect is nothing but the
effect originating from this interactive force.

The other new type of dynamical effect may arise from a third-type inter-
action which causes the mixing between ‘‘collective’”’ and “intrinsic” states.
Since the ‘“‘collective” space involves all of the quantum fluctuations of the
pairing field, i.e., the excitation modes of /=0-coupled quasi-particle pairs,
the third-type interaction can be expressed as the coupling between the pairing
modes and the dressed QP modes. The formal structure and the physical
implication of the coupling are discussed in Chap. 7, although the detailed
analysis of its effect in comparison with experiment is in the course of investi-
gation as a next subject.
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§1. Introduction

It is well known that the use of the quasi-particle basis in the BCS theory
can be regarded as an attempt to characterize both the ground state and the
excited states in terms of the seniority number »=314v,* in such a way
that the number of quasi-particles #=3,7, is equivalent to the seniority v.
This is one of the most important motives for introducing the quasi-particle
basis.

In this approach, there is however a serious difficulty arising from the
spurious-state problem due to the nucleon-number non-conservation. Owing
to the fact that any quasi-particle basis vectors |¢> are not eigenstates of
the nucleon-number operator J7, the use of the quasi-particle basis inevitably
introduces the spurious states arising from the nucleon-number fluctuations
such as (J1—J1)|¢p, and only the states orthogonal to the spurious states
correspond to those of a physical nucleus.

Thus, in the use of the quasi-particle representation, it is decisive to
develop a method which can uniquely separate the spurious components
from the quasi-particle states |¢», keeping the one-to-one correspondence
between the seniority number v and the quasi-particle number #. This is the
problem which is studied in this chapter. -

*) In this paper we adopt the spherical j-/ coupling shell model. The single-particle states are then
characterized by the set of quantum numbers a= {the charge ¢, #, /, 7/, m}. In association with
the Greek letter a, we use the Roman letter a to denote the same set except the magnetic quantum
number 7. We also use the notation a, which is obtained from a by changing the sign of the
magnetic quantum number. We furthermore use the notation f(&)=(—)/z""af(a) where f(a)
is an arbitrary function of a.
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§2. Preliminaries

It is well known that the quasi-particle can be regarded as substantiation
of the concept of seniority. This is easily seen with the use of the quasi-spin
formalism.?)  Since this formalism plays an important role in our theory,
we start the discussion with its brief recapitulation.

2-1 Quasi-spin space

Let us define the quasi-spin operators of the single-particle orbit a as*
Sum— /% - .
(@)= 5 2ima,ma,(JajaaMay| 00)ch ch,,
S (a)= @72 af 00 2:1
Y=Y o ma,m%(]a]ammmazi NeasCars (2-1)

& 1 .1

So(¢)= 7(Zma€L€a_Qa), -Qa=]a.+ 7 )
where ¢}, and ¢, are the creation and annihilation operators of a nucleon in
the single-particle state a. These operators then satisfy the same commutation
relations as those of the angular-momentum operators:

[S(@), S-(@]=280a), [Su(a), Su(@)]=£Sx(a). (22)

The state vectors are specified by the quantum numbers S(@) and So(a),
which are the eigenvalues of the quasi-spin $(2)2=S(2)S-(2)+ So(2)2—So(a)
and its projection So(@), respectively. They span the quasi-spin subspace of
the orbit a:**)

{15@a), So(@)); S(a), So(@)=—S(a), —S(@)+1, -+, S@}. (2-3)

The physical meaning of the quantum numbers S(z) and So(e) is known
to be related simply to the seniority number and the nucleon number, re-
spectively, through the relations

S(a)=%(9a—uu) and So(a)—-:%(ﬂza—-!)u), 2-4)

where v, and Jlg stand for the seniority number and the nucleon number in
the orbit a, respectively.
With the quasi-spin operators (2-1) we can define irreducible tensor

*) The subscripts 7=1, 2, 3, -+ of a are used when the specification of the single-particle states with
different magnetic quantum numbers in the same orbit is necessary.
*¥) The quasi-spin space for the general many j-shell case is simply expressed as the direct product
composed of the quasi-spin subspace of each orbit. Therefore, for simplicity, we discuss the
case of a single orbit in this section.
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operators in the quasi-spin subspace of the orbit &, as usual, by the commutation
relations

[So(a), Tre(@)]=xTr(a),

5 (2:5)
[S2(2), The(@)]=V(£F k)bt x+1) T, s2a(a),

where Y (a) is the x-component of an irreducible tensor of rank 4, and
the indicies £ and « are analogous to the quantum numbers S(z) and So(2)
for the corresponding wavefunction multiplet. The index « takes on 2441
values from —#£ to 2. The single-particle operators ¢}, and ¢, are then re-
garded as spinors in the quasi-spin subspace:

Tigp(@)=c and . 1/2,—1/2(@) =€, =(— Yo Mac, (2:6)

The irreducible tensors can be obtained from the products of the spinors
by the standard vector-coupling procedures. For example, we have

EI‘1, 1((11(1.2) = £L1c«flz )
1
T1,0(a109)= ﬁ(d’:&' antcally), (2-7a)

gl,——l(alaz) =Cg,Ca,
and

T3/9,3/2(a10905)=cl cl.cl,,

1
g3/2,1/2(a1a20'3) = J? (crlxcttzcia + CLlcdcha + L‘EXCLECL,),

(2-7b)

1
EZ‘3/2,—1/2(“1“'2(7'3) = ‘/j (5215&25&: + 6&162’,,(&3 + C&xcﬁzc:rla)’

8/2,—8/2\%10203 )= C5,6 5,05 -
g, (010008)=¢5,C4,C

Here it should be noted that there is no interference between the coupling
of the quasi-spin and that of the ordinary angular momentum, since Si(a)
and So(¢) commute with the angular-momentum operators /i and Jb.

2-2  Rotation in quasi-spin space?

The quasi-spin operators S1(2) and So(a) are associated with the trans-
formation of state vectors under the rotation of the coordinate system in the
quasi-spin subspace of orbit a. Let us take up a new coordinate system K’
obtained from the original one X (on which the argument has so far been)
by a rotation specified in terms of the Euler angle ws=(fa, ba, ¥a). The
transformed state vectors are then given by
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[S(@), So(@))=R(wa)| S(a), So(a))
=X 54ay(S(@), So(@)' | R(wa)| S(a), So(@) X 15(a), Se(2)),
28

where R(w,) is the unitary rotation operator in the quasi-spin subspace of
orbit a.

R(wq)=exp[— Z.qs.agz(“)] exp[— ieagﬂ(“)] exp[— i‘ﬁa‘gz(“)] )

T @9)
SLD)=S0(@), SeA)= 5 (S+(@)—S5(a)),

and the state vector |--+) designates one in the original system X while |:--)>
denotes a state vector in the new coordinate system X’. It must be remembered
that the quantum numbers S(a) and So(@) in the state |S(a), So(a)) are the
eigenvalues of 8(2)? = R(w,)S(@)2R(w) "W (=8(2)?) and So(a) = R(wg)Sy(2)
R(w,)™1, respectively. Thus the state vectors defined by (2-8) also span the
quasi-spin space:

{15(@), So(@)>; S(@), | So(@ | <S(@)}- (2-10)

The matrix element of R(w,) defines the conventional D-function®) in the
quasi-spin subspace:

Dy suax(wa)=(S(@), So(@)’| R(wq)| S(a), So(a))*

={5(2), $o(@)' | R(wa)| S(@), So(@)>*. (21D
With the relation (2-11), the relation (2-8) becomes
15(), So(@)> = X suay D3ila> soaxwa)| S(@), So(@)). 212)
Since R(w,) is unitary, this can be rewritten as
|S(a), So(@)= X suay D3ldrsoar(@a)| S(@), So(a)"). 213)

By definition, the irreducible tensors in the new coordinate system XK', 7Ty(a),
are related to those in the original system through

Tl @)= R(wa) L @) R(wa) ™t = X 0 D wa) L yo(a),
gkx(“) = EK/-DIICCK/<wa) Tkx’(a)' (2.14')

Now let us take up a new coordinate system K, specified by the Euler
angle wo=(¢,=0, —0,, ¢,=0). According to Eq. (2-14), we have the
quasi-spin spinors 77, (a) in the K, -system

# We use a definition of the D-function which is adopted by Bohr and Mottelson. Therefore the
D-function adopted here is the complex conjugate of that of Rose and differs from that employed
by Edmonds by the factor (—)Se@)-Se@’,
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[ Ty, 15(a) } _ [cos(@a/ 2) —sin(8,/2) ][ T2, 12(0) } @215)
T2, -12() sin(0,/2) cos(0,/2) 1L 179, -172(®) .
With the definition
Ty, 12(@)=al, and Tys9, -19(@)=ayg, (2-16)
Eq. (2:15) can be rewritten as
& =ugct —v4c5, Ba=Ugla—Vgtl,
g =c08(0,/2), v, =sin(8,/2). 2-17)

This is nothing but the Bogoliubov transformation. We can therefore say
that the Bogoliubov transformation merely corresponds to a special rotation
wo of the coordinate system in the quasi-spin space.

In this new coordinate system K, i.e., in the quasi-particle representation,
the quasi-spin operators are given as

S (@)= R(we)S+(@) R(wp)~!

=/ 58 8 e e eses 00Vl
0=/ 88 SmeimeGaaeses 00aes (218)

So(a) = -;— (2 Maa:rzaa "“Qa>-

Since S(a 2= R(w0)S(a)2R(wo)~1=8(a)2, the quasi-spin quantum number S(z)
of the state [S(@), So(a)) in the quasi-particle representation X, has the
same physical meaning as that in the original system:

S@)= % (2 —va). (2:19)

On the other hand, from relation (2-18) the physical meaning of the quantum
number S¢(2) is now related to the number of quasi-particles #, in the orbit
a:

1
So(@)= 5 (ra—£20). (2:20)
Needless to say, the BCS ground state |{¢o) (in the orbit ) is given by
1oy =15(a)=£4/2, So(@)=—S(a)). (2-21)

2-3 Definition of collective and intrinsic states

By the definition of the state | S(a), So(a)= —S(@)) of the orbit 2, we obtain
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S{@)5(a), So(@)=—S(a)>=0, (2-22)

which means that there is no /=0-coupled quasi-particle pair in this state.
In this case, with the aid of Egs. (2:19) and (2:20), the following relation is
obtained:

-%_(na—ga)=—_;—<9a—ua), ie., ng=v,. (2:23)

Thus, for a class of states |¢intry Which consists of the direct product of the
states satisfying Eq. (2-22), we have

S_(@)|dintry =0 (2-24)

for all S_(), so that the following well-known statement is satisfied: The use
of the quasi-particle basis can be regarded as an attempt to characterize both
the ground state and the excited states in terms of the seniority number
v=2],v, in such a way that the number of quasi-particles »=3],7, is equiva-
lent to the seniority v.

The condition (2:24) means that the states |dintrp never contain any
J=0-coupled quasi-particle pair. In this sense, we call |¢try “intrinsic
states’”’. On the other hand, the states characterized by v,=0 and 2,50
include only /=0-coupled quasi-particle pairs and are always orthogonal to
the intrinsic states |¢intry. Hence we call such a class of states “collective
states” |¢eor). Needless to say, all spurious components due to the nucleon-
number non-conservation belong to the “collective states”, and a special one
of “collective” vibrations (under the RPA) with zero energy in this ‘“collective
subspace’ is known as due to the nucleon-number non-conservation.

§3. The Hamiltonian

The Hamiltonian under consideration is that of a spherically symmetric
J-7 coupling shell model with a general two-body interaction which is invariant
under rotation, reflection and time reversal:

H= Za(eu_Aw)CL"a'}' Zaﬁyac(/aﬁyscrlcjécscw (3']->

where ¢, and A, represent the single-particle energy and the chemical potential,
respectively. The matrix elements of the interaction satisfy the relations®)
Cvapvs = _CV,savs = _CVaﬁsv=CVpasv=CVysap
=V, 5 3-2)

# Itis possible to treat all matrix elements of the Hamiltonian as real quantities if the phase convention
is suitably chosen, In this paper we always assume this to be the case,
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After the Bogoliubov transformation (2-17) and with the use of
notations*):3)

4 a=—2 Eyucvccvaﬁ'yi»
.‘“a:: —.4'270% CVa‘Ya‘)’) (3‘3)
")azfa_Aa'_l"m

the Hamiltonian is expressed in terms of the quasi-particle operators as

follows:

H=Uy+Hy+ H,+ Hi, (3-4)
Uy (na 5 1a) 4 — 5 wavada,
Hy=3 [na(t3 — v3)+2u4v,4,]dk 2.,
Hy= B mitave— 5 G — o)A, (@l + aca),

Hit=Hy+ Hy+ Hy,
Hx=3 5 V x(aByd)atahasa,,
Hy=73 8,V (apys) (alafsa*;a% +azasapa,),
Hy=3 8y Vv (aByd) (aﬁa}}a%a., +alasapa,),
where the abbreviations
VaByS)= VP (aByB)+ VP (aBy®)— VP (Bad)
= (gt o+ Va6V V@)Y s+ (UaVstt Vo + vattyV )V a3y

— (wpvattvat vstava)V gsa,

Vi (aBy8)=uaurvva“V s,

Vi (aBy8)=2(ugmyncva—vavsveta)"V apys

have been used.
The parameters #, v and the chemical potentials A are determined as usual

by the set of equations
zuaﬂazAa/Ea; uf—v} ="7a/Em
Ey=vn3 +43, 35)
Np=23,0405= Zaga(l —na/EQ),

where /V, is the neutron (proton) number and the summation a runs over the
neutron (proton) orbits.

*) We assume that, among the single-particle orbits e, &, -:-, a given set of the quantum numbers
{charge ¢, parity and j-value} occurs at once.
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Then Ay takes the form
Hy= Y4 Ezdla, (3-6)

where £, denotes the quasi-particle energy.

The main part of the pairing correlations is taken into account as the
(self-consistent) quasi-particle field. The eigenstates of A are given by those
of the quasi-spin §(2)? and its projection So(z), with additional quantum
numbers. The term At represents the residual interaction among quasi-
particles. The role of residual interaction can be classified into three types:
The first is the role of mixing among the states in the intrinsic subspace
{|éintr)}, the second among the states in the collective subspace; and the
last between collective and intrinsic states. These roles may be expressed
as follows:

H=Hecor+ Hinir+ Heoup1, 37

where Heot, Hintr and Heoupr stand for the collective-, intrinsic-, and coupling-
Hamiltonians, respectively.

We show, in the remaining part of this chapter, that the original Hamil-
tonian (3-4) can be transformed unambiguously into the form (3-7).

§4. Collective variables associated with pairing correlations

4-1 Extension of gquasi-spin space and introduction of collective variables

The procedure of adding pairs of fermion must eventually end if the
number of states available is finite, whereas there is nothing to prevent operating
again and again on a state with a boson creation operator. In order to define
the canonical-conjugate collective variables describing the pairing excitations
in terms of boson operators, it is thus necessary to extend the quasi-spin space
in such a way that the multiplet in the quasi-spin space (2-10) becomes infinite
with allowed values of So(4) going to steps of unity from S(a)+1 to +oo:

115(@), So(@)>; S@), —S(@=Se(@)<+oo}. (4-1)

With the aid of the extended quasi-spin space we introduce boson operators
&% and &,, which satisfy the commutation relations

(84, 6]=84, [8as be]=1[0h, 65]=0 4-2)
and characterize the state vectors in the extended quasi-spin space by
1
| 5(@), So(@)=—S(@)+ Nap>= 7777 (4a)"*1 S(a), So(@)=—S(a),
2!
balS(@), So(@)=—S(2)>=0. (4-3)



Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space 17

Then we have
&4 1S(a), So(a)=—S(@)+ Ny
=VN,+115(a), So(@)=—S(@)+N,+1),
641 S(@), So(@)=—S(a)+ N> (4-4)
=VN,|5(a), So(@)=—S(a)+N,—1).

Explicitly, such an introduction of the boson operators is made in terms of the
Holstein-Primakoff transformation®

Sua)=828(a) — N (@),
$_(a)=V28(a)— N (2)8,, 45)
So(@)=N(2)—$(a),

where the boson number operator AV(a) of the orbit 2 and the operator f(a)
are defined respectively by

N (a)="8},2,, (4-6)

$@){$(a)+1} =8(ap* )
The operators .So'i(a), So‘o(a) and Sa'(a)2 denote the extensions of the quasi-spin
operators Si(2), So(@) and 8(2)? into the extended quasi-spin space: In
a “‘physical subspace’” which coincides with the quasi-spin space, these extend-
ed quasi-spin operators are identical with the original quasi-spin operators.
In a “unphysical subspace” which corresponds to the extended part (in the
extended quasi-spin space), the operators .Sc‘,,(a) = {§+(a)+§_(a)} /2 and
$ (@)= {§+(a)—.§_(a)} /27 become anti-hermitian. We may write the extended
quasi-spin operators as

Si@)=iTya), Sya)=iTy(a), Su@)=Tua),
Ti@)=T o) +iTya) =84 N (a)— 25(0), 48)
T ()=To@)—iTo@)=V V() —28(a) 4,

so that we have

8(a)2 =S ()2 + Sy(@)2+ So(a)?
=To(@)2— T (@) — Ty(a)?. 49

The algebra of 7,(a), 7y(@) and To(a),

[Tx(a), Tv(ﬂ)]= —Z'To(d), [Tz/(‘l), To(ﬂ)]=2'71z(a)’
[70(@), To(@)]=iTa), 410
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characterizes transformation of the noncompact group with allowed values
of So(a) from {S(a)+1} to +oo: By definitions (4-8) and (4-5) we obtain
in the unphysical subspace
T(a)1S(@), So(@)>=VSo(@){Se(a)£1} — S(2){S(@)+1}5(a), Se(a)£1),
(4-11)
which is consistent with the property So(2)2=S(2){S(e)+1} derived from
Eq. (4-9). Then the condition

T(a)5(@), So(@min>=0 (4-12)

leads to the relation
So@min{So@min—1} =S@){S(@+1}, (4-13)

which means So(@)min=S5(2)+1.
The last relation in Eq. (4+5) in the physical space is written as

N(@)=846,=S5)+S), (4-14)

which has the eigenvalues
Ny=S(@)+So(@)= 5 (ra—va). (#15)

This means that the boson number &V, of the orbit @ is merely the number of
‘=0’ coupled quasi-particle pairs in the orbit @. Therefore, the intrinsic
states |@intr), which consist of |S(z), So(@)=—S(a)) and are defined by
Eq. (2-24) always satisfy

N (@)l $intr>=0, (4-16)

which is consistent with Eq. (4-3). We may thus say that the intrinsic states
are not affected at all by the extension of the quasi-spin space and always
belong to the physical subspace. This is in marked contrast with the collective
states |deory in which the boson operators play an essential role.

4-2 Canonical coordinates and canonical conjugate momenta

With the aid of the boson operators 4} and &,, we can define collective
coordinates §, and their canonical conjugate momenta p, describing the
pairing excitations by

o i [
Ja= T3 Cu—8), D=y Gt dl). @17
Of course, these operators satisfy the canonical commutation relations

[gom Pob] = Z.Sa,b’ [qom qob] = [ﬁa» }gb] =0. (4"18)
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§5. Canonical transformation into collective representation

5-1 Introduction of auxiliary variables and supplementary condition

We now apply the canonical transformation method with auxiliary
variables%):6) to the system under consideration.

First, we introduce redundant canonical variables (i.e., auxiliary variables)
q, and p,, which satisfy the canonical commutation relations

(94, P5] =184p [9a; @o]=[Pa, P5]=0, (5']-)

and are independent of the quasi-particle operators (a4, @,) and the boson
operators (6%, 6,):

(94 al] =[q4 2.]=qa; ét,] =[qq, 6,]=0,

(2
[Pw a:r:] = [Pm aa.] = [Pas bL] = [Pa’ 5a] =0.
With the redundant variables we may define redundant bosons as
1 . 1 .
bl,= ﬁ“(?a’l‘ q,), b,= ﬁ(Pa—zqa)' (-3)

In order to compensate for the over-completeness in the degrees of freedom
due to the introduction of the auxiliary variables, we impose on the state vectors
a supplementary condition

N(a)| ¥>=0, (5+4)
N(a)=b},b,, (5:5)

which physically implies that we are only considering the subspace with no
auxiliary bosons. Since the original Hamiltonian /A is independent of the
auxiliary variables introduced, i.e.,

the Schroédinger equation

with the supplementary condition (5-4) is exactly equivalent to the starting
Schrodinger equation without the auxiliary variables.

5-2  Canonical transformation

Now, let us define the following canonical transformation:
Uea= Uy Uy Uy,

0 5:8)
Uy=exp[iZ 42490l Up=exp[—iZafaPals
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where the collective variables §, and p, are given by Eq. (4-17). The
following relations are then easily derived:

UcadaUcdi =40, Ucal ﬁa Ui =DPas

(59
Ucarq, Uc_o11= —Ga Uco1 Pq Uc_oll = —;ﬁa
and thus we have
UeaN (@) Usdh =bhta. (5-10)

This implies that, in the representation after the canonical transformation
which we call “collective representation”, the collective variables §, and
pa are completely replaced by the redundant variables g, and p,, re-
spectively.

The Schrédinger equation in the collective representation is obtained
from Eq. (5-7) with the condition (5-4), by regarding both the Hamiltonian
H and the state vectors |¥') (defined on the physical subspace) as their ex-
tensions /A and I‘Io’> into the extended quasi-spin space:¥) It becomes

H¥)=E|¥) (5:11)
with the supplementary condition
N@|P)=0, N(@)=684bs=S5(@)+So(a), (512)
where
H=UBUsd, |¥Y=Ucal ¥>. (5-13)

5-3 Collective representation

Since the original Hamiltonian # is independent of the auxiliary variables,
we have

[#, 4a)=[H, Ps]=0, (5-14)
which is transformed into the collective representation as
[H, ,]=[H, ﬁa]zo- (6:15)

This implies that, in the collective representation, the collective variables
(das Pa) involved implicitly in the original Hamiltonian A are completely
replaced by the auxiliary variables (q,, Ps), and the collective modes of the
system are visualized by the explicit appearance of the auxiliary variables in
the Hamiltonian H. By comparing the supplementary condition (5-12) with

*) Knowledge of the explicit properties of A in the unphysical subspace is actually not necessary
at all in our discussions, provided that the commutation properties of H with the collective variables
42 and 7, in the unphysical subspace are the same as those in the physical space.
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Eq. (4-16), we can furthermore see that in this representation, the degrees of
freedom associated with the quasi-particle operators merely describe the
intrinsic motion of the system. Thus, the Hilbert space in this representation
may be characterized as the direct product of a boson space (which is associated
with the auxiliary bosons b}, and b,) and the intrinsic space composed of
the intrinsic states |ty (Which are defined by Eq. (2-24) and always belong
to the physical subspace): The basis vectors (of the orbit &) can be represented
as

15(2), Nah=|Na)cor|S(a), So(a)=—S(a), (5:16)

where | NV >co1 denotes the collective state vector associated with the boson
operators bl, and b,:

1
| Vadeor= 5= (G103, 517

where |0} 5 is the vacuum of the boson, i.e., b;|0>5=0, and the states |.S(«),
So(@)=—S(a)> compose the intrinsic states |@intry. It should be noted that,
in the collective representation, all unphysical effects as a result of the extension
of the quasi-spin space arise only in the collective boson space (associated with
b, and b,) and the intrinsic states remain unchanged in the physical subspace.

§6. Collective representation of the Hamiltonian

6-1 Perturbative expansion of the Hamiltonian in terms of collective variables

The collective representation of the Hamiltonian cannot be expected to
take a simple and compact form. We here adopt a perturbative expansion
in terms of the collective variables. In this expansion, we choose the col-
lective variables X! and X, as the basis of the expansion, which are the
eigenmode creation and annihilation operators of the pairing vibration under

the RPA:
XFI =34 {‘/‘u(“) bIl + ¢p(a) ba} ’
Xu =2l {‘pu(a)ba + ¢u(a)b3} .

It is well known that such pairing vibrations include a special zero-energy
solution, which implies that the RPA includes enough of the residual (pairing)
interaction to restore the breaking of the nucleon-number conservation by
the BCS approximation. Their definitions and the details of the zero-energy
solution are given in Appendix 1B.

Thus the auxiliary variables g, and p, in the canonical transformation
(58) are regarded as the functions of these basis operators X} and X,:

CRY)
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Qo= 7 (ba—B) =5 T (@) + (@)} (X— XD,
©2)

1 1
Da= Ja (by+bh)= Jo Zu{pu(@) — du(@)} (X + X,).
By the use of the orthonormality relation

Zalth(@)— 4.2} {Yu(@)+ bu(@)} =8, (6-3)

the canonical transformation (5-8) is rewritten as

U,=exp[i Eaﬁaqa] =exp[i X, ﬁnou]’

(6-4)
Up=exp[—i TodaPal =exp[—i £, 0. P,
where
:l__ — Xt 2 =L_
éu J 2 (Xu XIL)’ Pu J 2 (X#+XII); (65)

XiI=Za @b+ du(@)ba},  X=To{pu(@)ls+du(a)0s}.

Then, with the aid of the well-known formula
exp(t7T) O-exp(—iT)=T+14[7, 0]—%[7‘, [7, O]+ -+, (6°6)

we obtain a perturbative expansion of the Hamiltonian in the collective re-
presentation in terms of the pairing-vibration modes (X}, X,):
H = UcolHor Ué_oll
= oo+ Zu{XAIZIO(IJ’)_l_ Xuilm(."')}
5 DA XL X o) + X, Xoa) + 2 XA X o ()} + -+, (6T)

which is written in a form of the normal ordered product with respect to the
creation and annihilation operators (XJ, X,). The operators %; in Eq.
(6:7) are given explicitly as

hoo=H— LW {X[X,, H|+[H, X[ X,}

+ s XXX, (X, AN+I4, X1, XXX,

2
+2X [ X, BT, XX} A+,
Feyo() =101 ()"
=X, H—DAXIX,, [X,, H+[[X,, H], XX} +-, (68)
};20(.”'”) = }202(‘“_;)1’
=[X,, [X.,, H]]+ -,
Sy () =[[ X, B, X+
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Here we write down explicitly only the terms in 4, which include single and
double commutators of 4.

Since [H, 6%]=[H, 4,]=0 (from Eq. (5-15)), we obtain
[his, 85]=[Aaz, 8a] =0, (6:9)

which means that the operators %; only involve the intrinsic degrees of
freedom represented in terms of the quasi-particle basis. Thus, %go may be
regarded as the intrinsic Hamiltonian, and its eigenstates are always made
to satisfy the supplementary condition:

bo|pintey =0, i.e., S_(2)|bmiry=0. (6-10)

6-2 Effective Hamiltonian

Now, let us recall the well-known relation for the pairing-vibration
modes:

[, X{|=w,X}+Z,, (6:11)

where Z means ‘“‘interaction’’ which is neglected under the RPA. With the
aid of Eq. (6:11), %;; in Eq. (6:8) may be rewritten as

ZB%’EL S AXIXIX,, ZN+[Z. XX, X, A2X1 20 XX+,

A5 (w=2},
ERw=—D XX, ZL]+[2Z], XX} 4+,
Foyy () = AR (o) + 23 (o),

EQ(p)y=wd,, AR@w)=[Z}, X+
i‘zo(}w) (2)(#”) [X, n]+"'

At this stage, we recall that the space in which all the intrinsic operators
/4 act must be the intrinsic space, which obeys the supplementary condition
(6-10) and consists of the state vectors |S(a), So(@¢)=—S(a)). Therefore,
provided that the supplementary condition (6-10) is always kept to be satisfied
properly, we may drop all terms in /;; which explicitly have either the operator
&' on the leftmost side or the operator 4 on the rightmost side. For instance,
we may make such reductions of 4§ and 4§y, respectively, as
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A —> H+ const,
const=—<¢po| L, XX, )= — T opu(a)’w,, (6-12)
e = — L u[ Do {hu(@)bh + $u(@)ba} ZA Z, 0 {th(@)Ba+ $u(@)Bl} ]
= — Zu{Z a4 @bhZl+ Z o bu(@ba, ZL)+ L adu(@)ZLbs} +h.c.]
= - Zu{Zabu @ @[ X,, ZL]— Zadu(@)d (@) X}, ZL]} +h.c]. (6:13)

Thus, the Hamiltonian (6:7) may be effectively written as
H=const + Heal + Hintr+ H. coupl, (614&)

const=— 3, $u(@)?w,,

Hep=%,0,X!X,,
Hie=H = S $ (@) [ X,y 2= 5 Syl WX Z+ (20 X1,

Hcoup1= Z#(X[IZL+ Xy.Zp.)+ —;‘ Zuv {2XIIXv[Xm Zv]
+ X XI[X,, ZI|+ X, X,[Z,, X]]}, (614b)

where the terms involving commutators higher than double are neglected.
The constant term represents the energy of ground-state correlation due to the
collective pairing vibration; the terms Hintr and Heq are the intrinsic- and
collective-Hamiltonians, respectively, and Heoupt represents the coupling
between the collective and intrinsic degrees of freedom.

Now it is clear that we have achieved the aim of unambiguously writing
the Hamiltonian in the form (3-7) where the roles of residual interaction
are explicitly expressed.

§7. Concluding remarks

With the explicit use of the quasi-spin formalism, we have defined the
collective subspace {|deoy}, which is associated with the pairing correlations
and includes all the spurious components due to the nucleon-number non-
conservation in the quasi-particle representation, and the intrinsic subspace
{l$intry} which does not include any spurious components. The intrinsic
states are characterized by the one-to-one correspondence between the seniority
number v, and the quasi-particle number 7,. Furthermore, we have shown
that, by an introduction of canonical transformation with auxiliary variables,
the collective and intrinsic degrees of freedom are represented with the auxiliary
bosons and the quasi-particle operators, respectively. It has been shown
that the original Hamiltonian A can be transformed into the effective
Hamiltonian which is described in terms of both (collective) boson and fermion
degrees of freedom,
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In the next chapter we investigate the intrinsic excitation modes in
further detail. In Chap. 7 we show that the coupling Hamiltonian Hcoupt
can be uniquely rewritten in terms of the collective modes of pairing vibration
and the elementary modes of intrinsic excitation, within the NTD approxi-
mation.

Appendix 1A. Matrix elements of two-body interaction

According to Eq. (3-1), the general effective two-body interaction which
is invariant under rotation, reflection and time reversal is given by

Hint=12 s CVaﬂva"'LfEca"v (A1)

with Eq. (3-2). The invariance properties of Hint under rotations and
reflections are explicitly shown when it is rewritten in an invariant tensor
product form with respect to the nucleon-pair operators coupled to angular
momentum /M. Thus, according to Baranger’s notations,® we are led to
write the matrix elements CU/ g, in the form

Vepro=— 5 Z 124 Glabed; ]) Gaimama JH) Gejamms TM)

T % Z st (acdb; J) (=Y Jajemany| J M)
X (=Y "8(jajyms<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>