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Abstract

With the use of the symmetry-unrestricted cranked Skyrme–Hartree–Fock method in the three-
dimensional coordinate-mesh representation, we have carried out a systematic theoretical search for
the superdeformed and hyperdeformed rotational bands in the massA = 30–50 region. Along the
N = Z line, we have found superdeformed solutions in32S, 36Ar, 40Ca,44Ti, and hyperdeformed
solutions in36Ar, 40Ca,44Ti, 48Cr. The superdeformed band in40Ca is found to be extremely soft
against both the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. An interesting
role of symmetry breaking in the mean field is pointed out.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nowadays, about two hundreds superdeformed (SD) rotational bands are identified in
various mass (A = 60, 80, 130, 150, 190) regions [1–6]. Every regions of superdeforma-
tion have their own characteristics so that we can significantly enlarge and deepen our un-
derstanding of nuclear structure by systematically investigating similarities and differences
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among the SD bands in different mass region. For the massA = 30–50 region, although the
doubly magic SD band in32S, which has been expected quite a long time [7–15], has not
yet been observed and remains as a great challenge [6], quite recently, beautiful rotational
spectra associated with the SD bands have been observed up to high spin in neighboring
N = Z nuclei;36Ar, 40Ca, and44Ti. In 36Ar the SD band has been identified up to its ter-
mination atIπ = 16+ [16–18]. The SD band in the spherical magic nucleus40Ca is built
on the well-known 8p–8h excited 0+ states at 5.213 MeV and the rotational spectra have
been observed up toIπ = 16+ [19]. In 44Ti a rotational spectrum associated with the ex-
cited 0+ state at 1.905 MeV has been observed up toIπ = 12+ [20]. This rotational band
may also be regarded as belonging to a family of the SD band configurations. The fact that
rotational bands built on excited 0+ states are systematically observed is a quite important,
unique feature of the SD bands in the40Ca region, as the low angular momentum portions
of the SD bands in heavier mass regions are unknown in almost all cases.

In nuclei along theN = Z line, effects of deformed shell structures of protons and
neutrons act coherently and rich possibilities arise for coexistence and competition of
different shapes. Thus, we shall be able to learn details of deformed shell structure and
microscopic mechanism of shape coexistence by a systematic study of high-spin yrast
structure in the sequence ofN = Z nuclei. Especially, yrast spectroscopy of nuclei in
theA = 30–50 region, being relatively light compared to other regions of SD nuclei, is
expected to provide detailed information about the roles of individual deformed single-
particle orbits responsible for the emergence of the SD bands.

In this paper, as a continuation of the previous work on32S [21], we carry out a
systematic theoretical search for SD and more elongated hyperdeformed (HD) rotational
bands inN = Z nuclei from32S to48Cr by means of the symmetry-unrestricted, cranked
Skyrme–Hartree–Fock (SHF) method. In Ref. [21], a new computer code was constructed
for the cranked SHF calculation based on the three-dimensional (3D) Cartesian-mesh
representation, which provides a powerful tool for exploring exotic shapes (breaking both
axial and reflection symmetries in the intrinsic states) at high spin. The algorithm of
this code for numerical calculation is basically the same as in Refs. [22–31], except that
various restrictions on spatial symmetries are completely removed. Namely, we do not
impose parity and signature symmetries on intrinsic wave functions. Hence we call this
version of the cranked SHF method “symmetry-unrestricted” one. For the development of
selfconsistent mean-field models for nuclear structure, we quote Refs. [2,32,33], in which
various kinds of mean-field theory, including Hartree–Fock (HF) calculations with finite-
range Gogny interactions [34] and relativistic mean-field approaches [35], are thoroughly
reviewed. We also mention that spontaneous symmetry breaking in rotating nuclei is
reviewed in [36].

In fact, SD and HD solutions of the SHF equations we report in this paper preserve
the reflection symmetries with respect to the(x, y), (y, z) and (z, x) planes, so that the
symmetry-unrestricted calculation gives identical results with those evaluated by imposing
such symmetries. The symmetry-unrestricted calculation, however, enables us to examine
stabilities of the SD and HD states against such reflection-symmetry breaking degrees of
freedom like octupole deformations. In addition, we shall show that the symmetry breaking
play a quite interesting role in the crossing region between different configurations away
from the local minima in the deformation parameter space.
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This paper is arranged as follows: in Section 2, a brief account of the cranked SHF
method is given. In Section 3, results of calculation for deformation energy curves and the
SD and HD rotational bands in nuclei from32S to48Cr are systematically presented. Here,
special attention will be paid to the properties of the SD bands at their high spin limits
and the crossover to the HD bands with increasing angular momentum. In Section 4, an
interesting role of symmetry breaking in the mean field will be pointed out in connection
with configuration rearrangement mechanism. We shall further make a detailed analysis
of the SD band of40Ca and show that it is extremely soft against both the axially
symmetric (Y30) and asymmetric (Y31) octupole deformations. Main results of this paper
are summarized in Section 5.

A preliminary version of this work was reported in [37,38].

2. Cranked SHF calculation

The cranked HF equation for a system uniformly rotating about thex-axis is given by

δ〈H −ωrotJx〉 = 0, (1)

where ωrot and Jx mean the rotational frequency and thex-component of angular
momentum, and the bracket denotes the expectation value with respect to a Slater
determinantal state. We solve the cranked HF equation for a Hamiltonian of the Skyrme
type by means of the imaginary-time evolution technique [22] in the 3D Cartesian-mesh
representation. We adopt the standard algorithm [22,25–27] in the numerical calculation,
but completely remove various restrictions on spatial symmetries.

When we allow for the simultaneous breaking of both reflection and axial symmetries,
it is crucial to accurately fulfill the center-of-mass condition〈
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For this purpose we use the constrained HF procedure with quadratic constraints [39].
Thus, we replace the “Routhian”R =H −ωrotJx in Eq. (1) with

R′ =R −
3∑
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µk

〈
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〉2

−
3∑

k<k′
µk,k′

〈
A∑
i=1
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〉2

. (4)

In numerical calculations, we confirmed that the constraints (2) and (3) are fulfilled to
the orderO(10−15) with values of the parametersµk ∼ O(102) andµk,k′ ∼ O(1). We
solved these equations inside the sphere with radiusR = 10 fm and mesh sizeh = 1 fm,
starting with various initial configurations. We note that the accuracy for evaluating
deformation energies with this mesh size was carefully checked by Tajima et al. [27,28]
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(see also Ref. [40]) and was found to be quite satisfactory. The 9-point formula was used
as the difference formula for the Laplacian operator. As usual, the angular momentum
is evaluated asI h̄ = 〈Jx〉. For the Skyrme interaction, we adopt the widely used three
versions; SIII [41], SkM∗ [42] and SLy4 [43].

In addition to the symmetry-unrestricted cranked SHF calculation explained above, we
also carry out, for comparison sake, symmetry-restricted calculations imposing reflection
symmetries about the(x, y)-, (y, z)- and (z, x)-planes. The computational algorithm
for this restricted version of the cranked SHF calculation is basically the same as in
[26], but we have constructed a new computer code for this purpose. Below we call
these symmetry-unrestricted and -restricted cranked SHF versions “unrestricted” and
“restricted” ones, respectively. Comparison between results obtained by unrestricted and
restricted calculations carried out independently serves as a check of numerical results to
be presented below. Physical significance of this comparison is, however, that we can, in
this way, clearly identify effects of symmetry-breaking in the mean field. We shall indeed
find an interesting symmetry breaking effect in the next section.

Solutions of the cranked SHF equation give minima in the deformation energy surface.
In order to explore the deformation energy surface around these minima and draw
deformation energy curves as functions of deformation parameters, we carry out the
constrained HF procedure with quadratic constraints [39]. Namely, in addition to the
constraints to fulfill the center-of-mass and principal-axis conditions mentioned above, we
also introduce constraints involving relevant mass-multipole moment operators and solve
resulting constrained HF equations.

As measures of the deformation, we calculate the mass-multipole moments

αlm = 4π

3ARl

∫
rlXlm(Ω)ρ(r) dr (m= −l, . . . , l) (5)

whereρ(r) is the density,R =
√

5〈∑A
i=1 r2

i 〉/3A, andXlm are real bases of the spherical
harmonics

Xl0 = Yl0, (6)

Xl|m| = 1√
2

(
Yl−|m| + Y ∗

l−|m|
)
, (7)

Xl−|m| = −i√
2

(
Yl|m| − Y ∗

l|m|
)
. (8)

Here the quantization axis is chosen as the largest (smallest) principal axis for prolate
(oblate) solutions. We then define the quadrupole deformation parameterβ2, the triaxial
deformation parameterγ , and the octupole deformation parametersβ3 andβ3m by

α20 = β2 cosγ, α22 = β2 sinγ, (9)

β3 =
(

3∑
m=−3

α2
3m

)1/2

, β3m = (
α2

3m + α2
3−m

)1/2
(m= 0,1,2,3). (10)

For convenience, we also use the familiar notation−β2 for oblate shapes with
(β2, γ = 60◦).
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3. Results of calculation

3.1. Deformation energy curves

Figs. 1–3 show deformation energy curves evaluated atI = 0 by means of the
constrained HF procedure with the quadratic constraint on the mass-quadrupole moment.
The SIII, SkM∗, and SLy4 versions of the Skyrme interaction are used in Figs. 1, 2, and 3,
respectively. Solid lines with and without filled circles in these figures represent results of
unrestricted and restricted calculations, respectively. Let us focus our attention to the region
of large quadrupole deformationβ2. In both cases, we obtain local minima corresponding
to the SD states for32S, 36Ar, 40Ca and44Ti in the region 0.4 � β2 � 0.8. (The local
minimum in 44Ti is triaxial, as shown in Fig. 7 below, i.e., it is situated away from the
γ = 0 section of the deformation energy surface, so that it is not clearly seen in Figs. 1–3.)
The local minima in32S and36Ar involve four particles (two protons and two neutrons)
in thefp shell, while those in40Ca and44Ti involve eight particles (four protons and four
neutrons). These local minima respectively correspond to the 4p–12h, 4p–8h, 8p–8h and
8p–4h configurations with respect to the doubly closed shell of40Ca, and their properties
have been discussed from various point of view; see Refs. [7–15] for32S, Refs. [16–18,44]

Fig. 1. Deformation energy curves as functions of the quadrupole deformationβ2 calculated atI = 0 by means of
the constrained SHF procedure with the SIII interaction. The axial-asymmetry parameterγ is constrained to be
zero. The curves for different nuclei are shifted by 20 MeV to accommodate them in a single plot. Solid lines with
and without filled circles represent the results obtained by the unrestricted and restricted versions, respectively
(see the text). The notationsf ngm and(fp)ngm indicate the configurations in which thef7/2 shell (fp shell)
and theg9/2 shell are respectively occupied byn andm nucleons.
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Fig. 2. The same as Fig. 1 but for the SkM∗ interaction.

Fig. 3. The same as Fig. 1 but for the SLy4 interaction.
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for 36Ar, Refs. [19,45–51] for40Ca, and Refs. [20,52,53] for44Ti. These core-excited states
have been reviewed in Ref. [54] as typical examples of shape coexistence phenomena.

In addition to these SD minima, we also obtain local minima in the regionβ2 � 0.8
for 40Ca,44Ti and48Cr. These minima involve additional four particles (two protons and
two neutrons) in the single-particle levels that reduces to theg9/2 levels in the spherical
limit. Somewhat loosely we call these local minima “hyperdeformed.” The HD solution
in 40Ca corresponds to the 12p–12h configuration. For44Ti, we obtain two HD solutions
which correspond to the 12p–8h and 16p–12h configurations. The HD solution in48Cr
corresponds to the 16p–8h configuration. These HD solutions well agree with those
previously obtained in the SHF calculation by Zheng, Zamick and Berdichevsky [49]. We
also mention that the 12p–12h configuration in40Ca and the 16p–12h configuration in44Ti
agree with those obtained by the macroscopic–microscopic model calculation by Leander
and Larsson [8].

In Figs. 1–3 and in the following, the above SD and HD configurations are denoted by
f ngm (or (fp)ngm), wheren andm indicate the numbers of nucleons occupying thef7/2
shell (or thefp shell) and theg9/2 shell, respectively.

As seen in Figs. 1–3, these SD and HD minima are obtained for all calculations with the
use of the SIII, SkM∗, and SLy4 interactions. These local minima preserve the reflection
symmetries so that the results of restricted and unrestricted calculations are the same. On
the other hand, we also find a case where the two calculations give different results: we
obtain a HD minimum withβ2  0.8 for 36Ar in the restricted calculations. This minimum
involves eight particles (four protons and four neutrons) in thefp shell and correspond to
the 8p–12h configuration, but it disappears in the unrestricted calculations and its remnant
remains as a shoulder of the deformation energy curve.

Although the restricted and unrestricted calculations give identical results for the SD
and HD local minima except for the HD solution for36Ar, they show different behaviors
in regions away from the local minima: in Figs. 1–3, we see that the deformation
energy curves obtained by the unrestricted calculations always join different local minima
smoothly. On the other hand, in the restricted calculations, segments of the deformation
energy curves associated with different local minima sharply cross each other in some
situations, while they are smoothly joined in other situations. Closely examining the
configurations involved, we notice that the sharp crossings occur between configurations
having different numbers of particles excited into thefp shell. This point will be further
elaborated in the subsequent section.

In Figs. 1–3 there are a number of local minima in the region of smaller values ofβ2.
We shall not discuss on these local minima in this paper, since the pairing correlations not
taken into account here are expected to be important for these.

3.2. SD and HD rotational bands

Let us focus our attention to the SD and HD local minima shown in Figs. 1–3, and
investigate properties of the rotational bands built on them. Figs. 4–6 show excitation
energies, as functions of angular momentum, of the SD and HD rotational bands calculated
with the use of the SIII, SkM∗, and SLy4 interactions, respectively. These rotational bands
are obtained by cranking each SHF solution (the SD and HD local minima in Figs. 1–3)
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Fig. 4. Excitation energy vs. angular-momentum plot for the SD and HD rotational bands obtained by the cranked
SHF calculations with the use of the SIII interaction. Their configurations are indicated by the same notations as
in Fig. 1.

Fig. 5. The same as Fig. 4 but for the SkM∗ interaction.

and following the same configuration with increasing value ofωrot until the point where
we cannot clearly identify the continuation of the same configuration any more. We note
that, in44Ti, two HD bands associated with thef 8g4 and(fp)12g4 configurations cross at
I = 30–34, and the latter becomes the yrast for higher spin. (This band continues beyond
I = 40 where the figure is cut.) In addition to the SD and HD bands built on theIπ = 0+
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Fig. 6. The same as Fig. 4 but for the SLy4 interaction.

band-head states, we have found a HD band in36Ar, which does not exist atI = 0 and
emerges atI  16 due to the rotation alignment of theg9/2 orbit. This HD band is denoted
by f 6g2 and is included in Figs. 4–6. A similar configuration,f 4g2, was found for32S in
our previous calculation [21] and called “HD-like.” This and analogous configurations in
nuclei other than36Ar are not illustrated in Figs. 4–6 in order not to make the figure too
complicated (drawing complete yrast spectra of individual nuclei is not the major purpose
of these figures).

As is well known, according to the deformed harmonic-oscillator potential model,N =
Z = 18 and 24 are magic numbers associated with the HD shell structure with axis ratio
3 : 1. These HD states respectively correspond to thef 4g4 andf 12g4h4 configurations
in our notation, whereh denotes the level associated with theh11/2 shell. Microscopic
structures of the HD solutions under discussion are apparently different from these,
however. We also mention that the possible existence of HD rotational bands at high spin
in 36Ar and48Cr have been discussed in Refs. [55,56] from the viewpoint of the cranked
cluster model. The relationship between our solutions and their solutions associated with
cluster structure is not clear. Molecule-like cluster structures in highly excited states of
nuclei in the40Ca region have been widely discussed both experimentally and theoretically.
These works are thoroughly reviewed in Ref. [57] (see, especially, Section VIII of it),
putting special emphasis on reflection-symmetry breaking. The relationship between such
cluster structures and the super- and hyper-deformations in the mean fields largely remains
as a challenging subject in nuclear structure physics.

Calculated quadrupole deformation parameters(β2, γ ) of all bands mentioned above
and their variations are displayed in Fig. 7. The rotational frequency dependence of the
single-particle energy levels (Routhian) is illustrated in Fig. 8, taking the SD band in40Ca
as a representative case. The excitation energies of the SD and HD bands obtained by using
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Fig. 7. Quadrupole deformation parameters(β2, γ ) and their variations for the SD and HD rotational bands in
32S, 36Ar, 40Ca, 44Ti and 48Cr. The top, middle and bottom panels show the shape evolution in the(β2, γ )

plane, evaluated with the use of the SIII, SkM∗ , and SLy4 interactions, respectively. Notations and ranges ofI

for individual bands are the same as those shown in Figs. 4–6. Values ofβ2 decrease with increasingI , except
for the(fp)12g4 configuration in44Ti (whereβ2 increases with increasingI ).

Fig. 8. Neutron single-particle energy diagram (Routhian) for the SD band in40Ca, calculated with the use of
the SIII interaction and plotted as functions of rotational frequencyωrot. The levels associated with thef7/2 and
g9/2 shells are drawn by thick-broken and long-dashed lines, respectively.

different versions (SIII, SkM∗, SLy4) of the Skyrme interaction are compared in Fig. 9 with
the experimental data [16,19,20].

Examining these figures, we see that, aside from quantitative details and some subtle
points to be discussed below, the results obtained by using different versions of the Skyrme
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Fig. 9. Comparison between the excitation energies of the SD and HD bands in36Ar, 40Ca, 44Ti and 48Cr,
calculated by using different versions of the Skyrme interaction and the experimental data ([16] for36Ar, [19]
for 40Ca, and [20] for44Ti). The data are shown by filled circles and the results with the SIII, SkM∗ and SLy4
interactions are drawn by solid, dashed and dashed-dotted lines, respectively.

interaction are similar. This implies that the basic properties of the SD and HD bands under
discussion are not sensitive to the details of the effective interaction.

As mentioned in the introduction, one of the unique features of the SD bands in the
40Ca region is the possibility to observe the SD rotational level structure from theIπ = 0+
band heads up to the maximum angular momenta allowed for the many-particle–many-
hole configurations characterizing the internal structures of these bands. In fact, such a “SD
band termination” has been observed atI = 16 in 36Ar and well described by calculations
in terms of thej–j coupling shell model, the cranked Nilsson–Strutinsky model [16–
18], and the projected shell model [44]. On the other hand, for40Ca and44Ti, it is not
clear whether or not the SD band continues beyond the highest spin states observed up
to now (the 16+ state in40Ca [19] and the 12+ state in44Ti [20]) and, quite recently,
their properties, from the 0+ band-heads to such high-spin regions, have been discussed
in terms of the spherical shell model in Ref. [51] for40Ca and in Ref. [20] for44Ti. In
our calculation, except for the case of using the SLy4 interaction, the band termination
phenomenon in36Ar is reproduced; the shape becomes triaxial and evolves toward the
oblate shape, although the oblate limit is not reached. In the cases of40Ca, the shape is
slightly triaxial with γ = 6◦–9◦ (8◦–9◦) and the SD band terminates atI  24 in the
calculation with the use of the SIII (SkM∗) interaction. In the case of44Ti, the shape is
more triaxial withγ = 18◦–25◦ and 13◦–19◦, and the SD bands terminates atI  12 and
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16 for the SIII and SkM∗ interactions, respectively. Thus, the band termination properties
appear quite sensitive to the details of the effective interaction. Concerning the SD band
termination in40Ca and44Ti, the results obtained with the use of the SIII and SkM∗
interactions would be more reliable than that with SLy4, in view of the above discussion
for 36Ar. In any case, it would be very interesting to explore higher spin members of the
SD rotational bands in40Ca and44Ti in order to understand the terminating properties of
the SD bands at high spin limits.

As is clear from the comparison with experimental data in Fig. 9, the moments of inertia
for the SD band are somewhat overestimated in the present calculation. To investigate a
possible cause of this, we plan to take into account the pairing correlations by means of
the cranked Skyrme–Hartree–Fock–Bogoliubov code constructed in Ref. [58]. One also
notice that the excitation energy of the SD band-head state in40Ca is overestimated. It will
decrease if the zero-point rotational energy correction,− 1

2J 〈J 2
x 〉, is taken into account

(see Ref. [49] for numerical examples). Although the calculation of this correction is
rather easy, we need to evaluate, for consistency, also the zero-point vibrational energy
corrections [32], and this is not an easy task. We therefore defer this task for a future
publication. Inclusion of these correlations is expected to improve agreement with the
experimental data.

4. Discussions

4.1. A role of symmetry breaking

Let us now discuss on the significance of the reflection symmetry breaking in the mean
field. As noticed in Figs. 1–3, the crossings between configurations involving different
numbers of particles in thefp shell are sharp in the restricted calculation, while we
always obtain smooth configuration rearrangements in the unrestricted calculations. The
reason for this different behavior between the unrestricted and restricted calculations is
rather easy to understand: when the parity symmetry is imposed, there is no way, within
the mean-field approximation, to mix configurations having different number of particles
in the fp shell. In contrast, smooth crossover between these different configurations is
possible via mixing between positive- and negative-parity single-particle levels, when such
a symmetry restriction is removed. Let us examine this idea in more detail. In Figs. 10–12
octupole deformation parametersβ3 of the lowest energy states for given values ofβ2 are
shown. They are obtained by the unrestricted SHF calculations and plotted as functions
of β2 in the lower portion of each panel. We see thatβ3 are zero near the local minima
in the deformation energy surface, but rise in the crossing region between configurations
involving different number of particles in thefp shell. This means that the configuration
rearrangements in fact take place through paths in the deformation space that break the
reflection symmetry. The importance of allowing the mean field for breaking symmetries in
the process of configuration rearrangements was previously emphasized by Negele [59] in
their calculations for spontaneous fission of32S by means of the imaginary time tunneling
method.
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Fig. 10. Octupole deformation parametersβ3 of the lowest energy states for given values ofβ2, obtained
by the unrestricted SHF calculation atI = 0 with the use of the SIII interaction. Their values are plotted as
functions ofβ2 in the lower portion of each panel. To show that their values increase at crossing regions between
configurations involving different number of particles in thefp shell, the deformation energy curves are also
displayed in the upper portion of each panel. The latter are the same as those presented in Fig. 1.

In connection with the above finding, it may be appropriate to point out another situation
in which a symmetry breaking in the mean field plays an important role. For both the
restricted and unrestricted calculations, we have obtained smooth crossover between the
SD and HD configurations in40Ca and44Ti (see Figs. 1–3). Since four particles are further
excited into theg shell in the HD configurations, the smooth configuration rearrangement
becomes possible by means of the mixing between the down-sloping levels steming
from theg9/2 shell (its asymptotic quantum number is[440]1

2) and the up-sloping levels
stemming from thesd shell ([202]5

2 and[200]1
2 in the cases of40Ca and44Ti, respectively).

The mixing between these single-particle levels takes place through the hexadecapole
components of the mean field, and we need to break the axial symmetry to mix them in the
case of40Ca. The calculations called “restricted” in this paper allow the axial symmetry
breaking, so that the smooth rearrangement from the SD to HD configurations is possible
also in 40Ca. A very careful computation is required, however, in order to detect these
mixing effects, since the interaction between the down-sloping and up-sloping levels is
extremely weak.

In Figs. 10–12, one may notice thatβ3 take non-zero values also in some situations other
than the crossing regions. Such situations occur in some regions of the deformation energy
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Fig. 11. The same as Fig. 10 but for the SkM∗ interaction.

surface where it becomes very soft with respect to the reflection-asymmetric degrees of
freedom. In the next subsection, we investigate this point in detail taking the SD solution
in 40Ca as an especially interesting example.

4.2. Octupole softness of the SD band in 40Ca

Let us examine stabilities of the SD local minimum in40Ca against octupole
deformations. Fig. 13 shows deformation energy curves as functions of the octupole
deformation parametersβ3m (m = 0,1,2,3) for fixed quadrupole deformation parameters
at and near the SD minimum of40Ca, calculated by means of the constrained HF procedure
with the use of the SIII, SkM∗, and SLy4 interactions. We immediately notice that the SD
state is extremely soft with respect to theβ30 andβ31 deformations, irrespective of the
Skyrme interactions used. Although it is barely stable with respect to these directions (see
curves forβ2 = 0.6), an instability toward theβ31 deformation occurs as soon as one goes
away from the local minimum point (see curves forβ2 = 0.5). In fact, the deformation
energy surface is found to be almost flat for a combination of theβ30 andβ31 deformations
already at the SD local minimum. Thus we need to take into account the octupole shape
fluctuations for a better description of the SD rotational band in40Ca. It will be a very
interesting subject to search for negative-parity rotational bands associated with octupole
shape fluctuation modes built on the SD yrast band. We plan to make such a study in future.
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Fig. 12. The same as Fig. 10 but for the SLy4 interaction.

Quite recently, the octupole instability of the SD band in40Ca has been suggested also by
Kanada-En’yo [50].

5. Conclusions

With the use of the symmetry-unrestricted cranked SHF method in the 3D coordinate-
mesh representation, we have carried out a systematic theoretical search for the SD and HD
rotational bands in theN =Z nuclei from32S to48Cr. We have found the SD solutions in
32S, 36Ar, 40Ca,44Ti, the HD solutions in36Ar, 40Ca,44Ti, 48Cr, and we have carried out
a systematic analysis of their properties at high spin.

It is explicitly shown that the crossover between configurations involving different
number of particles in thefp shell takes place via a reflection-symmetry breaking path
in the deformation space.

Particular attention has been paid to the recently discovered SD band in40Ca, and we
have found that the SD band in40Ca is extremely soft against both the axially symmetric
(Y30) and asymmetric (Y31) octupole deformations. Thus, it will be very interesting to
search for negative-parity rotational bands associated with octupole shape vibrational
excitations built on the SD yrast band.
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Fig. 13. Left-hand side: deformation energy curves (measured from energies atβ3 = 0) as functions of
the octupole deformation parametersβ3m (m = 0,1,2,3), calculated for40Ca by means of the constrained
HF procedure. The quadrupole deformation parameters are fixed atβ2 = 0.5 and γ = 0. One of the
β3m (m = 0,1,2,3) is varied while the otherβ3m ’s are fixed to zero. Right-hand side: the same as the left-hand
side, except that the quadrupole deformation parameters are fixed atβ2 = 0.6 andγ = 0. Results of calculation
with the use of the SIII, SkM∗, and SLy4 interactions are displayed in the upper, middle and lower panels,
respectively.
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We derive a semiclassical trace formula for the level density of a three-dimensional
spheroidal cavity. To overcome the divergences and discontinuities occurring at bifurca-
tion points and in the spherical limit, the trace integrals over the action-angle variables are
performed using an improved stationary phase method. The resulting semiclassical level den-
sity oscillations and shell energies are in good agreement with quantum-mechanical results.
We find that the births of three-dimensional orbits through the bifurcations of planar orbits
in the equatorial plane lead to considerable enhancement of the shell effect for superdeformed
shapes.

§1. Introduction

The periodic orbit theory (POT)1)–10) is a nice tool for studying the correspon-
dence between classical and quantum mechanics and, in particular, the interplay of
deterministic chaos and quantum-mechanical behavior. Also, for systems with inte-
grable or mixed classical non-linear dynamics, the POT leads to a deeper understand-
ing of the origin of shell structure in finite fermion systems, such as nuclei,8), 11)–13)

metallic clusters,14)–16) and mesoscopic semiconductors.17)–21) Bifurcations of peri-
odic orbits may play significant roles, e.g., in connection with superdeformations of
atomic nuclei,8), 9), 12), 22)–24) and were recently shown to affect the quantum oscilla-
tions observed in the magneto-conductance of mesoscopic devices.19), 20) This phe-
nomenon is observed for some control parameters (like the shape, magnetic field, etc.)
of the potential well, for which the orbits bifurcate and new types of periodic orbits
emerge from the original ones. Examples can be found, e.g., in elliptic billiard and
spheroidal cavity systems.8), 9), 12), 23)–28) In elliptic billiard systems, short diametric
orbits with repetitions bifurcate at certain values of the deformation parameter, and
new orbits with hyperbolic caustics (butterfly-shaped orbit, etc.) emerge from them.
In spheroidal cavity systems, periodic orbits in the equatorial plane bifurcate, and
new three-dimensional orbits emerge.
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The semiclassical trace formulae connect the quantum mechanical density of
states with a sum over the periodic orbits of the classical system.1)–4) In these for-
mulae, divergences arise at critical points where bifurcations of periodic orbits occur
or where symmetry breaking (or restoring) transitions take place. At these points,
the standard stationary phase method (SSPM),∗) used in the semiclassical evaluation
of the trace integrals, breaks down. Various ways of avoiding these divergences have
been studied,3), 5), 29) some of them employing uniform approximations.29)–37) Here
we employ an improved stationary-phase method (ISPM) for the evaluation of the
trace integrals in the phase-space representation, which we have derived for elliptic
billiards28) and very recently for spheroidal cavities.24)

The singularities of the SSPM near the bifurcation points are due to the peculiar-
ities of its asymptotic expansions. In the ISPM,24), 28) the catastrophe integrals38), 39)

are evaluated more exactly within the finite integration limits in the phase-space
trace formula,3), 5), 9), 24), 28), 40) and it is possible to overcome the singularity problem
due to bifurcations, which occur when the stationary points lie near the ends of
the integration region in the action-angle variables. We can also take into account
the stationary points outside the classically accessible region (“ghost orbits”).5) This
method is particularly useful for integrable systems in which integration limits are
easily obtained. This theory is developed in Ref. 28) for the case of the bifurcations
through which periodic orbit families with maximal degeneracy emerge from orbits
with smaller degeneracy. The essential difference between the method presented in
this paper and that with the uniform approximation of Refs. 32) and 35) is that we
improve the calculation of the angle part of the phase-space trace integral for the
orbits with smaller degeneracies. Taking an elliptic billiard system as an example,
we have applied the ISPM to the integration over the angle variable for short dia-
metric orbits and derived an improved trace formula that is continuous through all
bifurcation points, including the circular limit and the separatrix. We then showed
that significant enhancements of the shell effect in level densities and shell structure
energies occur at deformations near the bifurcation points. Away from the bifurca-
tion points, our result reduces to the extended Gutzwiller trace formula,4), 8)–10) and
for the leading-order families of periodic orbits, it is identical to that of Berry and
Tabor.5)

The major purpose of this paper is to extend our semiclassical ISPM to the case
of a three-dimensional (3D) spheroidal cavity,24) which may be taken as a simple
(highly idealized) model for a heavy deformed nucleus8), 11) or a deformed metallic
cluster,14), 15) and to specify the role of periodic orbit bifurcations in the shell struc-
ture responsible for superdeformations. Although the spheroidal cavity system is
integrable, it exhibits all the difficulties mentioned above (i.e., symmetry breaking
and bifurcations), and therefore it provides an exemplary case study of a non-trivial
3D system. We apply the ISPM to the bifurcating orbits and succeed in repro-
ducing the superdeformed shell structure in terms of the POT, while observing a
considerable enhancement of the shell effect near the bifurcation points.

∗) In this paper, SSPM is understood as the standard stationary phase method and its extension

to continuous symmetries.3)–5), 7)
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§2. Classical mechanics for the spheroidal cavity

The semiclassical trace formulas for the oscillating part of the level density for
a spheroidal cavity are determined from the characteristic properties of the classical
periodic families.8), 9), 22)–27) This section presents definitions and solutions for the
classical mechanical description of the spheroidal cavity, following Refs. 8), 9), 23)
and 27). They will be used for the semiclassical derivations of the trace formulas
improved at the bifurcation points. We shall pay special attention to the 3D periodic
orbits that emerge through bifurcations and play important roles as the semiclassical
origin of superdeformed shell structure.8), 23), 27)

2.1. General periodic-orbit formalism

We characterize the spheroid by the ratio of its semi-axes η = b/a, keeping
its volume fixed, and consider the prolate case with η > 1, where the major axis
coincides with the symmetry axis. We first transform the Cartesian coordinates
(x, y, z) into the usual cylindrical coordinates (ρ, z, ϕ), where ρ =

√
x2 + y2, which

are expressed in terms of the spheroidal coordinates (u, v, ϕ) as

ρ = ζ cosu sinh v, z = ζ sinu cosh v, ζ =
√
b2 − a2, (2.1)

with
−π

2
≤ u ≤ π

2
, 0 ≤ v < ∞, 0 ≤ ϕ ≤ 2π. (2.2)

The values of ±ζ define the positions of the foci of the spheroid lying on the z-axis.
Taking into account the volume conservation condition a2b = R3, we have b = Rη2/3

and a = Rη−1/3. As is well known, the Hamilton-Jacobi equations separate in the
coordinates (u, v, ϕ) for a spheroidal cavity.

In the Hamilton-Jacobi formalism, the classical dynamics are determined by the
partial actions. In the spheroidal coordinates, these are given by

Iu =
pζ

π

∫ uc

−uc

du

√
σ1 − sin2 u− σ2

cos2 u
, (2.3a)

Iv =
pζ

π

∫ vb

vc

dv

√
cosh2 v − σ1 − σ2

sinh2 v
, (2.3b)

Iϕ = |lz| = pζ
√
σ2, (2.3c)

where lz is the projection of the angular momentum onto the symmetry axis, and
p =

√
2mε, where m is the particle mass. In Eq. (2.3) we have introduced the new

“action” variables σ1 and σ2 related to the turning points −uc, uc and vc, vb along
the trajectory in the (u, v) coordinates; u = uc and v = vc are the (hyperbolic and
elliptic) caustic surfaces,

cosh vc =

{
1
2
(1 + σ1) +

[
1
4
(1− σ1)2 + σ2

]1/2}1/2

, (2.4a)

sinuc =

{
1
2
(1 + σ1)−

[
1
4
(1− σ1)2 + σ2

]1/2}1/2

, (2.4b)
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and v = vb is the spheroid boundary, given by cosh vb = η/
√
η2 − 1. The condition

that the kinetic energy must be positive determines the limits for the variables σ1
and σ2:

σ−
1 = σ2 ≤ σ1 ≤ η2

η2 − 1
− σ2

(
η2 − 1

)
= σ+1 ,

σ−
2 = 0 ≤ σ2 ≤ 1

η2 − 1
= σ+2 . (2.5)

These inequalities together with the 2π intervals for the corresponding angle variables
determine the tori of the classically accessible motion with the boundaries σ±

1 (σ2)
and σ±

2 .
According to Eq. (2.3), the particle energy ε is a function of only the action

variables Iu, Iv and Iϕ, ε = H (Iu, Iv, Iϕ), due to the integrability of the system
under consideration. These relations define the partial frequencies ωu, ωv and ωϕ
through ωj = ∂H/∂Ij. The periodicity conditions for the classical trajectories are
significantly simplified in terms of the partial frequencies ωj . Introducing the new
variables κ and θ,

κ =
sinuc
cosh vc

, θ = arcsin
(

cosh vc
cosh vb

)
, (2.6)

along with the energy ε in place of the partial actions Iu, Iv and Iϕ (or σ1 and σ2),
they read

ωu
ωv

≡ 1
2

[
1− F(θ, κ)

F(κ)

]
=

nu
nv

, (2.7a)

ωϕ
ωu

≡ 2
π

[(
1−

(κ
κ̄

)2)(
1 − κ̄2

)]1/2{
Π
((κ

κ̄

)2
, κ

)
− F(κ)

+
[
Π
(
κ̄2, κ

)− Π
(
θ, κ̄2, κ

)] / [
1− F(θ, κ)

F(κ)

]}
=

nϕ
nu

. (2.7b)

Here, nu, nv and nϕ are co-prime integers: nu = 1, 2, · · · ; nv ≥ 2nu; nv ≥ 2nϕ, nϕ =
1, 2, · · · , and κ̄ =

√
η2 − 1/(η sin θ). F and Π are elliptic integrals of the 1st and

3rd kinds (see Appendix A for their definitions). The periodicity condition (2.7)
relates κ(σ1, σ2) and θ(σ1, σ2) for a given periodic orbit β to the integers nu, nv
and nϕ, which, together with the number of repetitions M , define this orbit; i.e.,
β = M(nv, nϕ, nu).

2.2. Three-dimensional periodic orbits

The 3D periodic orbits (3DPO) M(nv, nϕ, nu) form two-parameter (K = 2)
families for a given energy ε, because the number K of free continuous parameters
specifying an orbit with fixed energy and a given action is two.8), 9) The condition
for 3DPO is the existence of real roots (κ, θ) of Eq. (2.7). They appear at the
deformation η = ηbif given by

ηbif =
sin(πnϕ/nv)
sin(πnu/nv)

, (nu = 1, 2, · · · , nv ≥ 2nϕ + 1, nϕ = 2, 3, · · · ) (2.8)
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Fig. 1. The triangle of the classically accessible region determined by Eq. (2.5) is indicated by white

lines in the (σ1, σ2) plane at the bifurcation deformations (a) η = 1.618 . . . and (b) η =
√
3. The

red and blue dots with the circles indicate the 3DPO stationary points inside (actually existing

3DPO) and outside (“ghost” 3DPO) of this triangle region, respectively. Several examples of the

stationary points are indicated: on the σ2 = 0 side, the short 2DPO (elliptic triangle, square,

and hyperbolic “butterfly”); on the σ2 = σ1 side, the short EQPO (triangle, square, star and

diameter (black crossed circle)). The long diameter (separatrix) is located at (σ1 = 1, σ2 = 0).

The color and contour curves indicate (in units of pζ/π) the curvature K11 defined by Eq. (3.14).

where κ = 0 and θ = π(1 − 2nu/nv)/2, and exist for larger deformations η >
ηbif . These roots determine the caustics (the spheroid v = vc and the hyperboloids
u = ±uc) of the periodic orbit M(nv, nϕ, nu) through Eq. (2.6). These caustics are
confocal to the boundary of the spheroid v = vb.

Figure 1 displays the stationary points corresponding to the 3DPO for two bi-
furcation points ηbif given by (2.8). The physical tori region (2.5) in the variables
σi is a triangle. At ηbif = 1.618 . . . (Fig. 1(a)), the stationary point for the 3DPO
(5, 2, 1) coincides with that for the star-shaped (5, 2) orbit in the equatorial plane
(discussed below) lying on the boundary with σ2 = σ1, and moves toward the inside

Fig. 2. Short 3D periodic orbits (5,2,1) and

(6,2,1) bifurcated from the equatorial plane

orbits (5,2) and 2(3,1), respectively. Their

projections on the equatorial plane are also

represented by thick-dashed lines.

of the physical tori region for larger de-
formations. At ηbif =

√
3 (Fig. 1(b)),

the stationary point for the 3DPO
(6, 2, 1) lies on the boundary side and
coincides with that for triangular orbits
in the equatorial plane. At these bi-
furcation deformations, the lengths of
the 3DPO (5, 2, 1) and (6, 2, 1) coincide
with those of the star (5, 2) and the
doubly repeated triangle 2(3, 1), respec-
tively. Figure 2 illustrates some short
3DPO and their projections onto the
equatorial plane.
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2.3. Orbits in the meridian plane

Equations (2.7a) and (2.7b) have partial solutions for κ(σ1, σ2) and θ(σ1, σ2)
that correspond to the separate families of orbits, i.e. two-dimensional periodic or-
bits (2DPO), in the meridian planes (containing the symmetry axis z) and in the
equatorial plane. First, we consider the special solutions of Eq. (2.7) corresponding
to the two-parameter (K = 2) 2DPO families in the meridian plane.8), 9) For these
orbits, σ2 = 0 and σ1 is in either of the regions

0 < σ1 < 1, 1 < σ1 <
η2

η2 − 1
, (2.9)

for the hyperbolic 2DPO (with hyperbolic caustics u = ±uc) and the elliptic 2DPO
(with elliptic caustics v = vc), respectively. The periodicity condition (2.7b) becomes
the identity ωϕ/ωu ≡ 1 (nϕ = 1, nu = 1), and θ is fixed by

θ = θh = arcsin

(√
η2 − 1
η

)
, θ = θe = arcsin

(√
η2 − 1
κη

)
, (2.10)

for the hyperbolic and elliptic 2DPO, respectively. For κ, we have only the condition
Eq. (2.7a). This κ determines σ1, and thus Iu and Iv (Iϕ = 0 since σ2 = 0), through

κ = κh =
√
σ1, κ = κe =

1√
σ1
, (2.11)

for the hyperbolic and elliptic orbits, respectively.
Some examples of the hyperbolic and elliptic orbits lying along the triangular

boundary side σ2 = 0 are presented in Fig. 1 (see also their geometrical illustrations
in Fig. 3). The hyperbolic and elliptic tori parts are separated by the separatrix
point (σ1 = 1, σ2 = 0) related to the long diameter (see below). Another endpoint
of the hyperbolic tori coincides with the stationary point (σ1 = σ2 = 0) for the
diametric orbit in the equatorial plane. We can think of these hyperbolic and elliptic
orbits as being periodic in the plane ϕ = [const.], and we call them “meridian-plane
periodic orbits”.

For the elliptic case, a solution κ of Eq. (2.7) with θ = θe(κ) exists for any
nu = 1, 2, · · · and nv ≥ 2nu+1, (nϕ = nu) for any deformation η > 1. Examples are

Fig. 3. Some short meridian-plane orbits in the prolate spheroidal cavity. From left to right: the

isolated long diameter (2, 1, 1), the elliptic triangular (3, 1, 1), the elliptic rhomboidal (4, 1, 1),

the hyperbolic “butterfly” (4, 2, 1).
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the triangles (nv = 3, nϕ = 1, nu = 1), the rhomboids (4, 1, 1) and the star-shaped
orbits (5, 2, 2) as one-parameter families in the meridian plane. The root κ found
from Eq. (2.7) gives the elliptic caustics with uc = π/2 in Eq. (2.6) and the semi-axes
ac = ζ

√
1− κ2/κ and bc = ζ/κ.

For the hyperbolic case, the solutions κ can be found for nu = 1, 2, 3, · · · and
even nv (nv ≥ 2(nu + 1)). In Fig. 1 the “butterfly” orbit (4, 2, 1) is shown as an
example. The families of these orbits appear for η > ηbif with

ηbif =
[
sin

(
πnu
nv

)]−1
. (2.12)

This is the deformation at which the diametric orbits M(2, 1) with M ≥ 2 in the
equatorial plane bifurcate, and from these orbit emerge the hyperbolic orbits. Their
hyperbolic caustics are expressed in terms of the root κ of Eqs. (2.7) and (2.6) with
vc = 0. The parameters ac and bc of these caustics are given by ac = ζ

√
1− κ2 and

bc = ζκ.

2.4. Orbits in the equatorial plane

In the equatorial plane with z = 0, the separate families of regular polygons and
diameters are the same as for a circular billiard system3) of radius a. The restriction
z = 0 decreases the values of K to 1. The single parameter in this case corresponds
to the angle of rotation of the polygons and the diameters about the symmetry axis
z. Figure 4 illustrates the most important (shortest) equatorial-plane periodic orbits
(EQPO): the diameters M(nv = 2, nϕ = 1), triangles M(3, 1), squares M(4, 1) and
star-shaped orbits M(5, 2). They satisfy, from inequalities (2.5),

σ1 = σ2, 0 ≤ σ2 ≤ 1
η2 − 1

. (2.13)

Therefore their stationary points lie along the σ2 = σ1 side in the triangle, as indi-
cated in Fig. 1.

The caustic parameters uc and vc for these families are defined by uc = 0 and
vc = arcsinh[a cos(πnϕ/nv)/ζ]. The solutions of Eq. (2.7) for these orbits are κ = 0

and θ = arcsin
√

1− sin2(πnϕ/nv)/η2.

Fig. 4. Some short equatorial-plane orbits. From left to right: the short diameter (2, 1), the trian-

gular (3, 1), the rhomboidal (4, 1), and the star-shaped (5, 2).
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2.5. Diametric orbits along the symmetry axis

In the spheroidal cavity, there is also a diametric orbit along the z-axis (see
Fig. 3). It is isolated (K = 0), because we have two additional restrictions, x = 0
and y = 0, decreasing K by one with respect to the previous case. The solution of
Eq. (2.7) for this orbit is κ = 1 and θ = arcsin(

√
η2 − 1/η). Its stationary point

coincides with the separatrix values (σ1 = 1, σ2 = 0), corresponding formally to
the caustic parameters (uc = π/2, vc = 0). (See the circle point with the vertical
diameter in Fig. 1. In Fig. 1(b), this stationary point is very close to that for the
elliptic orbits (3,1,1) in the meridian plane, which lies slightly on the right, along
the σ2 = 0 side.)

2.6. Bifurcations

At the deformations ηbif given by Eq. (2.8), the EQPO M(nv, nϕ) bifurcate,
and the 3DPO or the hyperbolic 2DPO M(nv, nϕ, nu) emerge. We encounter the
breaking-of-symmetry problem at these bifurcation points, because the degeneracy
(symmetry) parameter K changes there, for instance, from K = 1 for the EQPO to
K = 2 for the 3DPO. Before the bifurcations (η < ηbif), the stationary points σi of
the 3DPO and the hyperbolic 2DPO are situated outside of the triangular tori region
(2.5), and give rise to complex (κ, θ) and complex caustics. Such formal orbits are
called “complex” or “ghost” orbits.5) They cross the σ1 = σ2 boundary through the
stationary points of the EQPO at bifurcations (η = ηbif) and then move into the
triangular tori region for larger η. In Fig. 1 are also indicated the stationary points
for the 3DPO lying outside the physical tori region [(6,2,1) in Fig. 1(a), (7,2,1) and
(8,2,1) in Fig. 1(b)]. The equatorial diameters M(2, 1) correspond to the limiting
case, σ1 = σ2 = 0. They bifurcate into themselves (K = 1) and the hyperbolic 2DPO
(2M,M, 1) in the meridian plane (K = 2) at the deformations given by Eq. (2.12).

The spherical limit (η = 1) is a special bifurcation point. In this limit, the
planar regular polygons and diameters have degeneracies K = 3 and 2, respectively,
and they bifurcate into the meridian 2DPO (K = 2), EQPO (K = 1) and the isolated
long diameter (K = 0) for deformations η > 1.

The separatrix (σ1 = 1, σ2 = 0), related to the long diameter, is a special point
in the phase space. Near this point, the complicated 3DPO and elliptic and hyper-
bolic 2DPO having large values of (nu, nv) and nu/nv close to 1/2 appear. Similar
bifurcations of the 3DPO, EQPO and elliptic 2DPO appear near other boundary
values of σi in the triangular tori on its “creeping” side σ1 = σ+1 (σ2), where some
kinds of 3D “creeping” orbits with large values of nv but finite and generally dif-
ferent nu and nϕ appear. This is in analogy to the “creeping” singularities inves-
tigated for elliptic orbits in elliptic billiard systems28) near the maximum value of
σ1, σ

(cr)
1 = cosh2 vb = η2/(η2 − 1), according to Eq. (A.6) at the right vertex in the

“meridian-plane orbit” side σ2 = 0. The 3DPO with a large number of the corners
nv and finite nu = nϕ approach the “creeping” elliptic orbits in the meridian plane.
Another vertex corresponds to the creeping EQPO that have large values of nv and
nϕ but for nv/nϕ → 1/2.

The bifurcation point related to the appearance of “creeping” orbits cannot
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be reached for any finite deformation. However, even for finite deformations like
superdeformed shapes, the solutions for σ1 and σ2 [related to the roots κ and θ of
the periodic-orbit conditions (2.7)] can be close to the “creeping” values of σ1 and σ2
[related to their boundary values given in (2.5)]. In such cases, we have to take into
account such bifurcations in the trace formulas for the level density. The bifurcations
of the 3D and 2D diameter-like orbits with nv/nu close to 1/2 near the separatrix are
rather long, however, so that they are not important for the shell effects discussed
below.

§3. Trace formulas for the prolate spheroid

3.1. Phase-space trace formula in action-angle variables

The level density g(ε) is obtained from the Green function G(r, r′; ε) by taking
the imaginary part of its trace:

g(ε) =
∑
n

δ (ε− εn) = − 1
π

Im
∫

dr′′
∫

dr′G(r′, r′′; ε) δ(r′′ − r′), (3.1)

where εn is the single-particle energy. Following Ref. 28), we now apply the Gutzwiller
trajectory expansion for the Green function G(r, r′, ε).1), 2), 10) After simple trans-
formations,28) we obtain the phase-space trace formula in the action-angle variables
(I,Θ),

gscl(ε) =
1

(2π�)3
Re

∑
α

∫
dΘ′′

∫
dI ′δ

(
ε−H

(
I ′,Θ′))

× exp
[
i

�

(
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′)− i

π

2
να

]
, (3.2)

where the sum is taken over all classical trajectories α, I = {Iu, Iv, Iϕ} represents
the actions for the spheroidal cavity, Θ = {Θu, Θv, Θϕ} the conjugate angles, and
να the phases related to the Maslov indices.39), 41)–43) The phase-space trace formula
(3.2) is especially useful for integrable systems, because the Hamiltonian H does not
depend on the angle variables Θ in this case, i.e., H = H(I). The action

Sα
(
I ′, I ′′, tα

)
= −

∫ I′′

I′
dI · Θ(I) (3.3)

is related to the standard definition,

Sα
(
Θ′,Θ′′, ε

)
=
∫ �′′

�′
dΘ · I(Θ), (3.4)

by the Legendre transformation

Sα(Θ′,Θ′′, ε) + I ′′ · (Θ′ − Θ′′) = Sα(I ′, I ′′, tα) + Θ′′ · (I ′′ − I ′), (3.5)

tα being the time for a particle to revolve the trajectory α. The phase να is specified
below.
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3.2. Stationary phase method and classical degeneracy

It should be emphasized that even for integrable systems, the trace integral (3.2)
is more general than the Poisson-sum trace formula, which is the starting point of
Refs. 5),32) and 35) for the semiclassical derivations of the level density. These two
trace formulas become identical when the phase of the exponent does not depend
on the angle variables Θ. In this case, the integral over angles in (3.2) gives simply
(2π)n, where n is the dimension of the system (n = 3 for a spheroidal cavity), and
the stationary condition for all angle variables are identities in the 2π interval. This
is true for the most degenerate classical orbits, like the elliptic and hyperbolic 2DPO
in the meridian plane and the 3DPO with K = n− 1 = 2. However, for orbits with
smaller degeneracies, like the EQPO (K = 1) and the isolated long diameter (K = 0),
the exponent phase depends strongly on angles and possesses a definite stationary
point. Therefore, we have to integrate over such angles using the ISPM in the same
way as for the bifurcations of the isolated diameters in elliptic billiard systems.28)

3.3. Stationary phase conditions

Due to the appearance of the δ-function representing energy conservation, we
can perform the integral over I ′v in Eq. (3.2) exactly, and the result is

gscl(ε) =
1

(2π�)3
Re

∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dΘ′′

ϕ

∫
dI ′u

∫
dI ′ϕ

1
|ω′
v|

× exp
[
i

�

(
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′)− i

π

2
να

]
. (3.6)

The integration limits for Iu and Iϕ are determined by their relations to the variables
(σ1, σ2) and by the boundaries given by Eq. (2.5). One of the trajectories, α0, in
the sum (3.6) is a special one that corresponds to the smooth level density gTF of
the Thomas-Fermi model.10) For all other trajectories, we first write the stationary
phase conditions for the action variables I ′u and I ′ϕ as(

∂Sα(I ′, I ′′, tα)
∂I ′u

)∗
−Θ′′

u ≡ Θ′
u −Θ′′

u = 2πMu, (3.7a)(
∂Sα(I ′, I ′′, tα)

∂I ′ϕ

)∗
−Θ′′

ϕ ≡ Θ′
ϕ −Θ′′

ϕ = 2πMϕ, (3.7b)

where M = (Mu,Mv,Mϕ) = M(nu, nv, nϕ), and M is an integer which indicates the
number of revolutions along the primitive periodic orbit β. The superscript asterisk
indicates that we evaluate the quantities at the stationary point with I ′u = I∗u and
I ′ϕ = I∗ϕ. We next use the Legendre transformation (3.5). Then, the stationary phase
conditions with respect to angles (Θu, Θv, Θϕ) are given by(

∂Sα(Θ′,Θ′′, ε)
∂Θ′′ +

∂Sα(Θ′,Θ′′, ε)
∂Θ′

)∗
≡ I ′′ − I ′ = 0. (3.8)

In the following derivations, we have to judge whether the stationary phase
conditions (totally or partially) given by Eqs. (3.7) and (3.8) hold identically or only
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at specific stationary points. For this purpose we have to calculate separately the
contributions from the most degenerate 3DPO, the 2DPO families in the meridian
plane (K = 2) and those from orbits with smaller degeneracies, like EQPO (K = 1)
and the isolated long diameter (K = 0). The latter two kinds of orbits are different
from the former two kinds with respect to the above-mentioned two possibilities
concerning the integration over angles Θ.

3.4. Three-dimensional orbits and meridian-plane orbits

The most degenerate 3DPO and the meridian-plane (elliptic and hyperbolic)
2DPO with equal values of the action occupy some finite 3D areas between the
corresponding caustic surfaces specified above. In this case, the stationary phase
conditions (3.8) for the integration over all angle variables Θu, Θv and Θϕ hold
identically. The integrand does not depend on the angle variables, and the result of
the integration is (2π)3. Because Eq. (3.8) is identically satisfied [the action does not
depend on the angles like the Hamiltonian H(I)] we have conservation of the action
variables, I ′u = I ′′u = Iu and I ′ϕ = I ′′ϕ = Iϕ, along the classical trajectory α. The
integrals over all Θ in Eq. (3.2) yield (2π)3, and we are left with the Poisson-sum
trace formula,5), 10)

gscl(ε) =
1
�3

Re
∑
M

∫
dI δ (ε−H(I)) exp

[
2πi
�

M · I − i
π

2
νM

]

=
1
�3

Re
∑
M

∫
dIu

∫
dIϕ

1
|ωv| exp

[
2πi
�

M · I − i
π

2
νM

]
. (3.9)

It is convenient to transform the integration variables (Iu, Iϕ) into (σ1, σ2) defined
by Eq. (2.3):

gscl(ε) =
1
�3

Re
∑
M

pζ

∫ σ+
2

σ−2

dσ2
2
√
σ2

∫ σ+
1

σ−1
dσ1

∂Iu
∂σ1

1
|ωv| exp

[
2πi
�

M · I − i
π

2
νM

]
.

(3.10)

The integration limits are greatly simplified when written in terms of σ±
i (i = 1, 2)

and form the triangular region shown in Fig. 1. We then integrate over σi, expanding
the exponent phase about the stationary point σi = σ∗

i ,

2π (M · I) ≡ Sα
(
I, I ′′, tα

)
+
(
I ′′ − I

) · Θ′′

= Sβ(ε) +
1
2

∑
i,j

Jβij(σi − σ∗
i )(σj − σ∗

j ) + · · · , (3.11)

where Sβ(ε) is the action along the periodic orbit β,

Sβ(ε) = 2πM
[
nuI

∗
u + nvIv

(
ε, I∗u, I

∗
ϕ

)
+ nϕI

∗
ϕ

]
, (3.12)

and Iv(ε, Iu, Iϕ) is the solution of the energy conservation equation ε = H(Iu, Iv, Iϕ)
with respect to Iv. Here, the single prime index is omitted for simplicity. The
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quantity Jβij is the Jacobian stability factor with respect to σi along the energy
surface,

Jβij =
(

∂2Sα
∂σi∂σj

)
σi=σ∗i

= 2πMnvK
β
ij , (3.13)

and Kβ
ij is the (2 × 2) curvature matrix of the energy surface evaluated at the sta-

tionary point σi = σ∗
i (at the periodic orbit β):

Kβ
ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σi∂σj

. (3.14)

(See Appendix A for the explicit expressions of these curvatures.) As we see below,
the off-diagonal curvature K12 is non-zero for variables σi.

Then we use the ISPM, where we keep exact finite limits for the integration over
σi, and we finally obtain

δg
(2)

{ 3D
2D}(ε) =

1
ε0

Re
∑
β

A
(2)
β exp

(
ikLβ − i

π

2
νβ

)
, (3.15)

where ε0 = �
2/2mR2 (R3 = a2b due to the volume conservation condition). The

sum runs over all two-parameter families of the 3DPO or the meridian-plane (elliptic
and hyperbolic) 2DPO, and A

(2)
β is the amplitude for a 3DPO or a 2DPO,∗)

A
(2)

{ 3D
2D} =

1
4π

Lβζ

(MnvR)2
√
σ∗
2 |detKβ |

[
∂Iu
∂σ1

]
σi=σ∗i

erf
(Z−

1 ,Z+
1

)
erf

(Z−
2 ,Z+

2

)
.

(3.16)

Here, Lβ represents “length” of the periodic orbit β,

Lβ =
2πMnvp

mωv

= 2Mnvb sin θ
[
E(θ, κ)− F(θ, κ)

F (κ)
E (κ) + cot θ

√
1− κ2 sin2 θ

]
, (3.17)

where θ and κ are defined by the roots of the periodic-orbit equations (2.7) (Sβ = pLβ
for cavities). This “length” taken at the stationary points σ∗

i [the real positive roots
of Eq. (2.7) through Eqs. (2.4) and (2.6)] inside the finite integration range (2.5)
represents the true length of the corresponding periodic orbit β. For other stationary
points, the “length” is identical to the function (3.17) continued analytically outside
the tori determined by (2.5). In Eq. (3.16) we also introduced the generalized error
function erf (Z−,Z+) of the two complex arguments Z− and Z+,

erf
(
z−, z+

)
=

2√
π

∫ z+

z−
dz e−z

2
= erf(z+)− erf(z−), (3.18)

∗) The expression (3.16) is valid also for the 2DPO (σ∗
2 = 0), because the product σ2K22 is finite

for any σ2 (see Appendix A).
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with erf(z) being the simple error function.46) The arguments of these error functions
are given by

Zβ±1 =
√

−iπMnvK
β
11/�

(
σ±
1 (σ∗

2)− σ∗
1

)
, (3.19a)

Zβ±2 =
√

−iπMnv(detKβ/Kβ
11)/�

(
σ±
2 − σ∗

2

)
, (3.19b)

in terms of the finite limits σ±
i given by (2.5), and taken at the stationary point

σ2 = σ∗
2. We note that, for the 3DPO M(3t, t, 1) with t = 2, 3, · · · , the curvature

Kβ
11 is zero at any deformation. For such orbits, we should use

Zβ±1 =
√

−iπMnv(detKβ/Kβ
22)/�

(
σ±
1 (σ∗

2)− σ∗
1

)
, (3.20a)

Zβ±2 =
√

−iπMnvK
β
22/�

[
σ±
2 − σ∗

2 +
Kβ
12

Kβ
22

(
σ±
1 (σ∗

2)− σ∗
1

)]
, (3.20b)

in place of (3.19). The latter limits (3.20) are derived by changing the integration
variable σ2 to σ2 − (K12/K22)(σ1 − σ∗

1).
Let us consider the stationary points σ∗

i positioned far from the bifurcation
points. This means that they are located far from the integration limits. Accordingly,
the generalized error functions can be transformed into the complex Fresnel functions
with real limits and then extend the upper limit to ∞ and the lower one to −∞. In
this way, we asymptotically obtain the Berry-Tabor result for the standard POT,5)

which is identical to the extended Gutzwiller result9) for the most degenerate (3D
and meridian-plane) orbit families,

A
(2)

{ 3D
2D}(ε) =

1
π

Lβζ

(MnvR)2
√
σ∗
2| detKβ|

[
∂Iu
∂σ1

]
σi=σ∗i

. (3.21)

The constant part of the phase νβ in Eq. (3.15), which is independent of η and
ε, can be found by making use of the above asymptotic expression and applying the
Maslov-Fedoryuk theory.39), 41)–43) This theory relates the Maslov index µβ with the
number of turning and caustic points for the orbit family β. For the 3DPO, the total
asymptotic phase νβ is given by

ν3D = µ3D − 1
2
ε3D + 2(Mnu − 1), µ3D = M(3nv + 2nu). (3.22)

Here, µβ denotes the Maslov index, the numbers of caustic and turning points tra-
versed by the orbit, and εβ represents the difference of the numbers of positive and
negative eigenvalues of curvature Kβ.∗) For the hyperbolic and elliptic meridian
2DPO, we obtain

ν2DH = µ2DH − 1
2
ε2DH + 2 (Mnu − 1) , µ2DH = 2M (nv + nu) (3.23)

∗) Because the dimension of Kβ is 2, εβ is written εβ = sign(Kβ
1 ) + sign(Kβ

2 ), where Kβ
i is the

i-th eigenvalue of Kβ. It can also be calculated by εβ = sign(Kβ
11) + sign(detKβ/Kβ

11) for Kβ
11 �= 0,

and εβ = sign(Kβ
22) + sign(detKβ/Kβ

22) for Kβ
22 �= 0. Here, sign(x) = ±1 for x>

< 0 and 0 for x = 0.
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and
ν2DE = µ2DE − 1

2
ε2DE + 2 (Mnu − 1) , µ2DE = 3Mnv (3.24)

respectively. Note that the total phase includes the argument of the complex ampli-
tude (3.16), and it depends on both the deformation and energy.

Near the bifurcation deformations, the stationary points σ∗
i are close to the

boundary of the finite area (2.5). In such cases, the asymptotic forms of the error
functions are not good approximations, and we have to carry out the integration
over σi in the calculation of the error functions in Eq. (3.16) exactly within the finite
limits. It should also be noted that the contributions from “ghost” periodic orbits
are important near the bifurcation points. They make the trace formula continuous
as a function of η at all bifurcations.

Also when the stationary phase points σ∗
i are close to other boundaries of the tori,

the integrals have to be evaluated with finite limits; for instance, near the triangular
side σ1 = σ+1 (σ2), where we have the “creeping” points for the 3DPO inside the tori
(2.5) and the meridian elliptic 2DPO near the endpoint (σ1 = σ+1 , σ2 = 0) with a
large number of vertices, nv → ∞. Another example of such a special bifurcation
point is the separatrix (σ1 = 1, σ2 = 0), where 3DPO and hyperbolic 2DPO have a
finite limit nu/nv → 1/2 for nv → ∞ and nu → ∞. In this case, the curvature K11

becomes infinite, and the amplitude (3.16) approaches zero. Thus, to improve the
trace formula near the bifurcations, we have to evaluate the generalized error integral
erf(Zβ−i ,Zβ+i ) (or corresponding complex Fresnel functions46)) in Eq. (3.16) within
the finite limits Zβ±i given by Eq. (3.19) or (3.20).

For a spheroidal cavity, we have another bifurcation in the spherical limit, where
the “azimuthal” Jacobian Jβ22 and Jβ12 (3.13) (σ2 ∝ I2ϕ) vanish.9) This is the reason
for the divergence of the standard POT result (3.21) in the spherical limit. Our im-
proved trace formula (3.16) is finite in the spherical limit, because the “azimuthal”

generalized error function erf(Zβ−2 ,Zβ+2 ) is proportional to
√
Jβ22 in this limit, and

thus this “azimuthal” Jacobian is exactly canceled by that coming from the denomi-
nator of Eq. (3.16). Thus, as shown in Ref. 9), the elliptic 2DPO term (K=2) in the
level density approaches the spherical Balian-Bloch result for the most degenerate
planar orbits with larger degeneracy (K = 3):

δg
(3)
sph(ε) =

√
kR

ε0

∑
t≥1, q>2t

sin
(

2πt
q

)√
sin(2πt/q)

qπ

× sin
[
2kRq sin

(
πt

q

)
− 3π

2
q − (t− 1)π − π

4

]
, (3.25)

where t = Mnu and q = Mnv. Note that Eq. (3.25) can be derived directly from
the phase-space trace formula (3.2) or from the Poisson-sum trace formula, both
rewritten in terms of the spherical action-angle variables.

3.5. Equatorial-plane orbits

We cannot apply the Poisson-sum trace formula (3.9) for equatorial-plane orbits,
because, although the stationary-phase conditions for Θ′′

ϕ and Θ′′
v in Eq. (3.8) hold
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identically, this is not the case for the angle variable Θ′′
u. We thus apply the ISPM

for the integration over Θ′′
u.

Returning to Eq. (3.6), we transform the phase-space trace formula into new
“parallel” (Θ′′

v ; I
′
v) and “perpendicular” (Θ′′

u, Θ
′′
ϕ; I

′
u, I

′
ϕ) variables, as explained in

Appendix B for more general (integrable and non-integrable) systems. We then carry
out the integration over the variables (I ′u, I ′ϕ) in terms of the ISPM by transforming
them into the variables σi. Next, we consider the integration over the angle variable
Θ′′
u using the ISPM, as there is an isolated stationary point at Θ∗

u = 0 (or an integer
multiple of 2π). We expand the exponent phase in a power series of Θ′′

u about
Θ∗
u = 0,

Sα
(
I, I ′′, tα

)
+
(
I ′′ − I

) · Θ′′

= pLEQ +
1
2

∑
ij

JEQij (σi − σ∗
i )(σj − σ∗

j ) +
1
2
JEQ⊥

(
Θ′′
u

)2 + · · · , (3.26)

where the stationary point σ∗
1 = σ∗

2 ≡ σ∗ is given by

σ∗ =
(
I∗ϕ
pζ

)2
=

a2 cos2 φ
ζ2

=
cos2 φ
η2 − 1

, I∗ϕ = p a cosφ. (3.27)

The length of the equatorial polygon with nv vertices and M rotations, LEQ, is given
by

LEQ = 2MnvR sinφ, φ = πnϕ/nv. (3.28)

In this way, we finally obtain the contribution of EQPO,

δg
(1)
EQ(ε) =

1
ε0

Re
∑
EQ

A
(1)
EQ exp

{
i
(
kLEQ − π

2
νEQ

)}
, (3.29)

with the amplitudes A(1)
EQ given by

A
(1)
EQ =

√
sin3 φ

πMnvkRηF
EQ
z

erf
(Z−

1 ,Z+
1

)
erf

(Z−
2 ,Z+

2

)
erf

(Z−
3 ,Z+

3

)
(3.30)

(see Appendix B for a detailed derivation). Here, Z±
i are the limits given by

Eq. (3.19) or (3.20) for i = 1, 2, and Z−
3 = 0,Z+

3 = Z+
⊥ from Eq. (B.19). The latter

is related to the finite limits 0 ≤ Θu ≤ π/2 for the angle Θu in the trace integration
in Eq. (3.6), taking into account explicitly the factor 4, due to the time-reversal and
spatial symmetries.

For the total asymptotic phase νEQ, we find

νEQ = µEQ +
1
2
, µEQ = 3Mnv, (3.31)

where µEQ is the Maslov index. We calculated this phase using the Maslov-Fedoryuk
theory43) at a point asymptotically far from the bifurcations. Note that the total
phase is defined as the sum of the asymptotic phase νEQ and the argument of the
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Table I. Bifurcation points of some short periodic orbits.

periodic orbit ηbif periodic orbit ηbif

(4,2,1)
√
2 (6,3,1) 2

(5,2,1) 1.618... (7,3,1) 2.247...

(6,2,1)
√
3 (8,3,1) 2.414...

(7,2,1) 1.802... (9,3,1) 2.532...

(8,2,1) 1.848...

amplitude AEQ, given by Eq. (3.30), so that it depends on kR and η through the
complex arguments of the product of the error functions. In the derivations of
Eq. (3.30) we have taken into account the off-diagonal curvature, as in the previous
subsection, but much smaller corrections due to the mixed derivatives of the action
Sα with respect to Θ′′

u and σi are ignored, taking σi = σ∗
i in Eq. (3.26).

The bifurcation points are associated with zeros of the stability factor FEQ
z and

given by

ηbif =
sinφ

sin (nφ/M)
, n = 1, 2, · · · ,M. (3.32)

The bifurcation points most important for the superdeformed shell structure are
listed in Table I.

When the stationary points are located inside the finite integration region far
from the ends, we transform the error functions in Eq. (3.30) into the Fresnel func-
tions and extend their arguments to ±∞, except in the case that the lower limit
is exactly zero. From the definitions of the limit, Eqs. (3.19) and (B.19), for Z±

i ,
we have asymptotically Z+

i → +∞ (i = 1, 2, 3), Z−
1 = Z−

3 → 0 and Z−
2 → 0 for

diameters and Z−
2 → −∞ for the other EQPO. Finally, we arrive at the standard

Balian-Bloch formula3) for the amplitude A(1)
EQ,

A
(1)
EQ =

fEQ√
πkRη

√
sin3 φ

MnvF
EQ
z

, (3.33)

where fEQ = 1 for the diameters and 2 for the other EQPO [erf(Z−
2 ,Z+

2 ) → fEQ in
this limit].

As seen from Eq. (3.33), there is a divergence at the bifurcation points where
FEQ
z → 0. We emphasize that our ISPM trace formula (3.29) has no such divergences.

Indeed, the stability factor FEQ
z responsible for this divergence is canceled by FEQ

z

from the upper limit Z+
3 , Eq. (B.19), of the last error function in Eq. (3.30), Z+

3 ∝√
FEQ
z , and we obtain the following finite result at the bifurcation point:

A
(1)
EQ =

η1/3 sinφ
√
η2 − sin2 φ√

2i(η2 − 1)Mnv
erf

(Z−
1 ,Z+

1

)
erf

(Z−
2 ,Z+

2

)
. (3.34)

It is very important to note that there is a local enhancement of the amplitude
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(3.34) by a factor of order
√
kR∗) near the bifurcation point. This enhancement

is associated with a change of the degeneracy parameter K by one locally near the
bifurcation point. In general, any change of the degeneracy parameter K by ∆K
is accompanied by an amplitude enhancement by a factor of (kR)∆K/2, because
∆K extra exact integrations are carried out. This enhancement mechanism of the
amplitude obtained in the ISPM is quite general, and it is independent of the specific
choice of the potential shapes.

We mention that a more general trace formula that can be applied also to non-
integrable but axially symmetric systems can be derived from the phase-space trace
formula (see Appendix B).

The contribution of the equatorial diameters in Eq. (3.29) for deformations far
from bifurcation points reduces to the Balian-Bloch result for spherical diameters
(K = 2),

δg
(2)
sph(ε) = − 1

ε0

∑
M

1
2πM

sin(4MkR). (3.35)

The amplitudes for planar polygons in the equatorial plane vanish in the spherical
limit (see Appendix B). Note that the contributions of the planar polygons in the
spherical cavity, Eq. (3.25), are obtained as the limit of A(2)

2D, Eq. (3.16), for elliptic
orbits in the meridian plane.9)

3.6. Long diametric orbits and separatrices

As mentioned in §2, the curvatures Kβ
ij become infinite near the separatrix

(σ1 = 1, σ2 = 0) (see Appendix C). This separatrix corresponds to the isolated
long diameters (K = 0) along the symmetry axis. Thus, for the derivation of their
contributions to the trace formula, the expansion up to second order in action-
angle variables considered above fails, as for the turning and caustic points in the
usual phase space coordinates. However, we can apply the Maslov-Fedoryuk the-
ory39), 41)–43) in a similar way as the calculation of the Maslov indices associated
with the turning and caustic points, but with the use of the action-angle variables
in place of the usual phase-space variables. This is similar to the derivation of the
long diametric term in the elliptic billiard.28)

Starting from the phase-space trace formula (3.6), we note that the spheroidal
separatrix problem differs from that for the elliptic billiard system28) by the integrals
over the two azimuthal variables Θ′′

ϕ and I ′ϕ, which are additional to the integrals
over Θ′′

u and I ′u. We expand the phase of the exponent in Eq. (3.6) with respect to
the action I ′ϕ and angle Θ′′

ϕ about the stationary points I∗ϕ = 0 and an arbitrary Θ∗
ϕ

(for instance, Θ∗
ϕ = 0), and take into account the third order terms, in a similar way

as for the variables Θ′′
u and I ′u (see Appendix C). Note that we consider here small

deviations from the long diameters, and Θ∗
ϕ determines the azimuthal angle of the

final point r′′ of this trajectory near the symmetry axis.

∗) The parameter of our semiclassical expansion is in practice
p

kLβ

�
∝ √

kR
�
. It is actually

large for 3D orbits (Lβ ∼ 10R) associated with superdeformed shell structures in nuclei.
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After the procedure explained in Appendix C, we obtain

δg
(0)
LD(ε) =

πb

2ε0R
Re

∑
M

1
kR

eikLLD−iπ
2
νLD

2∏
j=1

e
2i
3

h
(w

‖
j )

3/2+(w⊥
j )

3/2
i
(
w

‖
jw

⊥
j

)1/4
√

|c‖2,jc⊥2,j|
×[Ai(−w‖

j ) + iGi(−w‖
j )]

×[Ai(−w⊥
j ,Z−

⊥ ,Z+
⊥ ) + iGi(−w⊥

j ,Z−
⊥ ,Z+

⊥ )] (3.36)

(see Appendix C for the notation used here).
For finite deformations and sufficiently large kR, i.e. for large pζ ∝ kR

√
η2 − 1,

near the separatrix σ1 → 1, σ2 → 0, the incomplete Airy functions in this equation
can be approximated by the complete ones. Thus, Eq. (3.36) reduces to the standard
Gutzwiller result for isolated diameters,3), 9)

δg
(0)
LD(ε) =

2b
πε0kR2

∑
M

1
|FLD
xy | cos

[
kLLD(M)− π

2
νLD

]
, (3.37)

with the length LLD(M) = 4Mb = 4Mη2/3R and the stability factor FLD
xy for long

diameters given by Eq. (C.20).
For the calculation of the asymptotic phase νLD, we use this asymptotic ex-

pression and calculate the Maslov indices µLD using the Maslov-Fedoryuk theory,43)

obtaining
νLD = µLD + 2, µLD = 4M. (3.38)

The additional phases, dependent on deformation and energy, come from the argu-
ments of the complex exponents and Airy functions of the complex amplitude.

In the spherical limit, both the upper and lower limits of the incomplete Airy
functions in Eq. (3.36) approach zero, and the angle integration has the finite limit
π/2 (see Appendix C). With this, the other factors ensure that the amplitude for
long diameters becomes zero; that is, the long diametric contribution to the level
density vanishes in the spherical limit.

§4. Level density, shell energy and averaging

4.1. Total level density

In spheroidal cavity systems, the ISPM total semiclassical level density can be
written as a sum over all periodic orbit families:

δgscl(ε) = δg
(2)
3D(ε) + δg

(2)
2D(ε) + δg

(1)
EQ(ε) + δg

(0)
LD(ε) =

∑
β

δg
(β)
scl (ε), (4.1)

where the first two terms represent the contributions from the most degenerate (K =
2) families of periodic orbits, the 3DPO and the meridian-plane 2DPO, given by
Eq. (3.15), the third term the EQPO given by Eq. (3.29), and the fourth term the
long diameters given by Eq. (3.36).
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4.2. Semiclassical shell energy

The shell energy δE can be expressed in terms of the oscillating part δg(β)scl (ε) of
the semiclassical level density (4.1) as4), 9), 10)

δE =
∑
β

(
�

tβ

)2
δg

(β)
scl (εF), N =

∫ εF

0
dε g(ε). (4.2)

Here, tβ denotes the period for a particle moving with the Fermi energy εF along the
periodic orbit β,

tβ = MTβ =
2πM
Ωβ

, (4.3)

Tβ being the primitive period (M = 1), M the number of repetitions, and Ωβ the
frequency. The Fermi energy εF is determined by the second equation of (4.2), where
N is the particle number.

In the derivation of Eq. (4.2) we used an expansion of the amplitudes Aβ(ε)
about the Fermi energy ε = εF. Although the Aβ(ε) are oscillating functions of
the energy ε (or kR), we can apply such an expansion, because the Aβ are much
smoother than the oscillations coming from the exponent function of kLβ. The latter
oscillations are responsible for the shell structure, while the oscillations of Aβ merely
lead to slight modulations with much smaller frequencies.

Thus, the trace formula for δE differs from that for δg only by the factor
(�/tβ)2 = (�2kF/mLβ)2 near the Fermi surface, i.e. longer orbits are additionally
suppressed by the factor 1/L2β. The semiclassical shell energy is therefore determined
by short periodic orbits.

4.3. Average level density

For the purpose of presentation of the level density improved at the bifurcations
we need to consider only an average level density, thus also avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The average level density is obtained by folding the level density with a Gaussian
of width Γ :

gΓ (ε) =
1√
πΓ

∫ ∞

−∞
dε′ g(ε′) e−(

ε−ε′
Γ

)2 . (4.4)

The choice of the Gaussian form of the averaging function is insignificant and is
made here only for the sake of mathematical simplicity.

Applying now the averaging procedure defined above to the semiclassical level
density (4.1), we obtain3), 9)

δgΓ,scl(ε) =
∑
β

δg
(β)
scl (ε) e

−(ΓMTβ
2~

)2 =
∑
β

δg
(β)
scl (ε) e

−( γLβ
2R

)2 . (4.5)

The latter equation is written specifically for cavity problems in terms of the orbit
length Lβ (in units of the typical length scale R) and the dimensionless parameter
γ defined by

Γ = 2γ
√
εε0 , (4.6)
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where γ is the averaging width with respect to kR. Thus, the averaging yields an
exponential decrease of the amplitudes with increasing Lβ and γ. In Ref. 9), the
value of γ is chosen to be 0.6. In this case, all longer orbits are strongly damped and
only the short periodic orbits contribute to the oscillating part of the level density.
For the study of the bifurcation phenomena in the superdeformed region, we need a
significantly smaller value of γ.

Finally, we can say that the contribution of an orbit family to the average density
of states is more important as the degeneracy of the orbit is higher, and as the volume
occupied by the orbit family in the phase space is larger, and also as the length of
the orbit is shorter.

§5. Quantum spheroidal cavity

5.1. Oscillating level density

We calculated the quantum spectrum using the spherical wave decomposition
method,50) in which wave functions are decomposed into the spherical waves as

ψm(r) =
∑
l

′
Cl jl(kr)Ylm(Ω). (5.1)

Here, m denotes the magnetic quantum number, and
∑′ indicates that l is summed

over even (odd) numbers for positive (negative) parity states. The functions jl and
Ylm are the usual spherical Bessel functions and spherical harmonics, respectively.
The expansion coefficients Cl are determined so that the wave function (5.1) satisfies
the Dirichlet boundary condition

ψm(r = R(Ω)) = 0, (5.2)

or equivalently, ∫
dΩY ∗

lm(Ω)ψm(r = R(Ω)) = 0, ∀l. (5.3)

By inserting (5.1) into (5.3), we obtain the matrix equation

∑
l′

′
Bll′(k)Cl′ = 0, Bll′(k) =

∫
dΩY ∗

lm(Ω)jl′(kR(Ω))Yl′m(Ω). (5.4)

Truncating the summation l at a sufficiently large number lc, we can obtain the
energy eigenvalue εn = �

2k2n/2m by searching for the roots satisfying

detB(kn) = 0. (5.5)

Figure 5 displays the energy level diagram for the prolate spheroidal cavity as func-
tions of the axis ratio η > 1. In Fig. 6, we plot shell structure energy

δE(N, η) =
N∑
n=1

εn(η)− Ẽ(N, η) (5.6)
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Fig. 5. Single-particle spectrum for the spheroidal cavity as a function of the axis ratio η. Solid

and dashed curves represent the positive and negative parity levels, respectively.

as a function of η and particle number N . As well as the strong shell effect at the
spherical shape (η = 1), one clearly sees a prominent shell structure for a superde-
formed shape (η ∼ 2).

Next, we calculated the coarse-grained level density with the usual Strutinsky
smoothing procedure by treating the wave number k as smoothing variable:

gγ(k) =
1
γ

∫ ∞

0
dk′RfM

(
kR− k′R

γ

)
g(k′). (5.7)

As the smoothing function fM (x), we use a Gaussian with M -th order curvature
corrections,

fM (x) =
1√
π
e−x

2
L
1/2
M/2(x

2), (5.8)

where Lαn(z) represents a Laguerre polynomial. Equation (4.4) corresponds to the
case of M = 0. In the following, we set the order of curvature corrections to M = 6
and the smoothing width to γ̃ = 2.5, with which we can nicely satisfy the plateau
condition.44) A coarse-graining is also performed using the same smoothing function
but with smaller γ. We define the oscillating part of the level density by subtracting
the smooth part as

δgγ(k) = gγ(k)− gγ̃(k). (5.9)

The left-hand side of Fig. 7 displays δgγ(k) with γ = 0.3 as a function of η and
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Fig. 6. Shell structure energy δE as a function of η and N1/3, where N is the neutron (pro-

ton) number, taking the spin-degeneracy factor into account. Energies are counted in units of

~
2/2mR2 (∼ 30A−2/3MeV).

kR. It is seen that a clear shell structure emerges for η ∼ 2, corresponding to the
superdeformed shape.

Let us consider the mechanism of this strong shell effect. If a single orbit makes
a dominant contribution to the periodic-orbit sum

δgscl(ε) =
∑
β

aβ(k) cos(kLβ − πνβ/2), aβ(k) = Aβ/ε0, (5.10)

the major oscillating pattern in δg should be determined by the phase factor of the
dominant term. In that case, the positions of the valley curves for δg in the (η, kR)
plane are given by

kLβ − πνβ/2 = (2n+ 1)π. (n = 0, 1, 2, · · · ) (5.11)

The right-hand side of Fig. 7 plots the stationary action curves (5.11) for several
periodic orbits. The green solid curves represent the triangular orbit in the meridian
plane. The other longer meridian orbits exhibit the same behavior but with smaller
distances. The red dashed curves represent the star-shaped orbit with five vertices in
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the equatorial plane. It bifurcates at η = 1.618 . . . and the 3D orbit (5,2,1) thereby
appears (red solid curves). The sequence (n, 2, 1) (n = 5, 6, 7, · · · ) exhibit similar
behaviors, shifting the bifurcation points slightly to larger η. Comparing with the
plot of quantum δg, there is a clear correspondence between the superdeformed shell
structure and the bifurcation of above star-shaped orbits. There is also a correspon-
dence between the bifurcations of the equatorial-plane orbits (n, 3) (n = 7, 8, 9, · · · )
with the hyperdeformed shell structure emerging at η � 2.5. The significant shell
energy gain occurring at the superdeformed shape obtained in Fig. 6 is considered
to be a result of this strong shell effect in the level density.

5.2. Fourier analysis of the level density

Fourier analysis is a useful tool to investigate the quantum-classical correspon-
dence in the level density.3) Due to the simple form of the action integral Sβ = �kLβ,
it is easy to Fourier transform the semiclassical level density gscl(k) with respect to
k. Let us define the Fourier transform F (L) by

F (L) =
∫

dke−ikLg(k). (5.12)

In actual numerical calculations, we multiply the integrand of the right-hand side of
this equation by a Gaussian truncation function, obtaining

F∆(L) =
∆√
2π

∫
dke−

1
2
(k∆)2e−ikLg(k). (5.13)

Inserting the semiclassical level density (5.10), the Fourier transform is expressed as

F scl
∆ (L) = F̄∆(L) +

1
2

∑
β

e−iπνβ/2aβ
(
i
∂

∂L

)
exp

[
−1

2

(
L− Lβ

∆

)2]
. (5.14)

This is a function that has peaks at the lengths of the classical periodic orbits L = Lβ.
On the other hand, we can calculate F (L) by inserting the quantum mechanical level
density g(k) =

∑
n δ(k − kn) as

F qm
∆ (L) =

∆√
2π

∑
n

e−
1
2
(kn∆)2e−iknL. (5.15)

This quantity should exhibit successive peaks at orbit lengths L = Lβ. Thus we can
extract information concerning classical periodic orbits from the quantum spectrum.
On the left-hand side of Fig. 8, we plot the Fourier transform (5.15) as a function of L
and η. On the right-hand side of Fig. 8, the lengths of classical periodic orbits Lβ(η)
are shown. There, red curves represent the orbits M(nv, 2, 1) (nv = 4, 5, 6, · · · ).
We find strong Fourier peaks at η � 2, corresponding to the periodic orbits (5,2,1),
(6,2,1) and (7,2,1) just after the bifurcation points. We also find Fourier peaks at
η � 2.5, corresponding to the periodic orbits (7,3,1) and (8,3,1), etc. Thus, we can
conclude that these periodic orbit bifurcations play essential roles in the emergence
of superdeformed and hyperdeformed shell structures.



Sym
m

etry
B
reaking

and
B
ifurcations

in
the

P
eriodic

O
rbit

T
heory.

II
877

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4

L

η

0 40 80
|F| [arb unt]

0

5

10

15

20

1 1.5 2 2.5 3 3.5 4

L

η

equatorial
meridian

M(n,3,2)

M(n,2,1)
M(n,3,1)

Fig. 8. Fourier amplitude |F (L)| of the single-particle level density (left-hand side) and lengths of classical periodic orbits (right-hand side).



878 A. G. Magner, K. Arita, S. N. Fedotkin and K. Matsuyanagi

5.3. Coarse-grained shell structure energy

In order to prove that the shell structure at the superdeformed shape is due to
the bifurcated orbits, we calculated the ‘coarse-grained’ shell energy defined by

δẼγ(N) =
∫ k̃F(γ)

ε(k)gγ(k)dk −
∫ k̃F(γ̃)

ε(k)gγ̃(k)dk, (5.16)

where the smoothed Fermi wave number k̃F in each term is determined so that they
satisfy the particle number condition∫ k̃F(γ)

gγ(k)dk =
∫ k̃F(γ̃)

gγ̃(k)dk = N. (5.17)

By coarse-graining with the width γ, a shell structure of resolution ∆kR = γ is
extracted. Classical orbits relevant to such a structure are those with lengths

L < Lmax =
2πR
γ

. (5.18)

Setting γ = 0.6, contributions from periodic orbits with L>∼ 10R are smeared out.
Around the superdeformed shape, bifurcated orbits have lengths L ∼ 10R, and these
contributions are significantly weakened by smoothing with γ = 0.6, and the major
oscillating pattern of δE should disappear if these bifurcated orbits are responsible
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Fig. 9. Shell structure energies plotted as functions of N1/3. Solid curves represent the exact shell

structure energies. Dashed and dotted curves represent those calculated by using the coarse-

grained level density gγ(k) with the smoothing widths γ = 0.3 and 0.6, respectively.
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for the superdeformed shell effect. In Fig. 9, the coarse-grained shell energies (5.16)
calculated for η = 1, 2 and 2.5 with γ = 0.3 and 0.6 are compared with the exact shell
structure energies. In the upper panel, it is seen that the spherical shell structure
survives after smoothing with γ = 0.6, indicating that the major structure is deter-
mined by orbits whose lengths are sufficiently shorter than 10R. In contrast with it,
the middle panel shows that the major oscillating pattern of the superdeformed shell
structure is considerably broken after smoothing with γ = 0.6. The same argument
is valid also for η = 2.5. This strongly supports the significance of bifurcated orbits
for the superdeformed and hyperdeformed shell structures.

§6. Enhancement of semiclassical amplitudes near the bifurcation points

In this section, we present some results of the semiclassical ISPM calculation,
which clearly show enhancement phenomena of the semiclassical amplitudes |A3D|
and |AEQ| near the bifurcation points.

Figure 10(a) shows the modulus of the complex amplitude A3D [Eq. (3.16)]
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Fig. 10. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2),

calculated at kR = 25 with the ISPM, are plotted as functions of the deformation parameter

η by thick and thin solid curves, respectively. They are compared with the SSPM amplitudes

(dashed curves). (b) The same as (a), but for the 3DPO (6,2,1) and the EQPO 2(3,1).
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Fig. 11. (a) ISPM3 amplitudes for the 3DPO (5,2,1), calculated at kR = 25, are plotted as functions

of the deformation η by thick-solid curves. For comparison, the ISPM amplitudes and the results

of exact integration in the Poisson-sum trace formula are plotted by thin-solid and thick-dotted

curves, respectively. (b) The same as (a), but for the 3DPO (6,2,1).
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for the 3DPO (5, 2, 1) and AEQ [Eq. (3.30)] for the EQPO (5, 2) as functions of
the deformation parameter η. They are compared with those of the SSPM. The
SSPM amplitude for the EQPO (5, 2) is divergent at the bifurcation deformation
ηbif = 1.618 . . ., while the ISPM amplitude is finite and continuous through this
bifurcation point, with a rather sharp maximum at this point. This difference is
due to a local change of the symmetry parameter K from 1 to 2 at the bifurcation,
and the associated enhancement of the amplitude is of order

√
kR. As seen from

Fig. 10(a), the ISPM amplitude for the (5, 2, 1) is continuous through the bifurcation
point and exhibits a significant enhancement slightly to the right of it. It approaches
the SSPM amplitude given by Eq. (3.21) away from the bifurcation point. The ISPM
enhancement for the 3DPO is also of order

√
kR, because here, as in the case of the

bifurcating EQPO, the degeneracy parameter K changes from 1 to 2. The same is
true for the 3DPO (6,2,1) and the EQPO 2(3,1), as shown in Fig. 10(b).

In Fig. 11, we consider corrections from the 3rd-order terms in the expansion of
the action about the stationary point. Here we incorporate the 3rd-order terms in
the variable σ1 (ISPM3) which are expected to be important for the 3DPO (6,2,1)
whose curvature K11 is identically zero (see Appendix D). We also show results of
the exact integration in the Poisson-sum trace formula (3.10) (marked “POISSON”).
It is seen that the results of the ISPM3 for the (5, 2, 1) and (6, 2, 1) orbits are in
good agreement with those of the ISPM in the most important regions, near the
bifurcations, and on their right-hand sides. It is gratifying to see that the ISPM
and the ISPM3 amplitudes |A3D| for (5, 2, 1) and (6, 2, 1) are also in good agreement
with the results of the exact integration in the Poisson-sum trace formula. With the
3rd-order corrections, excessive ghost orbit contributions in the ISPM (bumps in the
ISPM amplitudes on the left-hand side of the bifurcation point) are removed, and
better agreement with the result of the exact integration is obtained. Except for this,
the corrections due to the 3rd-order terms are rather small, and good convergence
is achieved up to the second-order terms.

The amplitudes |Aβ| are slightly oscillating functions of kR. Because the period
of this oscillation is much larger than that of the shell energy oscillation, the expan-
sion about the Fermi energy εF (or kFR) can be used in the derivations of both the
semiclassical ISPM shell energy δEscl and the oscillating level density δgscl (3.15).
Figure 12 displays the semiclassical amplitudes A3D for the 3DPO (5,2,1) and AEQ

for the EQPO (5, 2) as functions of kR at η = 1.618 . . . (top panel) and η = 2 (bot-
tom panel). In this figure, the semiclassical amplitudes A3D for the 3DPO (6,2,1)
and AEQ for the EQPO 2(3,1) are also plotted as functions of kR at the bifurcation
point η =

√
3 (middle panel). We see that for η = 2 the amplitudes |A3D| for the

3DPO (5, 2, 1) and (6, 2, 1) become much larger than the amplitude |AEQ| for the
EQPO.

§7. Comparison between quantum and semiclassical calculations

In this section we present results of calculations of the level densities and shell
energies using the quantum Strutinsky method and the semiclassical ISPM, and make
comparisons between the quantum and semiclassical calculations. In the quantum
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Fig. 12. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2)

plotted by bold and thin solid curves, respectively, as functions of kR at the bifurcation point

η = 1.618 . . .. (b) The same as (a), but for the 3DPO (6,2,1) and the EQPO 2(3,1) at the

bifurcation point η = 1.732 . . .. (c) Semiclassical amplitudes |A3D| for (5,2,1), (6,2,1) and |AEQ|
for (5,2) plotted by thin-solid, thick-solid and dotted curves, respectively, as functions of kR at

η = 2.0.

calculations, the averaging parameter γ = 0.3 is used.
Figure 13 displays oscillating level densities δg for relatively small deformations.

There, QM and ISPM denote the δg obtained with the quantum Strutinsky method
and the semiclassical ISPM, respectively. For η = 1.2 we obtain good convergence of
the periodic orbit sum (4.1) by taking into account the short elliptic 2DPO with nv ≤
12, nu = 1, the short EQPO with the maximum vertex number pmax = M(nv)max =
14, and the maximum winding number tmax = Mnϕ = 1 (M = 1, nϕ = 1). The
ISPM result is in good agreement with the quantum result. For the bifurcation
point η =

√
2 of the butterfly orbit (4, 2, 1) and η = 1.5 slightly to the right of it,

the convergence of the periodic-orbit sum is achieved by taking into account the
contributions from the bifurcating orbits, (4, 2, 1) and the twice-repeated diameter
2(2, 1) with tmax = 2, in addition to the 2DPO and the EQPO considered in the
η = 1.2 case.

Figure 14 presents the oscillating level densities for the bifurcation deformations:
η = 1.618 . . . for the EQPO (5, 2), η =

√
3 for the EQPO 2(3, 1), and η = 2 for the

triply repeated equatorial diameters 3(2, 1). It is interesting to compare this figure
with Fig. 15, where some results of simplified semiclassical calculations are given. In
the top panel of Fig. 15, the SSPM is used instead of the ISPM. We see that the
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Fig. 13. Oscillating level densities evaluated with the semiclassical ISPM and a quantum mechan-

ical method are shown by dotted and solid curves, respectively, as functions of kR for several

deformations η.
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Fig. 14. The same as Fig. 13 but for larger deformations.

SSPM is a good approximation for η = 1.2. In the middle and bottom panels, only
bifurcating orbits are taken into account in the periodic-orbit sum: Only the 3DPO
(5, 2, 1), the EQPO (5, 2) and the butterfly (4, 2, 1) are accounted for in the middle
panel, while only the 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1) and (8, 2, 1) in the bottom
panel. By comparing with the corresponding ISPM results shown in Fig. 15, we see
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Fig. 15. Comparison of the oscillating level densities calculated with a quantum mechanical method

(solid curves) and those obtained with some specific semiclassical calculations (dotted curves):

(a) the top panel gives a comparison with the SSPM result for η = 1.2; (b) the middle panel

displays the ISPM result in which only the bifurcating 3DPO (5, 2, 1), the EQPO (5, 2) and the

2DPO butterfly (4, 2, 1) are taken into account for the POT sum in Eq. (3.15) for η = 1.618 . . .;

(c) the bottom panel displays the ISPM result, in which only the four shortest 3DPO are taken

into account for η = 2.0.

that, for η = 1.618 . . . and 2, the major patterns of the oscillation are determined by
these short 3DPO.

Figures 16 and 17 display the shell energies, which respectively correspond to the
oscillating level densities shown in Figs. 13 and 14. Again, we see good agreement
between the results of the semiclassical ISPM and the quantum calculations. For
η = 1.2, good convergence is obtained by including only the shortest elliptic 2DPO
and EQPO, in the same way as for the level density δg (see Ref. 9)). For η =

√
2

and 1.5, the properties of the ISPM shell energies are similar to those considered
for the elliptic billiard system in Ref. 28). Now, let us more closely examine the
bifurcation effects in the superdeformed region by comparing Fig. 17 with Fig. 18.
In the top panel of Fig. 18, we show the ISPM result for η = 1.618 . . . in which only
the bifurcating 3DPO (5, 2, 1), the short EQPO (5, 2) and the hyperbolic 2DPO
(4, 2, 1) are taken into account. In the middle panel of this figure, we show the ISPM
shell energies at η = 1.732 . . ., calculated by taking into account only the 3DPO
(5, 2, 1), the bifurcating 3DPO (6, 2, 1) and the EQPO 2(3, 1). These comparisons
clearly indicate that a few dominant periodic orbits determine the properties of the
quantum shell structure at those bifurcation deformations. The bottom panel in
this figure displays the dominant contributions of only the few shortest 3DPO at
η = 2.0. Evidently, the short 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1) and (8, 2, 1) determine
the major oscillating pattern of the shell energy. Thus, we can say that they are
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Fig. 16. Semiclassical ISPM and quantum shell energies (in units of ε0) are plotted by dotted and

solid curves, respectively, as functions of N1/3.
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Fig. 17. The same as Fig. 16, but for larger deformations.

responsible for the formation of the shell structure at large deformations around the
superdeformed shape. These results of the calculation are in good agreement with
those obtained in Ref. 23) from the analysis of the length spectra (Fourier transforms
of the quantum level densities).
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Fig. 18. Comparison of quantum shell energies (solid curves) with those obtained with specific

semiclassical calculations (dotted curves): (a) the top panel presents the ISPM result for η =

1.618..., where only the bifurcating orbits (5,2,1), (5,2) and (4,2,1) are taken into account; (b) the

middle panel displays for η = 1.732... the contributions of only three orbits, the 3DPO (5, 2, 1)

and (6, 2, 1), and the EQPO 2(3, 1); (c) the bottom panel plots for η = 2.0 the contributions of

only the four shortest 3DPO to the ISPM sum.

§8. Conclusion

We have obtained an analytical trace formula for the 3D spheroidal cavity model,
which is continuous through all critical deformations where bifurcations of peri-
odic orbits occur. We find an enhancement of the amplitudes |Aβ| at deformations
η ∼ 1.6–2.0 due to bifurcations of 3D orbits from the short 2D orbits in the equa-
torial plane. The cause of this enhancement is quite general and independent of
the specific potential shapes. We believe that this is an important mechanism that
contributes to the stability of superdeformed systems, also in the formation of the
second minimum related to the isometric states in nuclear fission. Our semiclassical
analysis may therefore lead to a deeper understanding of shell structure effects in su-
perdeformed fermionic systems — not only in nuclei and metallic clusters, but also,
e.g., in deformed semiconductor quantum dots whose conductance and magnetic
susceptibilities are significantly modified by shell effects.
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Appendix A
Curvatures

A.1. Three-dimensional orbits

The action is written

S = 2πM (nvIv + nuIu + nϕIϕ) , (A.1)

where Iu, Iv and Iϕ are the partial actions. In a dimensionless form, they are

Iu =
pζ

π
Ĩu, Iv =

pζ

π
Ĩv, Iϕ =

pζ

π
Ĩϕ, (A.2)

where

Ĩu = 2
∫ z−

0

dz

1− z2

√
(z2 − z2−)(z2 − z2+), (A.3a)

Ĩv =
∫ zb

z+

dz

z2 − 1

√
(z2 − z2−)(z2 − z2+), (A.3b)

Ĩϕ = π
√
σ2. (A.3c)

The quantities z± are related to the variables σi by

z2+ + z2− = σ1 + 1, z2+z
2
− = σ1 − σ2. (A.4)

In terms of the elliptic integrals, (A.3) can be expressed as

Ĩu =
2
z+

[
(z2− − 1)F(k)− σ2Π(z2−, k) + z2+E(k)

]
, (A.5a)

Ĩv =
1
z+

{
(z2+ − z2−) [F(ϕ, k)− Π(ϕ, n, k)]− z2+E(ϕ, k)

}
+ zb sinϕ, (A.5b)

with

k =
z−
z+

, n =
1 − z2−
1 − z2+

, ϕ = arcsin

√
z2b − z2+
z2b − z2−

, zb = cosh vb =
η√

η2 − 1
. (A.6)

Here, we have used the standard definitions of the elliptic integrals of the first and
the third kind,∗)

F(ϕ, k) =
∫ ϕ

0

dx√
1 − k2 sin2 x

, (A.7a)

∗) The definitions of the elliptic integrals (A.7) are related with those in Ref. 46) as F(θ, κ) ≡
F(θ|α) and Π(θ, n, κ) = Π(n, θ|α) (κ = sinα).
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E(ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 x dx, (A.7b)

Π(ϕ, n, k) =
∫ ϕ

0

dx

(1− n sin2 x)
√

1− k2 sin2 x
, (A.7c)

and we have omitted the argument ϕ = π/2 for complete elliptic integrals.
The action (A.1) is written as

S = 2pζM
(
nv Ĩv + nuĨu + nϕĨϕ

)
. (A.8)

The curvatures Kij of the energy surface ε = H(σ1, σ2, ε) are defined as

Kij =
pζ

π
K̃ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σi∂σj

, (A.9)

and the frequency ratios in Eq. (A.9) are given by

ωu
ωv

≡ −
(
∂Iv
∂Iu

)
Iϕ

= −∂Ĩv/∂σ1

∂Ĩu/∂σ1
, (A.10)

ωϕ
ωv

≡ −
(
∂Iv
∂Iϕ

)
Iu

= −2
√
σ2
π

[
∂Ĩv
∂σ2

+
ωu
ωv

∂Ĩu
∂σ2

]
. (A.11)

We have used here the properties of Jacobians for the transformations from the
variables (Iu, Iϕ) to (σ1, σ2). For the first derivatives of the actions (A.3) with
respect to σ1 and σ2, we obtain

∂Ĩu
∂σ1

=
1
z+

F(k) ,
∂Ĩv
∂σ1

= − 1
2z+

F(ϕ, k) , (A.12a)

∂Ĩu
∂σ2

= − 1
z+

Π(z2−, k) ,
∂Ĩv
∂σ2

= CF F(ϕ, k) + CΠΠ(ϕ, n, k) , (A.12b)

with

CF =
z2+ − 1
2z+σ2

= − 1
2z+(z2− − 1)

,

CΠ = −z2+ − z2−
2z+σ2

=
z2+ − z2−

2z+(z2+ − 1)(z2− − 1)
. (A.13)

For the second derivatives of these actions, we obtain

∂2Ĩu
∂σ21

=
1

2z3+

{
1
k2

[
Π(k2, k)− F(k)

](∂z2−
∂σ1

− k2
∂z2+
∂σ1

)
− ∂z2+

∂σ1
F(k)

}
, (A.14a)

∂2Ĩv
∂σ21

= − 1
4z3+

{
1
k2

[
Π(ϕ, k2, k)− F(ϕ, k)

](∂z2−
∂σ1

− k2
∂z2+
∂σ1

)

−∂z2+
∂σ1

F(ϕ, k) +
2z2+
∆ϕ

∂ϕ

∂σ1

}
, (A.14b)
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∂2Ĩu
∂σ22

=
1

2z5+k21

[
Π(z2−, k) + 2z2+

∂Π(z2−, k)
∂n

+
1 + k2

k

∂Π(z2−, k)
∂k

]
, (A.14c)

∂2Ĩv
∂σ22

=
∂CF
∂σ2

F(ϕ, k) + CF

(
1
∆ϕ

∂ϕ

∂σ2
+
∂F(ϕ, k)

∂k

∂k

∂σ2

)
+
∂CΠ
∂σ2

Π(ϕ, n, k)

+CΠ

(
∂Π(ϕ, n, k)

∂ϕ

∂ϕ

∂σ2
+
∂Π(ϕ, n, k)

∂n

∂n

∂σ2
+
∂Π(ϕ, n, k)

∂k

∂k

∂σ2

)
,

(A.14d)

and

∂2Ĩu
∂σ1∂σ2

= − 1
2z5+k21

[
F(k) +

1 + k2

k

∂F(k)
∂k

]
, (A.14e)

∂2Ĩv
∂σ1∂σ2

=
1

4z5+k21

[
F (ϕ, k)− (σ1 + 1 − 2z2b ) tan θ

∆ϕz2b∆
2
θk1

+
1 + k2

k

∂F(ϕ, k)
∂k

]
.

(A.14f)

Here,

∆x =
√

1 − k2 sin2 x, k1 =
√

1− k2, θ = arcsin
(
z+
zb

)
, (A.15)

and

∂z2±
∂σ1

=
1
2

[
1 ± σ1 − 1√

(σ1 − 1)2 + 4σ2

]
=

1
2

[
1± z2+ + z2− − 2

z2+ − z2−

]
, (A.16)

∂ϕ

∂σ1
=

1
2

∂z2−
∂σ1

(z2b − z2+)− ∂z2+
∂σ1

(z2b − z2−)

(z2b − z2−)
√

(z2b − z2+)(z2+ − z2−)
, (A.17)

∂k2

∂σ2
= −1 + k2

z4+k
2
1

, (A.18)

∂CF
∂σ2

=
z2− − 2z2+ − 1

4z3+(1− z2−)2(z2+ − z2−)
, (A.19)

∂CΠ
∂σ2

= −σ2(3z2+ + z2−)− 2z2+(z2+ − z2−)2

4z3+σ22(z
2
+ − z2−)

, (A.20)

∂ϕ

∂σ2
=

(
2z2b − (σ1 + 1)

)
tan θ

2z2b z
4
+k

3
1∆

2
θ

, (A.21)

∂n

∂σ2
=

σ1 − 1
(1− z2+)2(z2+ − z2−)

, (A.22)

∂z2±
∂σ2

= ± 1
z2+ − z2−

. (A.23)

Derivatives of the elliptic integrals are given by

∂F(ϕ, k)
∂k

=
1
k

[
Π(ϕ, k2, k)− F(ϕ, k)

]
, (A.24)
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∂Π(ϕ, n, k)
∂ϕ

=
1

(1− n sin2 ϕ)∆ϕ
, (A.25)

∂Π(ϕ, n, k)
∂n

=
1
n

[Π21(ϕ, n, k)− Π(ϕ, n, k)] , (A.26)

∂Π(ϕ, n, k)
∂k

=
1
k

[Π13(ϕ, n, k)− Π(ϕ, n, k)] , (A.27)

with
Πij(ϕ, n, k) =

∫ ϕ

0

dx

(1− n sin2 x)i(1− k2 sin2 x)j/2
. (A.28)

A.2. Meridian-plane orbits

For the meridian-plane orbits for which Iϕ = 0 (σ2 = 0), the actions Iu and Iv
defined by Eq. (2.3) can be simplified. In the dimensionless form (A.2) we obtain
for the elliptic orbits,

Ĩu = 2
√
σ E

(
1√
σ

)
, (A.29a)

Ĩv =
√
σ

[
E
(
θe,

1√
σ

)
− E

(
1√
σ

)]
+

√
η2 − σ(η2 − 1)

η
√
η2 − 1

. (A.29b)

Here we have used the identity47)

Π(ϕ, k2, k) =
[
E(ϕ, k)− k2 sinϕ cosϕ/

√
1− k2 sin2 ϕ

]
/(1 − k2) . (A.30)

In this subsection, we omit the suffix “1” on the variable σ1 for brevity. For the
hyperbolic orbits, we have

Ĩu = 2
[
E(

√
σ)− (1− σ) F(

√
σ)
]
, (A.31a)

Ĩv = (1− σ)
[
F(

√
σ)− F(θh,

√
σ)
]
+ E(θh,

√
σ)

−E(
√
σ) +

√
η2 − σ(η2 − 1)

η
√
η2 − 1

. (A.31b)

Equations (A.29) and (A.31) can be regarded as parametric equations in terms of the
parameter σ for the energy surface of the meridian-plane orbits, ε(Ĩu, Ĩv, Ĩϕ = 0),
for its elliptic and hyperbolic parts, respectively.

The curvature K11 of the energy curve for the meridian-plane orbits can be
obtained by differentiating Eqs. (A.29) and (A.31) implicitly through the parameter
σ. In this way we obtain Eq. (3.13) with the dimensionless derivatives for the elliptic
orbits

∂Ĩu
∂σ

=
1√
σ

F
(

1√
σ

)
, (A.32a)

∂Ĩv
∂σ

= − 1
2
√
σ

[
F
(

1√
σ

)
− F

(
θe,

1√
σ

)]
, (A.32b)
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∂2Ĩu
∂σ2

= − 1

2
√
σ3

Π
(

1
σ
,

1√
σ

)
, (A.32c)

∂2Ĩv
∂σ2

=
1

4
√
σ3

[
Π
(

1
σ
,

1√
σ

)
− Π

(
θe,

1
σ
,

1√
σ

)
+

η
√
η2 − 1√

1− (1− σ−1)η2

]
.

(A.32d)

For the hyperbolic orbits, we have

∂Ĩu
∂σ

= F(
√
σ), (A.33a)

∂Ĩv
∂σ

=
1
2
[
F(θh,

√
σ)− F(

√
σ)
]
, (A.33b)

∂2Ĩu
∂σ2

=
1
2σ

[
Π(σ,

√
σ)− F(

√
σ)
]
, (A.33c)

∂2Ĩv
∂σ2

=
1
4σ

[
Π(θh, σ,

√
σ)− Π(σ,

√
σ)z + F(

√
σ)− F(θh,

√
σ)
]
. (A.33d)

Thus, for elliptic orbits, we obtain

K̃11 =
1

4
√
σ3

[
F(θe, κ)
F(κ)

Π(κ2, κ) − Π(θe, κ2, κ) +

√
η2 − σ(η2 − 1)

η
√
η2 − 1

]
, (A.34)

and for hyperbolic orbits,

K̃11 = − 1
4σ

[
F(θh, κ)
F(κ)

Π(κ2, κ) − Π(θh, κ2, κ)
]
. (A.35)

A.3. Equatorial-plane orbits

For the equatorial limit σ2 = σ1 ≡ σ we have, from (A.4),

z2− = 0, z2+ = σ + 1 . (A.36)

We thus obtain in this limit (k → 0)

∂Ĩu
∂σ1

=
π

2
√
σ + 1

,
∂Ĩv
∂σ1

= − ϕEQ

2
√
σ + 1

,
∂z2±
∂σ1

=
{
σ/(σ + 1)
1/(σ + 1)

}
(A.37)

and

∂2Ĩu
∂σ21

=
π(1− 2σ)
8(σ + 1)5/2

,

∂2Ĩv
∂σ21

=
1

8(σ + 1)5/2

{
(2σ − 1)ϕEQ +

1
2

sin (2ϕEQ)

−2
√
σ + 1

[
z2b (1− σ)− (σ + 1)

]
z2b

√
z2b − (σ + 1)

}
,

ϕEQ = arcsin

√
z2b − (σ + 1)

zb
. (A.38)
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Substituting (A.37) and (A.38) into (A.9), we finally obtain the equatorial limit,

K̃EQ
11 =

z2b (2σ − 1) + (σ + 1)

8z2b (σ + 1)2
√
z2b − (σ + 1)

. (A.39a)

In the same way, we obtain

K̃EQ
22 =

z2b (2− σ) + σ(σ + 1)

8z2bσ(σ + 1)2
√
z2b − (σ + 1)

, (A.39b)

K̃EQ
12 =

3z2b − (σ + 1)

8z2b (σ + 1)2
√
z2b − (σ + 1)

. (A.39c)

The determinant of the curvature matrix for EQPO becomes

det K̃EQ = − 1
32z2bσ(σ + 1)2

, (A.40)

which is negative for any orbit and for any deformation η > 1. This shows that
bifurcations of EQPO occur only through the zeros of the stability factor FEQ

z .

Appendix B
Derivation of the Trace Formula for the Equatorial-Plane Orbits

We start with the phase-space trace formula9), 28), 31), 40)

δgscl(ε) = Re
∑
α

∫
dq′′dp′

(2π�)3
δ
(
ε−H

(
q′,p′)) ∣∣J (

p′′
⊥,p

′
⊥
)∣∣1/2

× exp
{
i

�

[
Sα

(
p′,p′′, tα

)
+
(
p′′ − p′) · q′′]− i

π

2
να

}
, (B.1)

where the sum runs over all trajectories α, q = qα(t, q′′,p′) determined by the fixed
initial momentum p′ and the final coordinate q′′, H (q,p) is the classical Hamilto-
nian, and να is the phase related to the Maslov index, number of caustics and turning
points.39), 41)–43) The function Sα (p′,p′′, tα) is the action in the mixed phase-space
representation,

Sα
(
p′,p′′, tα

)
= −

∫ p′′

p′
dp · q (p) , (B.2)

related to the standard definition of the action Sα (q′, q′′, ε),

Sα
(
q′, q′′, ε

)
=
∫ q′′

q′
dq · p (q) , (B.3)

by the Legendre transformations (integration by parts),

Sα
(
p′,p′′, tα

)
= Sα

(
q′, q′′, ε

)
+
(
p′ − p′′) q′′, (B.4)
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tα being the time for a particle to revolve the trajectory α. The quantity J (p′′
⊥,p

′
⊥)

in Eq. (B.1) is the Jacobian for the transformation from p′′
⊥ to p′

⊥. Here, we have
introduced the local system of the phase-space coordinates q =

{
q‖, q⊥

}
and p ={

p‖,p⊥
}
, splitting the vectors into the parallel and perpendicular components with

respect to the trajectory α.
For the equatorial-plane periodic orbits (EQPO), one of the components in q⊥

and p⊥ can be taken along the symmetry axis, say z and pz, keeping for other per-
pendicular components the same suffix, q⊥ and p⊥. After the transformation to this
local phase-space coordinate system and integration over the “parallel” momentum
p‖ = p =

√
2mε by using the δ-function in Eq. (B.1), we obtain, for the contribution

from the EQPO (K = 1),

δg
(1)
EQ(ε) =

1
(2π�)3

Re
∑
α

∫ dq′′‖
|q̇′′‖ |

∫
dq′′⊥dp

′
⊥

∫
dz′′dp′z

∣∣J (
p′′,p′)∣∣1/2

× exp
{
i

�

[
Sα

(
p′,p′′, tα

)
+
(
p′′ − p′) · q′′]− i

π

2
να

}
, (B.5)

where q̇‖ = ∂H/∂p‖ = p/m is the velocity. In spheroidal action-angle variables,
q‖ = Θv, p‖ = Iv, q̇‖ = ωv, q⊥ = Θϕ = ϕ, p⊥ = Iϕ, z = Θu, pz = Iu, and we have

δg
(1)
EQ(ε) =

1
(2π�)3

Re
∑
α

∫
dΘ′′

v

|ωv|
∫

dΘ′′
ϕ dI

′
ϕ

∫
dΘ′′

u dI
′
u

∣∣J (
I ′′ϕI

′′
u , I

′
ϕI

′
u

)∣∣1/2
× exp

{
i

�

[
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′]− i

π

2
να

}
. (B.6)

We now perform the integrations using the expansion of the action Sα about the
stationary points:

Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′

= Sβ(ε) +
1
2

∑
ij

Jij(σi − σ∗
i )(σj − σ∗

j ) +
1
2
J⊥ (z − z∗)2 + · · · . (B.7)

Here, we omit the corrections associated with mixed derivatives of type ∂2S/∂Θ∂I
for simplicity. J⊥ is the Jacobian corresponding to the second variation of the action
Sα with respect to the angle variable Θu:

JEQ⊥ =
(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′
u
2

)
EQ

=
(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)
EQ

.

(B.8)

This quantity can be expressed in terms of the curvatures KEQ and the Gutzwiller
stability factor FEQ

z ,

FEQ
z = −

[(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)/ ∂I ′u
∂Θ′′

u

]
EQ

= 4 sin2
[
1
2
Mnv arccos

(
1− 2η−2 sin2 φ

)]
, (B.9)
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as

JEQ⊥ = − FEQ
z

(Ju − J2uϕ/Jϕ)EQ
= − FEQ

z

2πMnv(Ku −K2
uϕ/Kϕ)EQ

. (B.10)

In these equations we have used the simple identical Jacobian transformations(
∂I ′u
∂Θ′′

u

)−1

I′ϕ
=

∂(Θ′′
u, I

′
ϕ)

∂(I ′u, I ′ϕ)
=

∂Θ′′
u

∂I ′u
− ∂Θ′′

u

∂I ′ϕ

∂I ′ϕ
∂I ′u

= Ju − Juϕ
Juϕ
Jϕ

.

The curvature KEQ
u is the quantity Ku defined in (B.13), evaluated at the stationary

point σ1 = σ2 = σ∗ given by Eq. (3.27), and so on.
The integrand of (B.6) does not depend on the angles (Θv, Θϕ), and we ob-

tain simply (2π)2 for the integration over these angle variables. We transform the
integration variables (Iu, Iϕ) into (σ1, σ2) to obtain simple integration limits, and
integrate over (σ1, σ2) using the ISPM. In this way we obtain

δg
(1)
EQ(ε) =

√
π

2�3
Re

∑
β

ei(kLβ−πνβ/2) 1
ωv

∣∣∣∣∂(Iu, Iϕ)∂(σ1, σ2)

∣∣∣∣
√

1
J⊥| det JEQ|

× erf(Z−
⊥ ,Z+

⊥ ;Z−
1 ,Z+

1 ;Z−
2 ,Z+

2 ), (B.11)

where

erf
(
x−, x+; y−, y+; z−, z+

)
=
(

2√
π

)3 ∫ x+

x−
dx

∫ y+

y−
dy

∫ z+

z−
dz e−x

2−y2−z2.

(B.12)

Note that the integration limits for the internal integrals over y and z in
erf (x−, x+; y−, y+; z−, z+) in general depend on the variable of the next integra-
tions, y± = y±(x) and z± = z±(x, y). Here we define curvatures in the variables
(Iu, Iϕ) as

Ju =
∂2Sα
∂I2u

= 2πMnvKu, Jϕ =
∂2Sα
∂I2ϕ

= 2πMnvKϕ,

Juϕ =
∂2Sα
∂Iu∂Iϕ

= 2πMnvKuϕ. (B.13)

Using (B.10) and the relations

det J ≡ J11J22 − J12
2 =

∣∣∣∣∂(Iu, Iϕ)∂(σ1, σ2)

∣∣∣∣
2

(JuJϕ − Juϕ
2), (B.14)

Kϕ =
1

πpa sinφ
, ωv =

πp

ma sinφ
, (B.15)

we finally obtain

δg
(1)
EQ(ε) =

1
ε0

Re
∑
EQ

AEQ exp
(
ikLEQ − i

π

2
νEQ

)
, (B.16)
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AEQ =
1
2

√
sin3 φ

πMnvkRηFz
erf

(Z−
⊥ ,Z+

⊥ ;Z−
1 ,Z+

1 ;Z−
2 ,Z+

2

)
, (B.17)

where LEQ represents the length of the EQPO. The “triple” error function in Eq. (B.17)
can be separated into the product of three standard error functions as

erf
(Z−

⊥ ,Z+
⊥ ;Z−

1 ,Z+
1 ;Z−

2 ,Z+
2

) ≈ erf
(Z−

⊥ ,Z+
⊥
)
erf

(Z−
1 ,Z+

1

)
erf

(Z−
2 ,Z+

2

)
(B.18)

by taking the limits at the stationary points for all deformations, except in a small
region near the spherical shape. In this way, we obtain the simple results (3.30).
The arguments of the error functions are given by (3.19) or (3.20) for Z±

i (i = 1, 2)
and

Z±
⊥ = ±π

2

√
− iJEQ⊥

2�
= ±�(kζ)2

16

√
iFEQ
z

Mnvka sinφσ∗(σ∗ + 1) detKEQ
. (B.19)

The spherical limit is easily obtained by using the spherical action-angle variables
{Θθ, Θr, Θϕ; Iθ, Ir, Iϕ}. In these variables,

AEQ =
1
2

√
sin3 φ

πMnrkRηFz
erf

(Z−
⊥ ,Z+

⊥ ;Z−
θ ,Z+

θ ;Z−
ϕ ,Z+

ϕ

)
, (B.20)

where nr ≡ nv for the equatorial-plane orbits with (nv, nϕ), and the invariant sta-
bility factor Fθ ≡ FEQ

z is given by (B.9):

Z±
⊥ =

√√√√ −iπFEQ
θ

16Mnr�K
EQ
θ

(z± − z∗), Z±
{ θ

ϕ
} =

√
−iπMnrK

EQ

{ θ
ϕ
}/�

(
I±{ θ

ϕ
} − I∗{ θ

ϕ
}

)
.

(B.21)

The quantities KEQ
θ and KEQ

ϕ , given by

KEQ

{ θ
ϕ
} =


 ∂2Ir
∂I2{ θ

ϕ
}



EQ

, (B.22)

are the curvatures of the energy surface ε = H(Iθ, Ir, Iϕ) in the spherical coordinate
system. In that system, the maximum value of Iϕ is equal to the absolute value
of the classical angular momentum Iθ, I±ϕ = ±Iθ, I+θ being the maximum value of
|Iθ|, and I−θ = 0. We note that for the diametric orbits, the stationary points I∗θ
and I∗ϕ are exactly zero and there are also specific integration limits in Eq. (B.20).
In this case, the internal integral over Iϕ within a small region can be evaluated
approximately as 2Iθ, and we obtain for the “triple” error function,

erf
(Z−

⊥ ,Z+
⊥ ;Z−

θ ,Z+
θ ;Z−

ϕ ,Z+
ϕ

) →
√

−4iFz
Mπ2nr�K

EQ
θ

=

√
−4iFzkR

2πM
. (B.23)
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Here, we have used the fact that in the spherical limit, Fz → 0, the integral over Zθ
can be approximated by the upper limit Z+

θ given by Eq. (B.21). We also omitted
the strong oscillating value of

∫
dz2e−z2 at the upper limit, because it vanishes after

any small averaging over kR and equals 1 in this approximation. We also accounted
for the fact that KEQ

θ → 1/(πpR) for the diameters (see Eq. (B.22) and note that
φ = π/2 for the diameters). Finally, the stability factor Fz is canceled, and we
obtain the Balian-Bloch result (3.33) for the contribution of the diametric orbits in
the spherical cavity.3)

For all other EQPO there are the stationary points I∗ϕ = I∗θ �= 0, and Iϕ is
identical to its maximum value Iθ in the spherical limit. This is the reason that
there is no next order (1/

√
kR) corrections to the Balian-Bloch trace formula for the

contribution of the planar orbits with nr ≥ 3. The latter comes from the spherical
limit of the elliptic orbits in the meridian plane (3.16) (see Ref. 9)).

Appendix C
Separatrix

As in the case of the turning points,39), 41)–43) we first expand the exponent phase
in Eq. (3.6) with respect to I ′u:

Sα
(
I ′, I ′′, tα

)− (
I ′′ − I ′) · Θ′′ = c

‖
0 + c

‖
1x+ c

‖
2x

2 + c
‖
3x

3 + · · ·
≡ τ

‖
0 + τ

‖
1 z +

1
3
z3. (C.1)

Here,

x =
1
�

(
I ′u − I ′u

∗)
, (C.2)

c
‖
0 =

1
�

[
S∗
α

(
I ′, I ′′, ε

)− (
I ′ − I ′′)∗ · Θ′′∗] =

1
�
S∗
α

(
Θ′,Θ′′, ε

)
, (C.3)

c
‖
1 =

(
∂Sα
∂I ′u

−Θ′′
u

)∗
= Θ′

u −Θ′′
u → 0, σ1 → 1, (C.4)

c
‖
2 =

�

2

(
∂2Sα

∂I ′u
2

)∗
= 2pζM�K̃α

u → ∞, σ1 → 1, (C.5)

c
‖
3 =

�
3

6

(
∂3Sα

∂I ′u
3

)∗
=

2π3�2M
3(pζ2)2

(
∂K̃α

u

∂Ĩu

)
< 0, σ‖ → 1, (C.6)

where the superscript asterisk indicates the value at I ′u = I ′′u = I∗u. The asymptotic
behavior of the constants c‖i near the separatrix σ1 ≈ 1 is found from

K̃α
u → log [(1 + sin θ)/(1 − sin θ)]

(σ1 − 1) log3(σ1 − 1)
, σ1 → 1, (C.7)

and with θ → θh(η) [see Eq. (2.6)],

∂K̃α
u

∂Ĩu
→ −2 log [(1 + sin θ)/(1 − sin θ)](

(σ1 − 1) log2(σ1 − 1)
)2 , σ1 → 1. (C.8)
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The rightmost part of Eq. (C.1) is obtained using a linear transformation with some
constants α and β:

x = αz + β, α =
(
3c‖3

)−1/3
, β = −c‖2/(3c‖3), (C.9)

τ
‖
0 =

(
c0 − c1c2/(3c3) + 2c32/(27c

2
3)
)‖
, τ

‖
1 = α

[
c1 − c22/(3c3)

]‖
. (C.10)

Near the stationary point for σ1 → 1, we obtain c
‖
1 → 0 and τ

‖
1 → −w‖, with the

positive quantity

w‖ =
(

c22
(3c3)4/3

)‖
→

∣∣∣∣M log [(1 + sin θ)/(1 − sin θ)] (σ1 − 1)
� log(σ1 − 1)

∣∣∣∣
2/3

. (C.11)

Using expansion (C.1) in Eq. (3.6) and evaluating the integral over Θ′′
v exactly (i.e.,

obtaining a factor of 2π for this integral), we obtain

δg
(0)
LD = − 2

2π�2
Re

∑
α

∫
dΘ′′

ϕ

∫
dI ′ϕ

∫
dΘ′′

u

1
|ω∗
v |
e
i
�
τ
‖
0−π

2
να

�

×
√√√√√

w‖

c
‖
2

[
Ai

(
−w‖,Z−

‖ ,Z+
‖
)

+ iGi
(
−w‖,Z−

‖ ,Z+
‖
)]

≈ −2
�

Re
∑
α

∫
dΘ′′

u

1
|ω∗
v |

√√√√√
w‖

c
‖
2

[
Ai

(
−w‖

)
+ iGi

(
−w‖

)]
e
i
�
τ
‖
0−π

2
να

�
,

(C.12)

where

Z−
‖ =

√
w‖, Z+

‖ =

√
c
‖
2√
w‖

I
(cr)
u

�
+
√
w‖. (C.13)

Here, Ai(−w, z1, z2) and Gi(−w, z1, z2) are the incomplete Airy and Gairy functions
defined by {

Ai
Gi

}
(−w, z1, z2) =

1
π

∫ z2

z1

dz
{cos

sin

}(
−wz +

z3

3

)
, (C.14)

Ai(−w) and Gi(−w) are the corresponding standard complete functions, and I
(cr)
u =

Iu(σ
(cr)
1 , σ

(cr)
1 ) is the “creeping” elliptic 2DPO value defined in §2. In the second

equality of (C.12), we have used

Z−
‖ → 0,

Z+
‖ → 4

[
M log [(1 + sin θ)/(1 − sin θ)] pζ

2(σ1 − 1)2 log4(σ1 − 1)

]1/3 [ η√
η2 − 1

E

(√
η2 − 1
η

)
− 1

]

→ ∞, (C.15)
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for any finite deformation η and large kR near the separatrix (σ1 → 1). Using an
analogous expansion of the action τ

‖
0 in (C.12) with respect to the angle Θ′′

u to third
order and a linear transformation like (C.9), we arrive at

δg
(0)
LD(ε) =

b

2ε0π2R�
Re

∑
α

∫
dΘ′′

ϕ

∫
dI ′ϕ

1
kR

(
w‖w⊥)1/4√

|c‖2c⊥2 |
×
[
Ai

(
−w‖

)
+ iGi

(
−w‖

)] [
Ai

(
−w⊥,Z−

⊥ ,Z+
⊥
)

+ iGi
(
−w⊥,Z−

⊥ ,Z+
⊥
)]

× exp
{
i

�

[
S∗
α

(
I ′, I ′′, ε

)− (
I ′ − I ′′)∗ · Θ′′∗]

+
2i
3

[
(w‖)3/2 + (w⊥)3/2

]
− i

π

2
να

}
, (C.16)

where

w⊥ =
(

c22
(3c3)4/3

)⊥
> 0, (C.17)

Z−
⊥ =

√
w⊥, Z+

⊥ =
π

2

∣∣∣3c⊥3 ∣∣∣1/3 +
√
w⊥, (C.18)

c⊥2 =
1
2�

(
J⊥
u,α

)∗
=
(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′′
u
2

)∗

LD

= − FLD
xy

2πMKα
u

. (C.19)

Here, FLD
xy is the stability factor for long diameters,

FLD
xy = −4 sinh2

[
M arccosh

(
2η2 − 1

)]
, (C.20)

c⊥3 =
1
6�

[
∂3Sα

∂Θ′
u
3 + 3

∂3Sα

∂Θ′
u
2∂Θ′′

u

+ 3
∂3Sα

∂Θ′
u∂Θ

′′
u
2 +

∂3Sα

∂Θ′′
u
3

]∗

=
1
6�

[
∂J⊥
u,α

∂Θ′
u

+
∂J⊥
u,α

∂Θ′′
u

]∗
< 0 . (C.21)

Note that according to (C.19), the quantity c⊥2 approaches zero near the separatrix
(σ1 → 1) as in the caustic case. This is the reason that we apply the Maslov-Fedoryuk
theory39), 41)–43) for the transformation of the integral over the angle Θ′′

u from (C.12)
to (C.16). The remaining two integrals over the azimuthal variables (I ′ϕ and Θ′′

ϕ) can
be calculated in a manner similar to that explained in the text.

The divergence of the curvature Kϕ, Eq. (B.13), for the long diameters (σ1 → 1,
σ2 → 0) can be easily seen from the following expression, valid for any polygon orbit
with a vertex on the symmetry axis:

Kβ
ϕ =

L0c

ρ20nvM�

[
2η2

1 + η2 tan2 ψ
− 1

]
. (C.22)

Here, L0 denotes the length of the side having a vertex at the pole, ρ0 the cylindrical
coordinate of the other end of this side, and ψ the angle between this side and the
symmetry axis. For the long diameters, L0 → 2bM , ρ0 → 0 and ψ → 0, so that
Kβ
ϕ → ∞.
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Appendix D
Derivation of the Third-Order Term

D.1. Third-order curvatures

For the curvature K(3)
1 , which appears in the third-order terms in the expansion

of the action S/� with respect to σ1, we obtain

K̃
(3)
1 =

π

pζ
K
(3)
1 =

∂3Ĩv
∂σ31

+
nu
nv

∂3Ĩu
∂σ31

, (D.1)

where

∂3Ĩv
∂σ31

= − 1
4z3+

[
∂Bv
∂σ1

+ 6z+
∂z2+
∂σ1

∂2Ĩv
∂σ21

]
,

∂3Ĩu
∂σ31

=
1

2z3+

[
∂Bu
∂σ1

− 3z+
∂z2+
∂σ1

∂2Ĩu
∂σ21

]
, (D.2)

Bv =
[
Π(ϕ, k2, k)− F(ϕ, k)

]
∂̃k −

∂z2+
∂σ1

F(ϕ, k) +
2z2+
∆ϕ

∂ϕ

∂σ1
, (D.3)

Bu =
[
Π(k2, k)− F(k)

]
∂̃k −

∂z2+
∂σ1

F(k) ,

∂̃k =
z2+
k2

∂k2

∂σ1
=

1
k2

∂z2−
∂σ1

− ∂z2+
∂σ1

, (D.4)

with the derivatives

∂Bu
∂σ1

= k

[
∂Π(k2, k)

∂∂k
− ∂F(k)

∂k

]
∂̃2k
2z2+

+
[
Π(k2, k)− F(k)

] [− ∂̃k
z2−

∂z2−
∂σ1

+
1
k2

∂2z2−
∂σ21

− ∂2z2+
∂σ21

]
− k

∂F(k)
∂k

∂̃k
2z2+

∂z2+
∂σ1

− ∂2z2+
∂σ21

F(k) ,

∂2z2±
∂σ21

= ± 2σ2
[(σ1 − 1)2 + 4σ2]

3/2
, (D.5)

∂Bv
∂σ1

= ∂̃k

[
∂Π(ϕ, k2, k)

∂σ1
− ∂F(ϕ, k)

∂σ1
+
(
1 − 1

z2−

∂z2−
∂σ1

)]
− ∂2z2+

∂σ21
F(ϕ, k)

−∂z2−
∂σ1

∂F(ϕ, k)
∂σ1

+
1
∆ϕ

[(
2
∂z2+
∂σ1

− z2+
∆2
ϕ

∂∆2
ϕ

∂σ1

)
∂ϕ

∂σ1
+ 2z2+

∂2ϕ

∂σ21

]
. (D.6)

Here,

∂Π(k2, k)
∂k

=
k2∂̃k
k21z

2
+

[
Π(k2, k) +

1
2k2

(E(k)− F(k))
]
, (D.7)
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∂F(k)
∂k

=
1
k

[
Π(k2, k)− F(k)

]
, (D.8)

∂Π(ϕ, k2, k)
∂σ1

=
1
k21

[
k2∂̃k
z2+

{
Π(ϕ, k2, k) +

1
2k2

(E(ϕ, k)− F(ϕ, k))

−sin(2ϕ)
4∆3

ϕ

(
1 +∆2

ϕ

)}
+∆ϕ

∂ϕ

∂σ1

{
1− k2

4∆4
ϕ

[
4∆2

ϕ cos(2ϕ) + k2 sin2(2ϕ)
]}]

,

(D.9)

∂F(ϕ, k)
∂σ1

=
∂̃k
2z2+

[
Π(ϕ, k2, k)− F(ϕ, k)

]
+

1
∆ϕ

∂ϕ

∂σ1
, (D.10)

∂2ϕ

∂σ21
=

1
sin(2ϕ)

{
1(

z2b − z2−
)3

[(
∂2z2−
∂σ21

(
z2b − z2+

)− ∂2z2+
∂σ21

(
z2b − z2−

))

+ 2
∂z2−
∂σ1

(
∂z2−
∂σ1

(
z2b − z2+

)− ∂z2+
∂σ1

(
z2b − z2−

))]− 2 cos(2ϕ)
(
∂ϕ

∂σ1

)2}
,

(D.11)

∂∆2
ϕ

∂σ1
= −k2

[
∂̃k
z2+

sin2 ϕ+ sin(2ϕ)
∂ϕ

∂σ1

]
. (D.12)

D.2. Stationary phase method with third-order expansions

After the expansion of the action in the Poisson-sum trace formula (3.10) up to
second order with respect to σ2 and up to third order with respect to σ1, we obtain

δg(2)(ε) =
kζ2

4π2Rε0
Re

∑
β

Lβ

MnvR
√
σ∗
2

(
∂Ĩu
∂σ1

)∗
exp

(
ikLβ − i

π

2
νβ

)

×
∫ σ+

2

0
dσ2

∫ x+

x−
dx exp

[
ikζMnvK̃22

(
σ2 − σ∗

2 +
K12

K22
(σ1 − σ∗

1)
)2

+i
(
c1x+ c2x

2 + c3x
3
)]
, (D.13)

where

c1 → 0, c2 = kζMnv
det K̃
K̃22

, c3 =
1
3
kζMnvK̃

(3)
1 , (D.14)

x = σ1 − σ∗
1 , x± = σ±

1 − σ∗
1 . (D.15)

After transformation from σ2 to the new variable Z2, defined by

Z2 =
√

−ikζMnvK̃22

(
σ2 − σ∗

2 +
K12

K22
(σ1 − σ∗

1)
)
, (D.16)

and a linear transformation from x to z through

x = q1z + q2, with q1 = (3c3)−1/3, q2 = − c2
3c3

, (D.17)
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we obtain Eq. (3.15) with the ISPM3 amplitude

A
(2)
3D(ε) =

Lβ

8MnvR
(
kζMnvK̃

(3)
1

)1/3
√

ikζ3

πMnvR2K̃22σ∗
2

(
∂Ĩu
∂σ1

)∗
exp

(
2
3
iτ3/2

)

× erf
(Z−

2 ,Z+
2

)
[Ai (−τ, z−, z+) + iGi (−τ, z−, z+)] . (D.18)

Here, Z±
2 is defined by Eq. (3.20b), and

τ = (3c3)−1/3
(
c22
3c3

− c1

)
, z± =

x± − q2
q1

. (D.19)

In the limit c1 → 0, we obtain

τ =
c22

(3c3)4/3
=

(kζMnv)2/3(det K̃/K̃22)2(
K̃
(3)
1

)4/3 . (D.20)

For finite curvatures far from the bifurcations, the limits of the Airy and Gairy
functions can be extended as z− → 0 and z+ → ∞, yielding the complete Airy
Ai(−τ) and Gairy Gi(−τ ) functions. Then, using the asymptotic forms of these
functions for large τ ∝ (kR)2/3 (large kR),{

Ai
Gi

}
(−τ) ∼ 1√

πτ1/4

{
sin
cos

}(
2
3
τ3/2 +

π

4

)
, (D.21)

and that of the erf-function given in Eq. (D.18), we obtain the SSPM limit, (3.21).
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The adiabatic self-consistent collective coordinate method is applied to an exactly solv-
able multi-O(4) model that is designed to describe nuclear shape coexistence phenomena.
The collective mass and dynamics of large amplitude collective motion in this model system
are analyzed, and it is shown that the method yields a faithful description of tunneling mo-
tion through a barrier between the prolate and oblate local minima in the collective potential.
The emergence of the doublet pattern is clearly described.

§1. Introduction

The microscopic description of large amplitude collective motion in nuclei is
a long-standing fundamental subject of study in nuclear structure physics.1), 2) In
spite of the steady development of various theoretical concepts and their mathemati-
cal formulations, the application of microscopic many-body theory to actual nuclear
phenomena still remains a challenging problem3)–30) (see Ref. 31) for a recent com-
prehensive review). Shape coexistence phenomena are typical examples of large
amplitude collective motion in nuclei and have been investigated from various points
of view.32)–45) For instance, even in typical spherical nuclei, like Pb and Sn isotopes,
excited deformed states have been systematically observed in low-energy regions,32)

and the coexistence of prolate, spherical and oblate shapes has been recently re-
ported for 186Pb and 188Pb.38) As another example, we mention a recent discovery
of two rotational bands in 68Se, which are associated with oblate and prolate intrin-
sic shapes.39) These are only a few examples among abundant experimental data.
These data clearly reveal the need to further development of a theory that is better
able to describe them and to re-examine the present theoretical understanding of nu-
clear structure. From the viewpoint of microscopic mean-field theory, the existence
of these phenomena implies that different solutions of the Hartree-Fock-Bogoliubov
(HFB) equations (local minima in the deformation energy surface) appear in the
same energy region and that the nucleus exhibits large amplitude collective motion
connecting these different equilibrium points. The identities and mixings of these
different shapes are determined by the dynamics of such collective motion.
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The self-consistent collective coordinate (SCC) method, which is based on the
time-dependent Hartree-Fock (TDHF) theory, has been proposed as a microscopic
theory of such large amplitude collective motion.9) This theory was extended to
the case of time-dependent HFB (TDHFB) including pairing correlations,20) and
has been successfully applied to various kinds of anharmonic vibration and high-
spin rotational motions.46)–57) In order to apply this method to shape coexistence
phenomena, however, we need to develop the theory further, because the well-known
method of solving the basic equations of the SCC method (the η-expansion method9))
assumes a single local minima, whereas, in fact, several local minima of the poten-
tial energy surface compete in these phenomena. Quite recently, a new method of
solving the basic equations of the SCC method, the adiabatic SCC (ASCC) method,
was proposed.58) This new method uses an expansion in terms of the collective mo-
mentum and does not assume a single local minimum. Therefore it is believed to be
suitable for the description of the shape coexistence phenomena. The ASCC method
can also be regarded as a successor of the adiabatic TDHF (ATDHF) methods. It
inherits the major merits of the ATDHF theory (as reviewed in Ref. 31)) and, in
addition, enables us to include the pairing correlations self-consistently, removing
the spurious number fluctuation modes.

The main purpose of this paper is to examine the feasibility of the ASCC method
for application to actual nuclear phenomena. This is done by applying it to an ex-
actly solvable model called the multi-O(4) model and testing the results of the ASCC
method against exact solutions obtained by diagonalizing the Hamiltonian in very
large bases. This solvable model can be regarded as a simplified version of the
well-known pairing-plus-quadrupole (P+Q) interaction model,59), 60) because in this
model, only the K = 0 component of the quadrupole deformation is considered in
a schematic manner. This model has been widely used as a testing ground for var-
ious microscopic theories of nuclear collective motion.61)–64) The multi-O(4) model
possesses a symmetry with respect to the sign of the “quadrupole” deformation,
which is analogous to the ordinary parity quantum number. Accordingly, it can be
utilized as a simple model of many-body systems possessing double well structure
in which large amplitude tunneling motion takes place through the barrier between
two degenerate local minima of the potential (which correspond to the prolate and
oblate shapes). Because of the special symmetry of the model, the “prolate” and
“oblate” shapes mix completely. Of course, in contrast to ordinary parity, such an
exact prolate-oblate symmetry does not exist in reality, and in this sense this solvable
model is somewhat unrealistic. Nevertheless, this model provides an important test
of the theory by examining its ability to describe the “parity doublet” pattern.

In this paper, we focus on the collective dynamics and the collective mass of
large amplitude collective motion. It is known that the barrier penetration depends
sensitively on the collective mass. A similar investigation of the collective dynamics
of this model is reported in Ref. 27). In that work, the degree of freedom correspond-
ing to the number fluctuation was explicitly removed from the model space. In the
present approach, the spurious number fluctuation modes are automatically decou-
pled from the physical modes within the self-consistent framework of the TDHFB
theory. This should be a great advantage when the method is applied to realistic
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nuclear problems.
This paper is organized as follows. In §2, the basic equations of the ASCC

method are presented. In §3, a brief account of the multi-O(4) model is given. In §4,
we apply the ASCC method to the multi-O(4) model and derive explicit expressions
necessary for numerical calculations. In §5, we present results of numerical analysis.
Conclusions are given in §6.

§2. Basic equations of the ASCC method

In this section, instead of giving a general outline of the SCC method, we sum-
marize its adiabatic version, formulated in Ref. 58). We assume that large amplitude
collective motion is described by a set of TDHFB state vectors |φ(q, p, ϕ,N)〉 that are
parametrized by the single collective coordinate q, the collective momentum p con-
jugate to q, the particle number N , and the gauge angle ϕ conjugate to N . The time
evolution of |φ(q, p, ϕ,N)〉 is determined by the time-dependent variational principle

δ 〈φ(q, p, ϕ,N)| i ∂
∂t

− Ĥ |φ(q, p, ϕ,N)〉 = 0. (2.1)

As discussed in Ref. 58), we can set

|φ(q, p, ϕ,N)〉 = e−iϕN̂ |φ(q, p,N)〉 . (2.2)

Then, because the Hamiltonian Ĥ commutes with the number operator N̂ , the gauge
angle ϕ is cyclic. The basic equations of the SCC method consist of (2.1), represent-
ing the invariance principle of the TDHFB equations, and the following equations
for the state vectors |φ(q, p,N)〉, representing the canonical variable condition:

〈φ(q, p,N)| i ∂
∂q

|φ(q, p,N)〉 = p, (2.3a)

〈φ(q, p,N)| ∂

i∂p
|φ(q, p,N)〉 = 0, (2.3b)

〈φ(q, p,N)| N̂ |φ(q, p,N)〉 = N, (2.3c)

〈φ(q, p,N)| ∂

i∂N
|φ(q, p,N)〉 = 0. (2.3d)

The third equation here guarantees that the particle number expectation value re-
mains constant during the large amplitude collective motion described by the collec-
tive variables (q, p). Assuming that the large amplitude collective motion described
by the collective variables (q, p) is slow, we now introduce the adiabatic approxima-
tion into the SCC method; that is, we expand the basic equations with respect to
the collective momentum p. Because the particle number variable N is a momentum
variable in the present formulation, we also expand the basic equations with respect
to n = N −N0 when we consider a system with particle number N0. We then keep
only the lowest-order term. The TDHFB state vectors are thus written

|φ(q, p,N)〉 = eipQ̂(q)+inΘ̂(q)|φ(q)〉, (2.4)



68 M. Kobayasi, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi

where Q̂(q) and Θ̂(q) are infinitesimal generators with respect to |φ(q)〉. We also
define an infinitesimal generator P̂ (q) by

e−iδqP̂ (q)|φ(q)〉 = |φ(q + δq)〉. (2.5)

We insert the TDHFB state vectors (2.4) into (2.1) and carry out an expansion with
respect to p and n. Requiring that the time-dependent variational principle (the
canonical variable condition) be satisfied up to second (first) order, we obtain the
basic set of equations of the ASCC method to determine the infinitesimal generators
Q̂(q) and P̂ (q) as follows.

Canonical variable conditions:

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.6a)
〈φ(q)| [Θ̂(q), N̂ ] |φ(q)〉 = i. (2.6b)

The other expectation values of commutators among the operators Q̂(q), P̂ (q), Θ̂(q)
and N̂ are zero.

HFB equation in the moving frame:

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0. (2.7)

Here, ĤM (q) is the Hamiltonian in the moving frame defined by

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q). (2.8)

Local harmonic equations:

δ 〈φ(q)| [ĤM (q), Q̂(q)
] − 1

i
B(q)P̂ (q) |φ(q)〉 = 0, (2.9a)

δ 〈φ(q)|
[
ĤM (q),

1
i
P̂ (q)

]
− C(q)Q̂(q) − 1

2B(q)
[[ĤM (q) , (Ĥ − λ(q)N̂)A], Q̂(q)]

− ∂λ

∂q
N̂ |φ(q)〉 = 0. (2.9b)

Here, the local stiffness C(q) is defined by

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
, (2.10)

and (Ĥ − λN̂)A represents the a†a† and aa parts of (Ĥ − λN̂) containing two-
quasiparticle creation and annihilation operators. The collective potential V (q), the
inverse mass B(q), and the chemical potential λ(q) are defined below. Equations
(2.9a) and (2.9b) are linear with respect to the one-body operators Q̂(q) and P̂ (q).
They have essentially the same structure as the standard RPA equations, except for
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the last two terms in Eq. (2.9b), which arise from the curvature term (derivative of
the generator) and the particle number constraint, respectively. The infinitesimal
generators Q̂(q) and P̂ (q) are thus closely related to the harmonic normal modes
locally defined for |φ(q)〉 and the moving frame Hamiltonian ĤM (q). The collective
subspace defined by these equations is uniquely determined once a suitable boundary
condition is specified.

The collective Hamiltonian is given by

H(q, p,N) ≡ 〈φ(q, p,N)| Ĥ |φ(q, p,N)〉 (2.11a)

= V (q) +
1
2
B(q)p2 + λ(q)n, (2.11b)

up to second order in p and first order in n, where

V (q) = H(q, p,N)|p=0,N=N0 = 〈φ(q)| Ĥ |φ(q)〉 , (2.12)

B(q) =
1
2
∂2H(q, p,N)

∂p2
|p=0,N=N0 = −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 , (2.13)

λ(q) =
∂H(q, p,N)

∂N
|p=0,N=N0 = 〈φ(q)| [Ĥ, iΘ̂(q)] |φ(q)〉 . (2.14)

For a system with N = N0 particles, we can set n = 0.

§3. Multi-O(4) model

The multi-O(4) model can be regarded as a simplified version of the conventional
P+Q interaction model,59), 60) in which only the K = 0 component of the quadrupole
deformation is considered in a schematic manner. This model has been used for the
schematic analysis of anharmonic vibrations in transitional nuclei and of various
kinds of large amplitude collective motion.61)–64)

We define the following bilinear fermion operators for each j-shell:

A†
j =

∑
m>0

c†jmc
†
j−m, B†

j =
∑
m>0

σjmc
†
jmc

†
j−m, (3.1a)

N̂j =
∑
m

c†jmcjm, D̂j =
∑
m

σjmc
†
jmcjm, (3.1b)

with

σjm =
{

1 |m| < Ωj/2
−1 |m| > Ωj/2.

(3.2)

The sign of σjm is chosen so as to simulate the behavior of the quadrupole matrix
elements 〈jm| r2Y20 |jm〉, and we assume that the pair multiplicity Ωj = j + 1

2 is
an even integer. The set of operators {A†

j , Aj , B
†
j , Bj , N̂j , D̂j} form a Lie algebra of

O(4). We then define their extensions to the multi-j-shell case,

A† =
∑

j

A†
j , B

† =
∑

j

B†
j , N̂ =

∑
j

N̂j , D̂ =
∑

j

djD̂j , (3.3)
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where the coefficients dj in D̂ represent the magnitudes of the reduced quadrupole
matrix elements of the j-shells, and we introduce the model Hamiltonian

Ĥ = ĥ0 − 1
2
G(A†A+AA†) − 1

2
χD̂2, (3.4a)

ĥ0 =
∑

j

e0jN̂j , (3.4b)

where the quantities e0j are the single-particle energies of the j-shells, and G and χ
represent the strengths of the pairing and the “quadrupole” interactions, respectively.
Note that this Hamiltonian is invariant with respect to the exchange of single-particle
states (j,±|m|) ↔ (j,±(Ωj − |m|)). Thus, eigenstates can be classified according to
the “parity” quantum number associated with this symmetry.

If we form different combinations of these operators as

Kj+ =
1
2
(A†

j +B†
j ), Lj+ =

1
2
(A†

j −B†
j ), (3.5a)

Kj− =
1
2
(Aj +Bj), Lj− =

1
2
(Aj −Bj), (3.5b)

Kj0 =
1
2
(N̂j + D̂j −Ωj), Lj0 =

1
2
(N̂j − D̂j −Ωj), (3.5c)

the sets {Kj+,Kj−,Kj0} and {Lj+, Lj−, Lj0} separately form SU(2) algebras, and
any two elements of different sets commute. It is thus seen that the multi-O(4) model
is equivalent to the multi-SU(2) ⊗ SU(2) model. Therefore, we can diagonalize the
Hamiltonian (3.4) in the basis set∏

j

|nKj , nLj〉 =
∏
j

(Kj+)nKj (Lj+)nLj |0〉 (3.6)

to obtain exact eigenvalues and eigenvectors, where nKj and nLj , respectively, rep-
resent the numbers of K and L pairs in the j-shell. They satisfy the relations
0 ≤ nKj , nLj ≤ Ωj/2 and

∑
j(nKj + nLj) = N0/2. We note that, in the special case

that the single-particle levels e0j are equidistant, the dj are equal, and Ωj = 2 for all
j, this model reduces to that used in Ref. 65), in which the collective mass in finite
superconducting systems is investigated.

§4. Application of the ASCC method to the multi-O(4) model

4.1. Quasiparticle representation

We are now in a position to apply the ASCC method to the multi-O(4) model.
For separable residual interactions, such as those in this model, it is customary to
ignore the Fock terms.59), 60) We also do this. For this reason, in the following, we
use “HB” in place of “HFB”. It is readily seen that the TDHB state vectors |φ(q)〉
in the multi-O(4) model can be written in the BCS form

|φ(q)〉 = exp
{ ∑

i

θi(q)(A
†
i −Ai)

}
|0〉, (4.1)
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where the quantities θi(q) are related to the coefficients ui and vi of the Bogoliubov
transformation to the quasiparticle operators a†i and ai,(

ai
†

a−i

)
≡

(
ui −vi

vi ui

)(
ci

†

c−i

)
, (4.2)

as ui = sin θi and vi = cos θi. Here, i ≡ (j,m), −i ≡ (j,−m), and
∑

i denotes the
sum over levels with m > 0. We use these conventions hereafter.

The pair operator A†
i ≡ c†ic

†
−i and the number operator N̂i ≡ c†ici + c†−ic−i for

the degenerate single-particle levels (i,−i) are written in terms of the quasiparticle
pair, A†

i ≡ a†ia
†
−i, and quasiparticle number operator, N̂ i ≡ a†iai + a†−ia−i, as

A†
i = uivi + u2

i A
†
i − v2

i Ai − uiviN̂ i, (4.3a)

N̂i = 2v2
i + 2uivi(A

†
i + Ai) + (u2

i − v2
i )N̂ i. (4.3b)

The quasiparticle operators A†
i , Ai and N̂ i satisfy the commutation relations
[
Ai,A

†
i′

]
= δii′(1 − N̂ i), (4.4a)[

N̂ i,A
†
i′

]
= 2δii′A

†
i′ . (4.4b)

We define the deformation D(q) and the pairing gap ∆(q) for the TDHB state |φ(q)〉
as

D(q) = 〈φ(q)|D̂|φ(q)〉 = 2
∑

i

diσiv
2
i , (4.5)

∆(q) = G 〈φ(q)|A† |φ(q)〉 = G
∑

i

uivi. (4.6)

4.2. Quasiparticle RPA at local minima

We start from the standard procedure for describing small amplitude vibrations
around the local minima of the collective potential. Specifically, we apply the quasi-
particle RPA about the HB equilibrium points. Because the ASCC is equivalent
to the HB+RPA for equilibrium states, the quasiparticle RPA modes provide the
boundary condition for solving the local harmonic equations of the ASCC method.

For the equilibrium HB state |φ0〉, the HB equation is given, as usual, by
(
ei − λ0 ∆0

∆0 −ei + λ0

)(
ui

vi

)
= Ei

(
ui

vi

)
, (4.7)

where ∆0 and λ0 denote the pairing gap and the chemical potential, and the quan-
tities

ei = e0i − χdiσiD0 (4.8)

are the single-particle energies at the equilibrium deformation D0. The quasi-
particle energy and the particle number are written Ei =

√
(ei − λ0)2 +∆2

0 and
N0 = 2

∑
i v

2
i .
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Writing the RPA normal coordinates and momenta as

Q̂n =
∑

i

Qn
i (A†

i + Ai), (4.9a)

P̂n = i
∑

i

Pn
i (A†

i − Ai), (4.9b)

we can easily solve the quasiparticle RPA equations,

δ 〈φ0| [Ĥ − λ0N̂ , Q̂n] − 1
i
BnP̂n |φ0〉 = 0, (4.10a)

δ 〈φ0|
[
Ĥ − λ0N̂ ,

1
i
P̂n

]
− CnQ̂n |φ0〉 = 0, (4.10b)

where Bn and Cn denote the inverse mass and the stiffness for the n-th RPA solution,
respectively. Note that the local harmonic equations (2.9a) and (2.9b) reduce to the
RPA equations at the HB equilibrium points, because the third and fourth terms in
Eq. (2.9b) vanish there. The RPA dispersion equation determining the frequencies
ωn =

√
BnCn is given by

det(Skk′) = 0, (4.11)

where S is a 3 × 3 matrix whose elements are given by

S11 =
∑

i

(f2
i /(2Ei − ω) + g2

i /(2Ei + ω)) − 1, (4.12a)

S12 =
∑

i

(figi/(2Ei − ω) + gifi/(2Ei + ω)), (4.12b)

S13 =
∑

i

(fihi/(2Ei − ω) + gihi/(2Ei + ω)), (4.12c)

S22 =
∑

i

(g2
i /(2Ei − ω) + f2

i /(2Ei + ω)) − 1, (4.12d)

S23 =
∑

i

(gihi/(2Ei − ω) + fihi/(2Ei + ω)), (4.12e)

S33 =
∑

i

(h2
i /(2Ei − ω) + h2

i /(2Ei + ω)) − 1, (4.12f)

and Sk′k = Skk′ , with the definitions fi =
√
Gu2

i , gi =
√
Gv2

i , and hi = 2
√
χdiσiuivi.

If χ = 0, the above dispersion equation reduces to

ω2
{

(ω2 − 4∆2 )
(∑

i

1
2Ei((2Ei)2 − ω2)

)2

−
(∑

i

u2
i − v2

i

2Ei((2Ei)2 − ω2)

)2}
= 0, (4.13)

which involves two well-known quasiparticle RPA normal modes, the pairing vibra-
tion (ω � 2∆) and the pairing rotation (ω = 0). On the other hand, if we ignore the
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residual pairing interactions, this dispersion equation reduces to

4
∑

i

2Eid
2
iu

2
i v

2
i

(2Ei)2 − ω2
=

1
2χ
, (4.14)

which involves a normal mode analogous to the β vibrations in deformed nuclei. We
note that these three kinds of normal modes are decoupled at the spherical point
(D = 0), where 〈φ(q)|

[
D̂, A† +A

]
|φ(q)〉 = 0.

4.3. HB and local harmonic equations in the moving frame

In order to find a collective subspace in the TDHB space, we need to solve the
RPA-like equations in the moving frame, i.e, the local harmonic equations. These
equations determine the generators of the collective space, Q̂(q) and P̂ (q). First, we
present the local harmonic equations for the multi-O(4) model. With the definitions
F̂s=1 ≡ A, F̂s=2 ≡ D̂, and

F̂ (±)
s ≡ (F̂s ± F̂ †

s )/2 = ±F̂ (±)†
s , (4.15)

the multi-O(4) Hamiltonian is written

Ĥ = ĥ0 − 1
2

∑
s=1,2

κsF̂
(+)
s F̂ (+)

s +
1
2

∑
s=1,2

κsF̂
(−)
s F̂ (−)

s , (4.16)

where the suffices s = 1 and 2 indicate the pairing and “quadrupole” parts, respec-
tively, and κ1 = 2G and κ2 = χ. The equation of motion for the time-dependent
mean-field state vector |φ(q, p)〉 is written

δ 〈φ(q, p)| i ∂
∂t

− ĥ |φ(q, p)〉 = 0, (4.17)

with the self-consistent mean-field Hamiltonian

ĥ = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(q, p)| F̂ (+)

s |φ(q, p)〉 +
∑

s

κsF̂
(−)
s 〈φ(q, p)| F̂ (−)

s |φ(q, p)〉 .
(4.18)

The HB equation in the moving frame, (2.7), and the local harmonic equations,
(2.9a)–(2.9b), then become

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (4.19a)

δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s F̂

(−)
s − 1

i
B(q)P̂ (q) |φ(q)〉 = 0, (4.19b)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
−

∑
s

f
(+)
P,s F̂

(+)
s −B(q)C(q)Q̂(q) −

∑
s

f
(+)
R,s F̂

(+)
s

−
∑

s

[F̂ (−)
s , (ĥ(q) − λ(q)N̂)A]f (−)

Q,s − fN N̂ |φ(q)〉 = 0, (4.19c)
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where ĥM (q) is the self-consistent mean-field Hamiltonian in the moving frame de-
fined by

ĥM (q) = ĥ(q) − λ(q)N̂ − ∂V

∂q
Q̂(q), (4.20a)

ĥ(q) = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 , (4.20b)

and

f
(−)
Q,s = −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 , (4.21a)

f
(+)
P,s = κs 〈φ(q)|

[
F̂ (+)

s ,
1
i
B(q)P̂ (q)

]
|φ(q)〉 , (4.21b)

f
(+)
R,s = −1

2
κs 〈φ(q)| [[F̂ (+)

s , (ĥ(q) − λ(q)N̂)A], Q̂(q)] |φ(q)〉 , (4.21c)

fN = B(q)
∂λ

∂q
. (4.21d)

We express all operators in the above equations in terms of the quasiparticle
operators A†

i , Ai and N̂ i, defined with respect to ĥM (q) and |φ(q)〉 as follows:

ĥM (q) =
∑

i

EiN̂ i, (4.22)

F̂ (+)
s = 〈φ(q)|F (+)

s |φ(q)〉 +
∑

i

F
(+)
A,s (i)(A†

i + Ai) +
∑

i

F
(+)
B,s (i)N̂ i, (4.23)

F̂ (−)
s =

∑
i

F
(−)
A,s (i)(A†

i − Ai), (4.24)

with

F
(+)
A,1 (i) =

1
2
(u2

i − v2
i ), F

(+)
A,2 (i) = 2diσiuivi, (4.25a)

F
(−)
A,1 (i) = −1

2
, F

(−)
A,2 (i) = 0, (4.25b)

F
(+)
B,1 (i) = −uivi, F

(+)
B,2 (i) = diσi(u2

i − v2
i ). (4.25c)

Note that all matrix elements are real, so that 〈φ(q)| F̂s
(−) |φ(q)〉 = 0. For later

convenience, we define one-body operators as

R̂(+)
s ≡ [F̂ (+)

B,s , (ĥ(q) − λ(q)N̂)A] = 2
∑

i

R(+)
s (i)(A†

i − Ai), (4.26)

where F̂ (+)
B,s represents the last terms of Eq. (4.23) and

R(+)
s (i) = {2uivi(ei − χdiσiD − λ(q)) −∆(u2

i − v2
i )}F (+)

B,s (i). (4.27)

The infinitesimal generators Q̂(q) and P̂ (q) can be written



Application of the Adiabatic Self-Consistent Collective Coordinate Method 75

Q̂(q) =
∑

i

Qi(q)(A
†
i + Ai), (4.28a)

P̂ (q) = i
∑

i

Pi(q)(A
†
i − Ai). (4.28b)

Equations (4.19b) and (4.19c) are then reduced to linear equations for the matrix
elements Qi(q) and Pi(q) of the infinitesimal generators Q̂(q) and P̂ (q). They are
easily solved, yielding the expressions

Qi(q) =
2Ei

(2Ei)2 − ω2

∑
s

F
(−)
A,s (i)f (−)

Q,s

+
1

(2Ei)2 − ω2

∑
s

(F (+)
A,s (i)f (+)

PR,s +NifN ), (4.29a)

Pi(q) =
2Ei

(2Ei)2 − ω2

∑
s

(F (+)
A,s (i)f (+)

PR,s +NifN )

+
Ω(q)

(2Ei)2 − ω2

∑
s

F
(−)
A,s (i)f (−)

Q,s , (4.29b)

where Ni = 2uivi and
f

(+)
PR,s = f

(+)
P,s + f

(+)
R,s . (4.30)

Note that ω2, representing the square of the frequency ω(q) =
√
B(q)C(q) of the

local harmonic mode, is not necessarily positive. The values of B(q) and C(q) depend
on the scale of the collective coordinate q, while ω(q) does not. In this sense, there
remains an ambiguity in determining q. We therefore require B(q) = 1 everywhere
in the collective space to uniquely determine q.

The quantities f (−)
Q,s , f

(+)
P,s and f (+)

R,s are easily calculated as

f
(−)
Q,s = 2κs

∑
i

F
(−)
A,s (i)Qi(q), (4.31a)

f
(+)
P,s = 2κs

∑
i

F
(+)
A,s (i)Pi(q), (4.31b)

f
(+)
R,s = 2κs

∑
i

R(+)
s (i)Qi(q). (4.31c)

Inserting Eqs. (4.29a) and (4.29b) for Qi(q) and Pi(q) into the above expressions,
we obtain linear homogeneous equations for the unknown quantities f (+)

PR,s, f
(−)
Q,s and

fN . Similarly, the condition of orthogonality to the number operator,

〈φ(q)|[N̂, P̂ (q)]|φ(q)〉 = 2i
∑

i

NiPi(q) = 0, (4.32)

gives another equation for f (+)
PR,s, f

(−)
Q,s and fN . Because f (−)

Q,2 = 0, these equations
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can be written in 4 × 4 matrix form as


 Skk′(ω)







f
(−)
Q,1

f
(+)
PR,1

f
(+)
PR,2

fN


 = 0, (4.33)

where

S11 = 2GS(1)(F (−)
A,1 , F

(−)
A,1 ) − 1, (4.34a)

S12 = 2GS(2)(F (−)
A,1 , F

(+)
A,1 ), (4.34b)

S13 = 2GS(2)(F (−)
A,1 , F

(+)
A,2 ), (4.34c)

S14 = 2GS(2)(F (−)
A,1 , N), (4.34d)

S21 = 2G{S(1)(R(+)
1 , F

(−)
A,1 ) + ω2S(2)(F (+)

A,1 , F
(−)
A,1 )}, (4.34e)

S22 = 2G{S(1)(F (+)
A,1 , F

(+)
A,1 ) + S(2)(R(+)

1 , F
(+)
A,1 )} − 1, (4.34f)

S23 = 2G{S(1)(F (+)
A,1 , F

(+)
A,2 ) + S(2)(R(+)

1 , F
(+)
A,2 )}, (4.34g)

S24 = 2G{S(1)(F (+)
A,1 , N) + S(2)(R(+)

1 , N)}, (4.34h)

S31 = 4χ{S(1)(R(+)
2 , F

(−)
A,1 ) + ω2S(2)(F (+)

A,2 , F
(−)
A,1 )}, (4.34i)

S32 = 4χ{S(1)(F (+)
A,2 , F

(+)
A,1 ) + S(2)(R(+)

2 , F
(+)
A,1 )}, (4.34j)

S33 = 4χ{S(1)(F (+)
A,2 , F

(+)
A,2 ) + S(2)(R(+)

2 , F
(+)
A,2 )} − 1, (4.34k)

S34 = 4χ{S(1)(F (+)
A,2 , N) + S(2)(R(+)

2 , N)}, (4.34l)

S41 = ω2S(2)(N,F (−)
A,1 ), (4.34m)

S42 = S(1)(N,F (+)
A,1 ), (4.34n)

S43 = S(1)(N,F (+)
A,2 ), (4.34o)

S44 = S(1)(N,N). (4.34p)

Here, the functions S(1)(X, Y ) and S(2)(X, Y ) are defined by

S(1)(X, Y ) =
∑

i

2Ei

(2Ei)2 − ω2
XiYi, (4.35a)

S(2)(X, Y ) =
∑

i

1
(2Ei)2 − ω2

XiYi, (4.35b)

with Xi and Yi each representing one of the quantities F (±)
A,s (i), R(+)

s (i) and Ni. The
frequency ω(q) is determined by finding the solution of the dispersion equation

det{Skk′(ω)} = 0 (4.36)
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for which ω2 is minimal. The normalizations of f (+)
PR,1, f

(+)
PR,2, f

(−)
Q,1 and fN are fixed

by the canonical variable condition

〈φ(q)|[Q̂(q), P̂ (q)]|φ(q)〉 = 2i
∑

i

Qi(q)Pi(q) = i. (4.37)

Note that ω2 represents the curvature of the collective potential,

ω2 =
∂2V

∂q2
, (4.38)

for the choice of the coordinate scale with which B(q) = 1.

§5. Numerical analysis

In this section, we report the results of a numerical analysis of the oblate-prolate
shape coexistence and large amplitude collective motion in the multi-O(4) model.

5.1. Procedure of the calculation

We first solve the HB equations and find the HB equilibrium points that cor-
respond to extrema of the collective potential V (q) defined by Eq. (2.12). At these
points, the HB equation in the moving frame, Eq. (2.7), and the local harmonic
equations, Eqs. (2.9a) and (2.9b), coincide with the ordinary HB equation and the
quasiparticle RPA equations, respectively. Let |φ(q0)〉 be a HB solution, which is
assumed to be in the collective subspace at a particular value of the collective coordi-
nate, q = q0. Solving the quasiparticle RPA equation with respect to |φ(q0)〉, we find
a collective normal mode, which determines the infinitesimal generators Q̂(q0) and
P̂ (q0). In the present analysis, we choose the normal mode with the lowest frequency,
which represents the most collective motion with respect to the “quadrupole” oper-
ator D̂. We then generate the state |φ(q0 + δq)〉 with an infinitesimal shift of the
collective coordinate as

|φ(q0 + δq)〉 = e−iδqP̂ (q0) |φ(q0)〉 . (5.1)

Next, we solve the local harmonic equations at q = q0 +δq, and determine Q̂(q0 +δq)
and P̂ (q0 +δq), and proceed to q = q0 +2δq. Repeating this procedure, we construct
a collective subspace. Owing to the invariance

A†
i −Ai = A†

i − Ai, (5.2)

we can rewrite the state vectors as

|φ(q + δq)〉 = exp
{
δq

∑
i

Pi(q)(A
†
i − Ai)

}
|φ(q)〉

= exp
{
δq

∑
i

Pi(q)(A
†
i −Ai)

}
|φ(q)〉 . (5.3)
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Combining the above expression with Eq. (4.1), we obtain the following simple rela-
tions between the coefficients ui and vi at q + δq and those at q:(

ui(q + δq)
vi(q + δq)

)
=

(
cos(Pi(q)δq) − sin(Pi(q)δq)
sin(Pi(q)δq) cos(Pi(q)δq)

)(
ui(q)
vi(q)

)
. (5.4)

In the present calculation, we always start from the spherical equilibrium point
(q = 0). This point is an unstable extremum (a saddle point) in the collective
subspace when we choose parameter values producing deformed HB minima (see
below). Note that the quasiparticle RPA equations given in §4.1 are still valid,
whereas the frequency ω of the eigenmode is purely imaginary in this case.

If the collective subspace is exactly decoupled from the non-collective subspace,
the state vectors |φ(q)〉 obtained in this way should simultaneously satisfy the HB
equation in the moving frame, Eq. (2.7). In general, however, the decoupling con-
ditions may not be exactly satisfied, and we must resort to some kind of iterative
procedure to construct a collective subspace in which Eq. (2.7) holds. One way of
evaluating the quality of the decoupling and the accuracy of the numerical calcula-
tion is to examine the validity of Eq. (2.7) in the collective space. For the multi-O(4)
model under consideration, as we see in Fig. 2, this condition is found to be satis-
fied to a good approximation with the use of a step size δq = 0.005 in Eq. (5.4). Of
course, this does not necessarily imply that such a simple algorithm will work in more
realistic cases, and we need further investigations concerning numerical techniques
for solving Eqs. (2.7), (2.9a) and (2.9b).

The collective Hamiltonian thus obtained, H(q, p) = 1
2B(q)p2 + V (q), is then

quantized, and the collective Schrödinger equation is solved to obtain eigenvalues
and transition probabilities. As we set the scale of the collective coordinate q
such that B(q) = 1, there is no ambiguity with regard to ordering in the canon-
ical quantization procedure, following the Pauli quantization rule. It is easily con-
firmed that the collective representation of the “quadrupole” operator, defined by
D(q) = 〈φ(q, p)| D̂ |φ(q, p)〉, does not depend on p, and transition matrix elements
can be evaluated as

∫
ψn(q)∗D(q)ψn′(q)dq, where ψn(q) denotes the collective wave

function of the n-th eigenstate.

5.2. Parameters

In the following, we consider a system consisting of three shells with the spherical
single-particle energies e0j1 = 0.0, e0j2 = 1.0, e0j3 = 3.5, the pair degeneracies Ωj1 =
14, Ωj2 = 10, Ωj3 = 4, and the reduced quadrupole moments dj1 = 2, dj2 = dj3 = 1.
We distribute 14 pairs (N0 = 28) in this shell-model space (we do not distinguish
protons and neutrons). We compare numerical results obtained with different values
of the pairing interaction strength, G = 0.14, 0.16 and 0.20, for a fixed “quadrupole”
interaction strength, χ = 0.04. These numerical examples are presented merely
as representatives of similar results obtained with other sets of parameter values.
Because properties of the single-shell O(4) model are determined by the ratio G/χ,
similar results are obtained if χ is varied instead of G. The only reason that we
vary G with χ fixed is because it is intuitively easier to visualize the variation of
the barrier height (between the prolate and oblate local minima) while keeping the
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Fig. 1. Deformed single-particle energies, ei = e0i −χdiσiD, plotted as functions of the deformation

parameter D for the following set of parameter values: e0j1 = 0.0, e0j2 = 1.0, e0j3 = 3.5, Ωj1 =

14, Ωj2 = 10, Ωj3 = 4, and dj1 = 2, dj2 = dj3 = 1. The numbers enclosed by circles indicate the

numbers of pairs occupying individual levels in the lowest energy configuration for a given value

of D when pairing correlations are absent. Near the spherical point (D = 0), the lowest shell is

fully occupied by 14 pairs (28 nucleons). The level diagram is invariant under the change of sign

of D (prolate-oblate symmetry). The down(up)-sloping levels are referred to as d1, d2 and d3

(u1, u2 and u3), as indicated. On the prolate side (D ≥ 0), the down-sloping level originating

from the second shell (d2) crosses the up-sloping level (u1) at D = 8.3. After this first crossing,

the lowest energy configuration involves 5 pairs occupying the second down-sloping level (d2),

and 2 pairs remaining in the first up-sloping level (u1). At D = 29.2, the down-sloping level

originating from the third shell (d3) crosses the second up-sloping level (u2). In the lowest-

energy configuration after this crossing, all the down-sloping levels are fully occupied, while all

the up-sloping levels are unoccupied. This configuration possesses the maximum value of the

deformation parameter, Dmax = 42. The same pattern of level crossings is found also on the

oblate side (D ≤ 0). Note that this figure was obtained by treating D as a free parameter,

although D in Eq. (4.5) represents the expectation value of the operator D̂. In this sense, this

figure should be regarded as a kind of Nilsson diagram.

magnitude of the equilibrium deformation D0 almost constant.
Figure 1 plots the single-particle energy diagram as a function of D. Details of

the level crossings are explained in the caption. It is certainly possible to analyze
the level crossing dynamics and simulate the shape coexistence phenomena by means
of a multi-O(4) model consisting of only two shells. However, it is found that the
inclusion of three shells yields more realistic properties in the large deformation
region. In realistic situations, a number of successive level crossings take place as
the deformation increases.

5.3. Collective potentials

We present in Fig. 2 the collective potentials calculated for three values of the
pairing strength G. For G = 0.14, the potential exhibits a double well structure,
while it possesses a single well for G = 0.2. The case G = 0.16 is intermediate
between these. Note that the collective potentials are plotted here as functions of
the deformation D. The relation between D and the collective coordinate q is shown
explicitly below. The mechanism causing the appearance and disappearance of the
double well structure is determined by the competition between the pairing and
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Fig. 2. Collective potentials calculated with the ASCC method for G = 0.14 (top), G = 0.16

(middle), and G = 0.20 (bottom) are plotted by the solid curves as functions of the deformation

D. The other parameter values used in the calculation are listed in the caption of Fig. 1. For

comparison, the collective potentials obtained with the CHB method are plotted by the dotted

curves. The horizontal lines indicate eigenenergies of the quantized collective Hamiltonian.

“quadrupole” interactions: The pairing force favors an equal population of particles
in all magnetic substates in each j-shell, whereas the “quadrupole” force favors the
occupation of down-sloping levels, creating level crossings and asymmetry in the
magnetic substate population. In the three j-shell system under consideration, the
energy of the degenerate local minima is lower than that of the spherical point
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for small values of G. As pairing correlations increase, however, the energy of the
spherical point decreases, so that the barrier height decreases, and eventually the
height of the barrier itself diminishes.

In Fig. 2, quantum eigenstates obtained by solving the collective Shrödinger
equations are indicated. We can clearly see a parity-doublet-like pattern associated
with tunneling through the central barrier in the collective potential curve. The
properties of these excitation spectra are discussed in the succeeding subsection. In
this figure, we also display the potential energy functions calculated by means of the
conventional constrained HB (CHB) procedure, given by

VCHB(D) = 〈φCHB
0 (D)|Ĥ|φCHB

0 (D)〉 = 2
∑

i

e0i v
2
i − ∆2

G
− 1

2
χD2, (5.5)

where the state vectors |φCHB
0 (D)〉 are determined by the constrained variational

principle
δ〈φCHB

0 (D)|Ĥ − λN̂ − µD̂|φCHB
0 (D)〉 = 0, (5.6)

with µ denoting a Lagrange multiplier. As seen in the figures, the collective potentials
obtained with the ASCC and CHB methods are practically indistinguishable. In
principle, when the collective path obtained in the ASCC method and that obtained
in the CHB method go through the same HB local minima, the collective potential
energies at these points should coincide. We note, however, very small differences
between their values at the HB local minima with D 	= 0 for the cases G = 0.14
and 0.16. These discrepancies are due to violation of Eq. (2.7) which accumulates
in the numerical calculation starting from D = 0, and represent the amount of error
associated with the computational algorithms adopted here, as mentioned in §6.1.

In Fig. 3, the pairing gaps ∆ are displayed as functions of the deformation D.
It is seen that they are monotonically decreasing functions of |D| and vanish at the
maximum deformation, which is Dmax = 42 for the parameter values adopted in
these calculations. In Fig. 4, occupation probabilities v2

i are displayed. Note that all
down-sloping (up-sloping) levels are fully occupied (unoccupied) at Dmax. Again, the
results obtained with the ASCC and CHB methods are practically indistinguishable
in these figures. Thus, in the present multi-O(4) model, the static mean-field proper-
ties (such as potential energy curves and the pairing gaps) obtained with the ASCC
method are very similar to those obtained with the conventional CHB method. How-
ever, it should be noted that this is due to the simplicity of the multi-O(4) model
adopted here. In general, the collective subspace of the ASCC method may differ
from that of the CHB method.27)

In Figs. 3 and 4, we have also plotted the BCS pairing gaps and occupation
probabilities calculated using the BCS approximation. In this approximation, single-
particle energies given by ei = e0i −χdiσiD are used to solve the BCS equations, where
the deformation D is treated as a free parameter, ignoring the HB self-consistency
condition, (4.5), as in phenomenological single-particle potential models. The pairing
gap ∆ in the BCS approximation differs from those in the CHB and ASCC methods.
Note that the BCS gaps do not vanish in the D → Dmax limit, in contrast to the
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Fig. 3. Pairing gaps ∆ calculated with the ASCC method for G = 0.14 (top), G = 0.16 (middle),

and G = 0.20 (bottom) are plotted by the solid curves as functions of the deformation D. The

other parameter values used are the same as in Fig. 2. For comparison, ∆ calculated with

the CHB method and with the BCS approximation are also plotted by the dotted and dashed

curves, respectively. The solid and dotted curves deviate little. The equilibrium deformations

are indicated by the arrows.

HB self-consistent pairing gaps. In the following, we focus on dynamical properties
of tunneling motion between the oblate and prolate minima.



Application of the Adiabatic Self-Consistent Collective Coordinate Method 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -30 -20 -10 0 10 20 30 40

v2
i

D

G=0.14

u1

u2

u3

d1

d2

d3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -30 -20 -10 0 10 20 30 40

v2
i

D

G=0.16

u1

u2

u3

d1

d2

d3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -30 -20 -10 0 10 20 30 40

v2
i

D

G=0.20

u1

u2

u3

d1

d2

d3
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i calculated with the ASCC method for G = 0.14 (top), G = 0.16

(middle), and G = 0.20 (bottom) are plotted by the solid curves as functions of the deformation

D. Other parameter values used are the same as in Fig. 2. For comparison, v2
i calculated with

the CHB method and with the BCS approximation are also plotted by the dotted and dashed

curves, respectively. The solid and dotted curves appear similar. Note that, in the case that

D is equal to its maximal value, Dmax, all down-sloping (up-sloping) levels are fully occupied

(unoccupied) in the cases of the ASCC and CHB methods, but not in the case of the BCS

approximation.

5.4. Excitation spectra and collective mass

Figure 5 displays the excitation spectra and transition matrix elements for the
ASCC method and for the case of exact diagonalization in the basis set given in
Eq. (3.6). The wave functions of the low-lying states are displayed in Figs. 6 and
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Fig. 5. Comparison of excitation spectra calculated with the ASCC method and with the exact

diagonalization for G = 0.14 (top), G = 0.16 (middle) and G = 0.20 (bottom). For reference,

the excitation energies of the lowest RPA modes in the HFB local minima are also indicated.

Other parameter values used are the same as in Fig. 2. The numbers adjacent to vertical lines

indicate the transition matrix elements for the “quadrupole” operator D̂. In the top panel, the

transition matrix elements between “parity doublets” are indicated by arrows.

7. The collective character of these states is apparent from the enhancement of the
transition matrix elements in comparison with the single-particle matrix elements
dj(=1 or 2). We see that the main character of the results obtained from the ASCC
method are quite similar to those of the exact spectra and transition properties. In
view of the very large number of degrees of freedom involved in the model under
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Fig. 6. Collective wave functions ψ(D) for the ground and first excited states, whose energies are

plotted in Fig. 5, obtained with the ASCC method for G = 0.14 (top), G = 0.16 (middle),

and G = 0.20 (bottom). The equilibrium deformations are indicated by the arrows. The wave

functions ψ(D) are defined by ψ(D) = ψ(q)| ∂q
∂D

| 12 , where ψ(q) represents wave functions for

the collective coordinate q. Thus, they are normalized as
� |ψ(q)|2dq =

� |ψ(q)|2| ∂q
∂D

|dD =� |ψ(D)|2dD = 1.

consideration (the dimension of this shell model space is 1894), it is remarkable that
the low-lying states can be described very well in terms of only the single collective
coordinate q. In particular, we note that the emergence of the “parity splitting”
pattern for smaller values of the strength G of the pairing interaction is clearly
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Fig. 7. The same as Fig. 6, but for the second and third excited states. For G = 0.2, only the wave

function for the second excited state is plotted.

realized in the calculation. This implies that the ASCC method yields a faithful
description of the large amplitude tunneling motion through the barrier between the
oblate and prolate local minima.

As is well known, the collective mass parameter represents inertia with respect to
change of the mean field. It is determined locally and changes as D varies. Because
we have set the scale of the collective coordinate q such that the collective mass
parameter M(q) = B−1(q) with respect to q is unity, the collective kinetic energy



Application of the Adiabatic Self-Consistent Collective Coordinate Method 87

can be written either in terms of q or D as

1
2
q̇2 =

1
2

( dq
dD

Ḋ
)2 ≡ 1

2
M(D)Ḋ2. (5.7)

Thus, we obtain an explicit expression for M(D),

M(D) ≡
( dq

dD

)2
=

( d

dq

∑
i

2diσiv
2
i (q)

)−2
=

(
4
∑

i

diσiuiviPi(q)
)−2

. (5.8)

The collective mass M(D) evaluated in this way is displayed in Fig. 8 as a function
of D. It is immediately seen that the ASCC mass M(D) diverges in the limit
D → Dmax. The reason for this behavior can be clearly understood by examining
the relationship between D and the collective coordinate q. This is shown in Fig. 9.
We see that the variation of D slows down as D approaches its limiting value,
Dmax. Thus, the derivative dq/dD, which corresponds to the collective mass M(D),
according to Eq. (5.8), diverges. Obviously, this divergence is caused by the existence
of the maximum value of D, which is an artifact of the model: If we increase the
number of shells that are explicitly taken into account, this limit is removed by
successive level crossings as D increases.

It is interesting to compare the ASCC mass M(D) with the cranking mass
Mcr(D),1)

Mcr(D) = 2
∑
n

|〈φBCS
n (D)| ∂

∂D |φBCS
0 (D)〉|2

En(D) − E0(D)

= 2
∑

i

|2uivi(χdiσi + ∂λ
∂D ) + (u2

i − v2
i )

∂∆
∂D |2

(2Ei)3
, (5.9)

where φBCS
0 (D) and φBCS

n (D) represent the ground and excited states, and E0(D) and
En(D) are their energies obtained in the BCS approximation. Here, the coefficients
of the Bogoliubov transformations (ui and vi), the pairing gap ∆, the chemical
potential λ, and the quasiparticle energies Ei are evaluated using the single-particle
energies defined by ei = e0i − χdiσiD. It is important to note that the deformation
D is treated in the BCS approximation as a phenomenological potential parameter,
disregarding the self-consistency condition (4.5). Figure 8 shows that the cranking
mass Mcr(D) is significantly different from the ASCC mass M(D) over the entire
interval of the deformation D, including the spherical point D = 0 and the deformed
equilibrium points. The difference between the ASCC mass and the cranking mass
can be understood in terms of the HB self-consistency.

At the spherical point (D = 0), we can make an explicit comparison between
the ASCC mass and the cranking mass. There, all terms linear with respect to σi

in the local harmonic equations vanish after summing over all levels i, so that the
pairing and “quadrupole” normal modes are exactly decoupled. Thus, we obtain a
simple expression of the ASCC mass,

M(D = 0) = 2χ2
∑

i

2Ei(2diσiuivi)2

((2Ei)2 − ω2)2
= 4χ2∆2

∑
i

d2
i

Ei((2Ei)2 − ω2)2
. (5.10)
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Fig. 8. Collective masses M(D) calculated with the ASCC method for G = 0.14 (top), G = 0.16

(middle) and G = 0.20 (bottom) are plotted by the solid curves as functions of the deformation

D. Other parameter values used are the same as in Fig. 2. For comparison, the cranking mass

is indicated by dotted curves. The equilibrium deformations are indicated by the arrows.

Also at the spherical point, the expression for the cranking mass Mcr(D) reduces to

Mcr(D = 0) =
1
4
χ2∆2

∑
i

d2
i

E5
i

, (5.11)

because the derivatives ∂∆/∂D and ∂λ/∂D vanish at D = 0. We see that M(D = 0)
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reduces to Mcr(D = 0) if we set ω = 0 in Eq. (5.10). Actually, the frequency ω is
imaginary, and ω2 is negative when a barrier exists (G = 0.14 and 0.16). Accordingly,
M(D = 0) ≤ Mcr(D = 0) in these cases. By contrast, ω is real and ω2 is positive
when the spherical point is stable (G = 0.20), so that M(D = 0) ≥ Mcr(D = 0)
in this case. In this way, the difference between the ASCC mass and the cranking
mass in the barrier region (near D ≈ 0), clearly seen in Fig. 8, can be understood in
terms of the finite frequency effect of the local harmonic mode, which is connected
with the curvature of the collective potential by Eq. (4.38). This finite frequency
effect decreases (increases) the collective mass when the barrier increases (decreases).
We would like to emphasize that the finite frequency effect in the local harmonic
equations represents self-consistent dynamics of the time-dependent mean-field.

We note that, in contrast to the ASCC mass M(D), the cranking mass Mcr(D)
does not diverge at Dmax. This is because, as emphasized above, the deformation D
is treated as a free parameter in the single-particle potential, so that the existence
of the limit Dmax in the self-consistent deformation defined by Eq. (4.5) is disre-
garded there. In the multi-O(4) model under consideration, the self-consistency of
the deformation parameter specifying the single-particle potential and the density
deformation evaluated in terms of the wave function becomes extremely important
near Dmax.

The comparison between the ASCC mass and the cranking mass made in Fig. 8
thus elucidates the importance of the HB self-consistency in evaluating the collective
mass, although it is somewhat exaggerated.

There are various microscopic approaches to deriving the collective mass (also
called “inertial functions”).1), 2), 31) Certainly, it is important and interesting to make
a detailed comparison of different approaches for deriving the collective mass in the
multi-O(4) model and to clarify the role of the HB self-consistency in more detail.
Such a more systematic and comparative study is beyond the scope of this paper,
but it will be carried out in a separate paper.
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§6. Conclusions

The ASCC method was applied to an exactly solvable multi-O(4) model that is
designed to describe nuclear shape coexistence phenomena. The collective mass and
the dynamics of large amplitude collective motion in this model system were ana-
lyzed, and it was shown that the method yields a faithful description of tunneling
motion through a barrier between the prolate and oblate local minima in the collec-
tive potential. The result of numerical analysis seems very promising and encourages
us to apply this approach to realistic cases. We plan to investigate the oblate-prolate
shape coexistence phenomena in 68Se with use of the P+Q interactions.

References

1) P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980).
2) J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT press, 1986).
3) D. J. Rowe and R. Bassermann, Can. J. Phys. 54 (1976), 1941.
4) K. Goeke, Nucl. Phys. A 265 (1976), 301.
5) F. Villars, Nucl. Phys. A 285 (1977), 269.
6) T. Marumori, Prog. Theor. Phys. 57 (1977), 112.
7) M. Baranger and M. Veneroni, Ann. of Phys. 114 (1978), 123.
8) K. Goeke and P.-G. Reinhard, Ann. of Phys. 112 (1978), 328.
9) T. Marumori, T. Maskawa, F. Sakata and A. Kuriyama, Prog. Theor. Phys. 64 (1980),

1294.
10) M. J. Giannoni and P. Quentin, Phys. Rev. C 21 (1980), 2060.
11) J. Dobaczewski and J. Skalski, Nucl. Phys. A 369 (1981), 123.
12) K. Goeke, P.-G. Reinhard and D. J. Rowe, Nucl. Phys. A 359 (1981), 408.
13) A. K. Mukherjee and M. K. Pal, Phys. Lett. B 100 (1981), 457; Nucl. Phys. A 373 (1982),

289.
14) D. J. Rowe, Nucl. Phys. A 391 (1982), 307.
15) C. Fiolhais and R. M. Dreizler, Nucl. Phys. A 393 (1983), 205.
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Abstract

On the basis of the cranked Skyrme–Hartree–Fock calculations in the three-dimen
coordinate-mesh representation, we suggest that, in addition to the well-known candida32S,
the neutron-rich nucleus36S and the drip-line nuclei,48S and50S, are also good candidates f
finding superdeformed rotational bands in sulfur isotopes. Calculated density distributions
superdeformed states in48S and50S exhibit superdeformed neutron skins.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, superdeformed (SD) rotational bands have been discovered in36Ar, 40Ca and
44Ti [1–6]. One of the interesting new features of them is that they are built on excite+
states and observed up to high spin, in contrast to the SD bands in heavier mass
where low-spin portions of them are unknown in almost all cases [7–11]. These excit+
states may be associated with multiparticle–multihole excitations from the spherical
shells, so that we can hope to learn from such data detailed relationships between s
* Corresponding author.
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shell model and SD configurations. For the massA= 30–50 region, although existence
a SD band in32S with the SD magic numberN = Z = 16 has been expected for a lo
time [12], it has not yet been observed and remains as a great challenge [13–17].

In this paper, as a continuation of the systematic theoretical search [14,18] fo
bands in the massA = 30–50 region by means of the cranked Skyrme–Hartree–
(SHF) method [19], we would like to suggest that, in addition to32S, the neutron-rich
nucleus36S and the nuclei,48S and50S, which are situated close to the neutron-d
line [20,21], are also good candidates for finding SD rotational bands in sulfur isot
The appearance of the SD band in36S is suggested in connection with the SD sh
structure atN = 20 characterizing the observed SD band in40Ca. The drip-line nuclei
48S and50S, are expected to constitute a new “SD doubly closed” region associated
the SD magic numbers,Z = 16 for protons andN � 32 for neutrons. An interestin
theoretical subject for the SD bands in nuclei near the neutron drip line is to unde
deformation properties of neutron skins. The calculated density distributions indeed e
superdeformed neutron skins.

The calculation has been carried out with the use of the three-dimensional (3D),
sian coordinate-mesh representation without imposing any symmetry restriction [1
In parallel, we also carry out the standard calculations [22–25] imposing refle
symmetries. By comparing the symmetry restricted and unrestricted calculation
can examine the stability of the SD solutions of the SHF equations against refle
asymmetric deformations. In this way, we have found several cases where the SD m
obtained in the symmetry-restricted calculations are in fact unstable with resp
the reflection-asymmetric deformations. In general, the SD states are rather soft
reflection-asymmetric deformations, so that we need careful study about the stabil
them against various kinds of deformation breaking the reflection symmetries.

After a brief account of the cranked SHF calculational procedure in Section 2
present and discuss results of the calculation in Section 3, and give conclusi
Section 4. We shall present deformation energy curves for sulfur isotopes from32S to
50S, and focus our attention on properties of rotational bands built on the SD 0+ states,
stabilities of the SD local minima against the reflection-asymmetric deformations
density distributions of the SD states.

A preliminary version of this work was reported in [26].

2. Cranked SHF calculation

Since the cranked SHF method in the 3D coordinate-mesh representation i
known [22–25], we here give only a minimum description about the computat
procedure actually adopted. For a recent comprehensive review on selfconsistent
field models for nuclear structure, see Ref. [19]. The cranked SHF equation for a s
uniformly rotating about thex-axis is given by

δ〈H −ωrotĴx〉 = 0, (1)
whereH , ωrot and Ĵx mean the Hamiltonian with the Skyrme interaction, the rotational
frequency and thex-component of angular momentum, respectively, and the bracket
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denotes the expectation value with respect to a Slater determinantal state. We so
cranked SHF equation by means of the imaginary-time evolution technique [22] in th
Cartesian-mesh representation. The algorithm of numerical calculation is the standa
[22–25], except that we allow for both reflection- and axial-symmetry breakings. In
case, it is important to accurately fulfill the center-of-mass and principal-axis condi
This is done by means of the constrained HF procedure [27]. We solved these eq
inside the sphere with radiusR = 10 fm and mesh sizeh = 1 fm, starting with various
initial configurations. The accuracy for evaluating deformation energies with this
size was carefully checked by Tajima [25] and was found to be quite satisfactory.
we make a detailed analysis of density distributions, however, we use a smaller
size ofh = 1/3 fm. In addition to the symmetry-unrestricted cranked SHF calcula
we also carry out symmetry-restricted calculations imposing reflection symmetries
the (x, y)-, (y, z)- and (z, x)-planes. Below we call these symmetry-unrestricted
-restricted cranked SHF versions “unrestricted” and “restricted” ones, respectively.

Solutions of the cranked SHF equation give local minima in the deformation en
surface. In order to explore the deformation energy surface around these minim
draw deformation energy curves as functions of deformation parameters, we car
the constrained HF procedure with relevant constraining operators [27]. For the S
interaction, we adopt the widely used three versions; SIII [28], SkM∗[29] and SLy4 [30].
The pairing correlation is not taken into account in this paper. It will be dealt with in fu
by means of the symmetry-unrestricted Hartree–Fock–Bogoliubov code [31].

3. Results of calculation

3.1. Deformation energy curves

Fig. 1 shows deformation energy curves for sulfur isotopes from32S to 50S obtained
with the use of the SIII interaction. Solid lines with and without filled circles repre
the results obtained by the unrestricted and restricted versions, respectively. The
of calculation indicates that the SD minima (with the quadrupole deformation para
β2 ≈ 0.6) appear in the neutron-rich nucleus36S and the drip-line nuclei,48S and50S, in
addition to the well-known case of32S. As seen in Figs. 2 and 3, similar results are obta
for the SkM∗ and SLy4 interactions, except that the SD states in48S is unstable against th
reflection-asymmetric deformation for the SLy4 interaction (see Section 3.3).

As discussed in Refs. [14–18], the SD local minimum in32S corresponds to the doub
closed shell configuration with respect to the SD magic numberZ =N = 16 and involves
two protons and two neutrons in the down-sloping single-particle levels originating
thef7/2 shell. The SD local minimum in36S results from the coherent combination of t
SD magic number,Z = 16, and the neutron shell effects occurring at large deforma
for N = 20. The latter shell effect has been confirmed recently by the discovery o
SD rotation band in40Ca [4,5]. The SD shell gap atN = 20 is associated with the 4p–4

excitation from below theN = 20 spherical closed shell to thef7/2 shell. Focusing our
attention on the occupation numbers of such high-j shells and distinguishing protons (π )
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Fig. 1. Deformation energy curves for sulfur isotopes from32S to 50S calculated atI = 0 as functions of
the quadrupole deformationβ2 by means of the constrained SHF procedure with the SIII interaction.
deformation parameter is defined asβ2 = 4π

5 〈∑A
i=1 r

2
i Y20(θi ,φi )〉/〈

∑A
i=1 r2

i 〉. The axial-asymmetry paramete
γ is constrained to be zero. Solid curves with and without filled circles represent the results obtai
the unrestricted and restricted versions, respectively. The notationf

n1
π f

n2
ν indicates a configuration in whic

single-particle levels originating from thef7/2 shell are occupied byn1 protons andn2 neutrons. Likewise,

f
n1
π g

n2
ν indicates that levels from thef7/2 shell are occupied byn1 protons and those from theg9/2 shell byn2

neutrons.
Fig. 2. The same as Fig. 1 but for the SkM∗ interaction.
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Fig. 3. The same as Fig. 1 but for the SLy4 interaction.

and neutrons (ν), these SD configurations in32S and36S are denoted in Figs. 1–3 asf 2
πf

2
ν

andf 2
π f

4
ν , respectively.

The SD local minima in the drip-line nuclei,48S and50S, result from the coheren
combination of the proton SD shell effect and the neutron shell effects occurri
superdeformation forN = 32–34. The neutron configurations in these SD states are si
to those in the known SD bands in60Zn and62Zn associated with the SD magic numb
N = 30–32 [32,33]. We find that the SD shell effect is strong also forN = 34 in the
sulfur isotopes under consideration, while the SD local minimum in46S with N = 30
is unstable against the reflection-asymmetric deformation (see Section 3.3). In th
line nuclei 48S and50S, thef7/2 shell is fully occupied even in the spherical limit a
the SD configurations involve neutron excitations from thefp-shell to theg9/2 shell. As
before, focusing our attention on the occupation numbers of the high-j shells, let us use
the notationf n1

π g
n2
ν for a configuration in which single-particle levels originating from

f7/2 andg9/2 shell are occupied byn1 protons andn2 neutrons, respectively. With suc
notations, both the SD local minima in48S and50S correspond to thef 2

π g
4
ν configuration.

The appearance of the SD minimum in36S suggests that we can expect a SD b
associated with the same neutron configuration to appear also in theN = 20 isotone,38Ar,
situated between36S and40Ca. We examined this point and the result is shown in Fig. 4
find that the two local minima associated with the configurationsf 2

πf
2
ν andf 2

πf
4
ν compete

in energy and their relative energy differs for different versions of the Skyrme intera
As clearly seen in the deformation-energy curves obtained by the symmetry-res
calculations, the former with smallerβ2 is slightly lower for SkM∗ and SLy4 while the
latter with largerβ2 is slightly lower for SIII. Counting both protons and neutrons, th
local minima respectively correspond to the 4p–6h and 6p–8h configurations with r

to the spherical doubly closed shell of40Ca. As we discussed in the previous papers [18,26],
the two configurations can mix each other in the crossing region through the reflection-
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Fig. 4. The same as Fig. 1 but for38Ar and for the SIII, SkM∗ and SLy4 interactions.

Fig. 5. Schematic illustration of configuration-mixing mechanism through the octupole components of th
field. When the reflection symmetry is imposed, the positive- and negative-parity single-particle levels
cross, and the two configurations (having different number of particles in thef7/2 shell) do not mix within
the mean-field approximation (left-hand side). In contrast, when such symmetry restriction is removed,
crossover between the two configurations is possible via mixing of the positive- and negative-parity
(right-hand side). Octupole deformationβ3 of the mean field rises in the crossing region. In this figure,
crossing between the two levels with the asymptotic quantum numbers[3213

2] and [2001
2] is illustrated as an

example. The two levels satisfy the selection rule,!n3 = 2 and!Λ= 1, for the matrix elements of the non-axi
octupole operatorr3Y31, so that the mixing between them takes place mainly through ther3Y31 component of
the mean field.

symmetry breaking components in the mean field. Specifically, around the crossing
between the down-sloping[3213

2] level (coming from thef7/2 shell) and the up-slopin
[2001

2] level (coming from thed3/2 shell below theN = 20 spherical magic number), th
r3Y31-type non-axial octupole deformation is generated, and they mix each other th
this component of the mean field (see Fig. 5). Note that the matrix element of the op
r3Y31 between the two levels satisfies the selection rules,!n3 = 2 and!Λ = 1, for the

asymptotic quantum numbersn3 andΛ. As a result of this mixing, the deformation-energy
curve becomes rather flat in the symmetry-unrestricted calculation. Recently, the SD band
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corresponding to the 4p–6h configuration was found in experiment [34]. The data s
significant competition between different configurations, which requires further an
of shape fluctuation dynamics by going beyond the static mean-field approximation

3.2. SD rotational bands

Let us focus our attention on the SD local minima shown in Figs. 1–3, and inves
properties of the rotational bands built on them. Excitation energies of these SD rota
bands are plotted in Fig. 6 as functions of angular momentum. These rotational
are calculated by cranking each SHF solution (the SD local minima in Figs. 1–3
following the same configuration with increasing value ofωrot until the point where we
cannot clearly identify the continuation of the same configuration any more. Thu
highest values of angular momentum in this figure does not necessarily indicate the
termination points but merely suggest that drastic changes in their microscopic str
take place around there. Different slopes with respect to the angular momentum b
36S and50S can be easily understood in terms of the well-known scaling factorA5/3 for
the rigid-body moment of inertia. This point can be confirmed in Fig. 7 which display
angular momentumI , the kinematical and dynamical moments of inertia,J (1) = I/ωrot
andJ (2) = dI/dωrot, and the rigid-body moments of inertiaJrig =m

∫
ρ(r)(y2 + z2) dr

as functions of the rotational frequencyωrot. We see that the calculated moments of ine
are slightly larger than the rigid-body values atωrot = 0, and smoothly decrease asωrot
increases untilωrot ≈ 2.5 and 1.8 MeV/h̄ for 32,36S and50S, respectively. The resu
calculated with the SLy4 interaction is shown here, but we obtained similar result
with the SIII and SkM∗ interactions.

Calculated quadrupole deformation parameters(β2, γ ) are displayed in the uppe
portion of Fig. 6. We see that theβ2 values slowly decrease while the axial-asymme
parametersγ gradually increase with increasing angular momentum for all cases o32S,

Fig. 6. Plot of the excitation energies versus angular-momentum for the SD rotational bands in32S, 36S, and
50S calculated by means of the cranked SHF method. Results obtained with the use of the SIII, SkM∗ , and SLy4
interactions are plotted by solid, dashed, and dotted curves, respectively. Their shape evolutions as

of angular momentumI in the (β2, γ ) plane are displayed in the upper portions. Theβ2 values decrease with
increasingI .
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Fig. 7. The angular momentaI and the moments of inertiaJ are plotted as functions of rotational frequen
ωrot for the SD rotational bands in32S, 36S, and50S. The SLy4 interaction is used. Values of the kinemat
and dynamical moments of inertia,J (1) = I/ωrot andJ (2) = dI/dωrot, are plotted in unit of̄h2/MeV by solid
and dashed curves, respectively. For reference, the rigid-body moments of inertiaJrig =m

∫
ρ(r)(y2 + z2) dr

evaluated with the calculated densityρ(r) are also indicated.

Fig. 8. Single-particle energy diagrams (Routhians) for the SD bands in32S, 36S, and50S, plotted as functions
of rotational frequencyωrot. The left(right)-hand side displays those for protons(neutrons). The levels asso
with theg9/2 andf7/2 shells are drawn by thick-solid and thick-dashed lines, respectively. Other occupied
associated with thesd andfp shells are drawn by thin-solid and thin-dashed lines, respectively. Unocc
levels are drawn by thin-dotted lines. Numbers indicate the Fermi surfaces and total numbers of single

states below them. The result calculated with SLy4 is shown here, but we obtained similar results also with SIII
and SkM∗ .
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36S and50S. The variations are rather mild in the range of angular momentum sho
this figure. Single-particle energy diagrams (Routhians) for these SD bands are displ
Fig. 8 as functions of the rotational frequencyωrot. This figure indicates that level crossin
take place in36S and50S if we further increase the angular momentum.

3.3. Stabilities of the SD states against reflection-asymmetric deformations

Let us examine stabilities of the SD local minimum against both the axially symm
and asymmetric octupole deformation (Y30, Y31, Y32, Y33). Fig. 9 presents deformatio
energy curves as functions of the octupole deformation parametersβ3m(m = 0,1,2,3)
for fixed quadrupole deformation parameters (the equilibrium value ofβ2 at the SD
minimum in each nucleus andγ = 0). The computation was carried out by means of
constrained HF procedure with the use of the SIII, SkM∗, and SLy4 interactions. The resu
of calculation clearly indicates that the SD states in32S,36S and50S are stable against th
octupole deformations and that they are softer forβ3m with lower values ofm (i.e., forβ30
andβ31), irrespective of the Skyrme interactions used. We obtained a similar result al
48S (but omitted in this figure).

Although the SD minima in32S, 36S and50S are stable with respect toβ3m (m =
0,1,2,3), we found several cases where the SD minima obtained in the symm
restricted calculations become unstable when we allow for reflection-asymmetric

Fig. 9. Deformation energy curves (measured from energies atβ3 = 0) as functions of the octupole deformatio
parametersβ3m (m = 0,1,2,3), calculated for32S, 36S, and50S, by means of the constrained HF proced
with the use of the SIII, SkM∗ and SLy4 interactions. The quadrupole deformation parameters are fixed
equilibrium value ofβ2 in each nucleus andγ = 0. One of theβ3m (m = 0,1,2,3) is varied while the other

β3m ’s are fixed to zero. The deformation parametersβ3 andβ3m are defined in terms of the expectation values
of the octupole operators (see Ref. [18] for their explicit expressions).
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mations of a more general type. As a first example, let us discuss the SD minimum46S
which appears in the restricted calculation (see Figs. 1–3). In this case, the coupl
tween the down-sloping[3301

2] level (associated with thef7/2 shell) and the up-slopin
[2025

2] level (stemming from thed5/2 shell) takes place in the proton configuration, wh
we allow for the breaking of both the axial and reflection symmetries. Thus, the SD c
urationf 2

πg
2
ν mixes with theg2

ν configuration (which lacks the proton excitation to thef7/2

shell and has a smaller equilibrium value ofβ2). As a consequence of this mixing, the b
rier between the two configurations disappears and the SD minimum becomes uns
the unrestricted calculations (see Figs. 1–3). Note that the difference!n3 in the asymptotic
quantum numbern3 between the two single-particle levels,[3301

2] and[2025
2], is three, so

that they cannot be mixed by the octupole operatorr3Y32 which transfers the asymptot
quantum numbersn3 andΛ by!n3 = 1 and!Λ= 2. Thus, this mixing may be associat
with the reflection-asymmetric deformation of a more higher order liker5Y52.

As a second example, we take up the SD minimum in48S. In this case, two
configurations,f 2

π g
2
ν and f 2

πg
4
ν compete in energy and their relative energy differs

different versions of the Skyrme interaction; the former with smallerβ2 is slightly lower
(higher) for SLy4 (SIII and SkM∗) (see Figs. 1–3). When we allow for the breaking
both the axial and reflection symmetries, the coupling between the down-sloping[4313

2]
level (associated with theg9/2 shell) and the[3101

2] level in thefp shell takes place in th
neutron configuration, so that they mix each other. Note that the[4313

2] and[3101
2] levels

satisfy the selection rules,!n3 = 2 and!Λ= 1, for the matrix elements of the octupo
operatorr3Y31. In the calculation with the SLy4 interaction, since the former configura
with smallerβ2 is situated slightly lower in energy than the latter, the barrier betwee
two configurations disappears as a result of this mixing. This mixing effect in conjun
with that mentioned above for thef 2

π g
2
ν configuration in46S deteriorates the SD minimu

for the SLy4 case.
The above examples indicate detailed microscopic mechanisms within the mea

theory how the stability of the SD local minimum is determined by relative ene
between the neighboring configurations and their mixing properties. In this conne
it should be noted that the pairing interaction ignored in this paper might also pl
important role in the mixing of crossing configurations. It thus remains to be an intere
future subject to study the competition between the two different mixing mechanism
the symmetry breaking in the mean field and the pairing correlation.

3.4. Density distributions

Fig. 10 displays the neutron and proton density profiles for the SD states in32S,36S and
50S calculated with the use of the SLy4 interaction. We obtained similar results als
SIII and SkM∗. In this figure, equi-density lines with 50% and 1% of the central densi
the(x, y)- and(y, z)-planes are drawn for the SD bands atI = 0 and at high spins. We ca
clearly see that superdeformed neutron skin appears in50S which is situated close to th
neutron drip line. The root-mean-square values,

√〈x2〉,√〈y2〉,√〈z2〉 andRrms = √〈r2〉,

of these density distributions are listed in Table 1. To indicate the deformation properties
of the neutron skin in50S, calculated values for protons and neutrons are separately listed



and
50% and

e

ff.).

those
g

62 T. Inakura et al. / Nuclear Physics A 728 (2003) 52–64

Fig. 10. Left-hand side: Density distributions in the(y, x)- and (z, x)-planes of the SD band atI = 0 in 32S,
36S, and50S, calculated with the use of the SLy4 interaction. Neutron (proton) equi-density lines with 50%
1% of the central density are shown by dashed (solid) lines (the inner and outer lines correspond to the
1% lines, respectively). Right-hand side: Same as the left-hand side but forI = 20,22,28 for 32S,36S, and50S,
respectively.

Table 1
Root-mean-square values,

√
〈x2〉,

√
〈y2〉,

√
〈z2〉 andRrms=

√
〈r2〉, of the density distributions atI = 0 (second

column) and atI = 20,22,28 (third column) of the SD band in32S, 36S and50S, calculated with the use of th
SLy4 interaction

32S I = 0 I ∼ 20
√

〈x2〉
√

〈y2〉
√

〈z2〉 Rrms
√

〈x2〉
√

〈y2〉
√

〈z2〉 Rrms

total 1.53 1.53 2.85 3.57 1.53 1.67 2.67 3.50
neutrons 1.52 1.52 2.83 3.55 1.52 1.66 2.65 3.48
protons 1.54 1.54 2.86 3.60 1.54 1.68 2.68 3.52
diff. −0.02 −0.02 −0.04 −0.04 −0.02 −0.02 −0.04 −0.05
36S I = 0 I ∼ 22

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

total 1.59 1.59 2.78 3.58 1.61 1.73 2.63 3.53
neutrons 1.62 1.62 2.78 3.60 1.64 1.75 2.64 3.57
protons 1.55 1.55 2.78 3.54 1.57 1.69 2.61 3.48
diff. 0.07 0.07 0.00 0.06 0.08 0.06 0.03 0.09
50S I = 0 I ∼ 28

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

total 1.81 1.81 3.11 4.03 1.82 1.96 2.95 3.98
neutrons 1.90 1.90 3.17 4.16 1.91 2.05 3.02 4.12
protons 1.62 1.62 2.96 3.75 1.63 1.75 2.79 3.67
diff. 0.28 0.28 0.20 0.41 0.28 0.31 0.23 0.45

Neutron and proton contributions are separately listed together with their sums (total) and differences (di

together with their sums and differences. We obtained density distributions similar to
for 50S also for the SD state in48S. A similar result of theoretical calculation exhibitin

the superdeformed neutron skin was previously reported in Ref. [35] for the SD state in the
very neutron-rich nucleus208
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4. Conclusions

On the basis of the cranked SHF calculations in the 3D coordinate-mesh represen
we have suggested that, in addition to the well-known candidate32S, the neutron-rich36S
and the drip-line nuclei,48S and50S, are also good candidates for finding SD rotatio
bands in sulfur isotopes. Calculated density distributions for the SD states in48S and50S,
which are situated close to the neutron-drip line, exhibit superdeformed neutron skin
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Nuclear moments of inertia and wobbling motions in triaxial superdeformed nuclei
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The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model
plus random phase approximation. First, by calculating at a low rotational frequency theg dependence of the
three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the
wobbling motion in positive-g nuclei is clarified theoretically—the rotational alignment of thepi13/2 quasipar-
ticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive
to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency depen-
dence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of
inertia.

DOI: 10.1103/PhysRevC.69.034325 PACS number(s): 21.10.Re, 21.60.Jz, 23.20.Lv, 27.70.1q

I. INTRODUCTION

Deformation of the nuclear shape from spherical symmet-
ric one has long been one of the most important issues in
nuclear structure physics. Among them, searches for evi-
dences of the triaxial(Y22 or g) one have been pursued long
time, for example, the even-odd energy staggering in the
low-spin part of theg bands[1], the signature dependence of
the energy spectra, and theE2/M1 transition rates in
medium-spin odd-odd and odd-A nuclei [2–4], properties of
the K isomers[5,6], and so on. But their results have not
been conclusive; making a clear distinction between the
static and the dynamic(vibrational) ones has not been suc-
cessful up to now. Theoretically, appearance of the wobbling
motion, which is well known in classical mechanics of asym-
metric tops[7] and whose quantum analog was discussed in
terms of a rotor model about 30 years ago[8], is a decisive
evidence of static triaxial deformations. Subsequently its mi-
croscopic descriptions were developed by several authors
[9,10]. Since the small-amplitude wobbling mode carries the
same quantum numbers, parityp=+ and signaturea=1, as
the odd-spin members of theg band, Ref.[11] anticipated
that it would appear as a high-spin continuation of theg
band, but it has not been resolved that in what nuclei, at what
spins, and with whatg wobbling modes would be observed.

Shimizu and Matsuyanagi[12] and Onishi[13] performed
extensive numerical calculations for normally deformed Er
isotopes with relatively smallugu. Matsuzaki[14], Shimizu
and Matsuzaki[15], and Horibata and Onishi[16] also stud-
ied 182Os with relatively large negativeg but their correspon-

dence to experimental information has not been very clear.
These studies indicate the necessity of high-spin states in

stably and stronglyg-deformed nuclei. Bengtsson studied
high-spin states around164Hf [17] and found systematic ex-
istence of the TSD(triaxial superdeformed or strongly de-
formed) states withe2,0.4 andugu,20°. This confirmed the
discussion on the shell gap atN=94 in Ref.[18], the work in
which the yrast TSD band in163Lu was reported; in 2000 an
excited TSD band was observed in this nucleus and from the
strengths of the interbandE2 transition rates this was unam-
biguously identified with the wobbling motion[19]. These
data were analyzed by using a particle-rotor model[20] and
the E2 transition rates were reproduced well. Subsequently
TSD bands were found in some Lu and Hf isotopes and
wobbling excitations were observed also in165,167Lu [21,22].
A close look at these data, however, tells us that the sign of
their g-deformation seems to contradict to an irrotational
motion and that the unexpected behavior of the wobbling
frequency has not been explained yet.

Thus in the preceding Rapid Communication[23] we pre-
sented an answer to these problems. In the present paper,
after summarizing the discussion there we extend numerical
analyses to elucidate it. An emphasis is put on the behavior
of the calculated dynamic moments of inertia.

II. WOBBLING MOTION IN TERMS OF THE RANDOM
PHASE APPROXIMATION

We start from a one-body Hamiltonian in the rotating
frame,

h8 = h − "vrotJx, s1d

h = hNil − DtsPt
† + Ptd − ltNt, s2d

*Email address: matsuza@fukuoka-edu.ac.jp
†Email address: yrsh2scp@mbox.nc.kyushu-u.ac.jp
‡Email address: ken@ruby.scphys.kyoto-u.ac.jp
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hNil =
p2

2M
+

1

2
Msvx

2x2 + vy
2y2 + vz

2z2d

+ vlsl ·s+ vllsl2 − kl2lNosc
d. s3d

In Eq. s2d, t=1 and 2 stand for neutron and proton, respec-
tively, and chemical potentialslt are determined so as to
give correct average particle numberskNtl. The oscillator
frequencies in Eq.s3d are expressed by the quadrupole de-
formation parameterse2 and g in the usual way. They are
treated as parameters as well as pairing gapsDt. The orbital
angular momentuml in Eq. s3d is defined in the singly
stretched coordinatesxk8=Îsvk/v0dxk, with k=1–3denoting
x–z, and the corresponding momenta. By diagonalizingh8
at eachvrot, we obtain quasiparticlesQPd orbitals and the
nuclear yrasts0QPd state. Sinceh8 conserves parityp and
signature a, nuclear states can be labeled by them.
Nuclear states with QP excitations are obtained by ex-
changing the QP energy and wave functions such as

s− em8 ,Vm,Umd → sem̄8 ,Um̄,V m̄d, s4d

wherem̄ denotes the signature partner ofm.
We perform the random phase approximation(RPA) to

the residual pairing plus doubly stretched quadrupole-
quadrupolesQ9 ·Q9d interaction between QPs. Since we are
interested in the wobbling motion that has a definite quantum
number,a=1, only two components out of five of theQ9 ·Q9
interaction are relevant. They are given by

Hint
s−d = −

1

2 o
K=1,2

kK
s−dQK9

s−d†QK9
s−d, s5d

where the doubly stretched quadrupole operators are defined
by

QK9 = QKSxk → xk9 =
vk

v0
xkD , s6d

and those with good signature are

QK
s±d =

1
Î2s1 + dK0d

sQK ± Q−Kd. s7d

The residual pairing interaction does not contribute because
Pt is an operator witha=0. The equation of motion

fh8 + Hint
s−d,Xn

†gRPA = "vnXn
† s8d

for the eigenmode

Xn
† = o

m,n

sa=±1/2d

fcnsmndam
†an

† + wnsmndanamg s9d

leads to a pair of coupled equations for the transition ampli-
tudes

TK,n = kfQK
s−d,Xn

†gl. s10d

Then, by assuminggÞ0, this can be castf10g into the form

svn
2 − vrot

2 dFvn
2 − vrot

2 fJx − Jy
seffdsvndgfJx − Jz

seffdsvndg

Jy
seffdsvndJz

seffdsvnd G = 0,

s11d

which is independent ofkK
s−ds. This expression proves that

the spurioussNambu-Goldstoned mode given by the first fac-
tor and all normal modes given by the second are decoupled
from each other. HereJx=kJxl /vrot as usual and the de-
tailed expressions ofJy,z

seffdsvnd are given in Refs.
f10,14,15g. Among normal modes, one obtains

vwob
2 = vrot

2 fJx − Jy
seffdsvwobdgfJx − Jz

seffdsvwobdg

Jy
seffdsvwobdJz

seffdsvwobd
s12d

by putting vn=vwob. Note that this gives a real excitation
only when the right-hand side is positive and it is non-
trivial whether a collective solution appears or not. Evi-
dently this coincides with the form derived by Bohr and
Mottelson in a rotor modelf8g and known in classical
mechanicsf7g, aside from the crucial feature that the mo-
ments of inertia arevrot dependent in the present case.

One drawback in our formulation is that ourJx tends to
be larger than corresponding experimental values because of
the spurious velocity dependence of the Nilsson potential as
discussed in Refs.[24,25]. A remedy for this was discussed
there but that forJy,z

seffd has not been devised yet. Therefore
we assume for the present that a similar discussion holds for
the latter, and accordingly the ratioJy,z

seffdsvwobd /Jx which
actually determinesvwob is more reliable than its absolute
magnitude.

Interband electric quadrupole transitions between thenth
excited band and the yrast are given as

BsE2:In → sI ± 1dyrastd =
1

2
sT1,n

sEd ± T2,n
sEdd2 s13d

in terms of

TK,n
sEd = e

Z

A
TK,n. s14d

They will be abbreviated asBsE2dout later for simplicity.
In-band ones are given as

BsE2:I → I − 2d =
1

2
SÎ3

2
kQ0

s+dsEdl +
1

2
kQ2

s+dsEdlD2

s15d

in terms of

kQK
s+dsEdl = e

Z

A
kQK

s+dl, s16d

and assumed to be common to all bands. They will be ab-
breviated asBsE2din. Here we adopted a high-spin approxi-
mation f26g. The transition quadrupole momentQt is ex-
tracted fromBsE2din by the usual rotor-model prescription.

To compare collectivities of these two types ofE2 transi-
tions, we introduce a pair of deformation parameters
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R2ay =Î 15

16p
kx2 − z2l =K1

2
Q2

s+d −
Î3

2
Q0

s+dL ,

R2az =Î 15

16p
kx2 − y2l = kQ2

s+dl. s17d

Then it is evident that the in-band one is expressed as

BsE2:I → I − 2d =
1

2
R4say

sEd − az
sEdd2. s18d

As for the interband ones, by expandingQK
s−d by Xn

†s andXns,
wheren runs both normal modes and the Nambu-Goldstone
modeXNG

† = 1/Î2I sJz+ iJyd, we obtain fromfQ1
s−d ,Q2

s−dg=0
a kind of sum rule

o
nÞNG

T1,nT2,n = −
2

I
R4ayaz. s19d

Consecutively introducing the ratios of the dynamic to static
deformations,

ry,n =
T1,n

2R2ay
,

rz,n = −
T2,n

2R2az
, s20d

the sum rule above reads

o
nÞNG

ry,nrz,n =
1

2I
. s21d

The dynamic amplitudesTK,n describe shape fluctuations as-
sociated with the vibrational motion in the uniformly rotating
frame. Transformation to the body-fixedsprincipal axisd
framef10g turns the shape fluctuation into the fluctuation of
the angular momentum vector, i.e., the wobbling motion.

This transformation relates the ratiosry,n and rz,n to the mo-
ments of inertiaf15g:

ry,n = cn
1

Î2I
SWz,n

Wy,n
D1/4

,

rz,n = sncn
1

Î2I
SWy,n

Wz,n
D1/4

, s22d

wherecn is a real amplitude that relates the dynamic ampli-
tude TK,n and the moment of inertia,sn is the sign ofsJx

−Jy
seffdd (so sn.0 for wobblinglike RPA solutions), and

Wy,n = 1/Jz
seffdsvnd − 1/Jx,

Wz,n = 1/Jy
seffdsvnd − 1/Jx. s23d

Thus, the interbandBsE2d is rewritten as

B„E2:In → sI ± 1dyrast…

=
1

I
R4cn

2Fay
sEdSWz,n

Wy,n
D1/4

7 snaz
sEd

3SWy,n

Wz,n
D1/4G2

, s24d

which coincides with the formula given by the rotor model
f8g, except for the appearance of the amplitudecn and sign
sn. Substituting the ratiosry,n andrz,n into Eq.s21d, one finds
that the amplitudes should satisfy

o
nÞNG

sncn
2 = 1. s25d

This form of sum rule clearly indicates that the amplitude
cn is a microscopic correction factor quantifying the collec-
tivity of the wobbling motion, for whichcn

2.1 means the
full collectivity and reproduces the results of the macro-

FIG. 1. Triaxiality dependence of(a) excita-
tion energy of the wobbling motion,(b) three mo-
ments of inertia associated with it,(c) expectation
values of angular momenta in the yrast state, and
(d) quadrupole transition amplitudes between the
wobbling and the yrast states in168Hf, calculated
at "vrot=0.25 MeV with e2=0.43 andDn=Dp

=0.3 MeV.
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scopic rotor model in both the energy and the interband
BsE2d values.

III. NUMERICAL CALCULATION AND DISCUSSION

A. Summary of the preceding study

Since the first experimental confirmation of the wobbling
excitation in163Lu [19], g. +20° has been widely accepted
as the shape of the TSD states in this region. This is predomi-
nantly because the calculated energy minimum forg.
+20° is deeper than that forg.−20° [17] according to the
shape driving effect of the alignedpi13/2 quasiparticle. The
recent precise measurements ofQt [27] also support this. On
the other hand, the sign ofg deformation leads to different
consequences on moments of inertia, which are directly con-
nected to the excitation energy of the wobbling mode
through the wobbling frequency formula[8], cf. Eq. (12).
Since the RPA is a microscopic formalism, no distinction
between the collective rotation and the single-particle de-
grees of freedom has been made.

Therefore, the moments of inertia calculated in our RPA
formalism in Sec. II are those for rotational motions of the
whole system. In contrast, the macroscopic irrotational-like
moments of inertia are often used in the particle-rotor calcu-

lations, whereJy.Jx@Jz for g. +20° and they lead to an
imaginary wobbling frequencyvwob. It is, however, noted
that the moments of inertia of the particle-rotor model are
those of the rotor and no effect of the single-particle align-
ments is included, so that they do not necessarily correspond
to those calculated in our RPA formalism.

In the preceding paper[23] we have performed micro-
scopic RPA calculations without dividing the system artifi-
cially into the rotor and particles. That work proved that for
the calculated moment of inertia,Jx=kJxl /vrot, the contribu-
tion from the aligned QPssd, DJx= iQP/vrot with iQP being the
aligned angular momentum, is superimposed on an
irrotational-like moment of inertiasJy.Jxd of the “core.”
Consequently the totalJx is larger thanJy, which makes
wobbling excitation ing.0 nuclei possible.

The second consequence of the formulation adopted in
Ref. [23] is that the three moments of inertia are automati-
cally vrot dependent even when the mean-field parameters
are fixed constant. This is essential in order to explain the
observedvrot dependence ofvwob—decreasingas vrot in-
creases. Otherwisevwob is proportional tovrot.

Another important feature of the data is that the interband
BsE2d values between the wobbling and the yrast TSD bands
are surprisingly large. Our RPA wave function gave ex-

FIG. 2. Nilsson single-particle energy diagrams atvrot=0, (a) for 0øe2ø0.43 with g=0 and (b) for 0øgø60° with e2=0.43 for
neutrons.(c) and (d) are corresponding ones for protons. Solid and dashed curves represent even and odd parity orbitals, respectively.
Asymptotic quantum numbers of some important orbitals are explicitly indicated. Chemical potentials that give particle numbersN=96 and
Z=72 for g.0 at "vrot=0.25 MeV are also indicated in(b) and (d).
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tremely collectiveBsE2dout that gathereducn=wobu.0.6–0.8
in the sum rule[Eq. (25)] but the result accounted for only
about one-half of the measured one.

To elucidate these findings more, in the following we ex-
tend our numerical analyses putting a special emphasis on
the g dependence of the moments of inertia in Sec III B.
Dependence on other parameters is also studied in detail.
Features in common and different between even-even and
odd-A nuclei are also pointed out. In Sec. III C, we discuss
vrot dependence. In Sec. III D, characteristics ofBsE2dout are
discussed. Calculations are performed in five major shells;
Nosc=3–7 for neutrons andNosc=2–6 for protons. The
strengthsvls andvll in Eq. (3) are taken from Ref.[28].

B. Dependence on the mean-field parameters
g, «2, and D

1. The even-even nucleus168Hf

Hafnium-168 is the first even-even nucleus in which TSD
bands were observed[29]. In this nucleus three TSD bands
were observed but interbandg rays connecting them have
not been observed yet. This means that the character of the
excited bands has not been established, although we expect
at least one of them is wobbling excitation. An important
feature of the data is that the average transition quadrupole
moment was determined asQt=11.4−1.2

+1.1 e b. This imposes a

moderate constraint on the shape. Referring to the weak pa-
rameter dependence discussed later, we choosee2=0.43, g
=20°, andDn=Dp=0.3 MeV, which reproduce the observed
Qt, as a typical mean-field parameter set.

First we study the dependence of various quantities ong
and other mean-field parameters at"vrot=0.25 MeV. Around
this frequency thespi13/2d2 alignment that is essential for
making wobbling excitation ing.0 nuclei possible is com-
pleted and therefore the wobbling motion is expected to
emerge above this frequency(see Fig. 7 shown later).

Figure 1 shows dependence ong calculated with keeping
e2=0.43 andDn=Dp=0.3 MeV. Figure 1(a) graphs the cal-
culated excitation energy in the rotating frame,"vwob. As g
comes close to 0(symmetric about thez axis) and −60°
(symmetric about they axis), vwob approaches 0, see Eq.
(12). We did not obtain any low-lying RPA solutions at
aroundg=40° whereas a collective solution appears again
for 50°øgø60°.

Figure 1(b) shows the calculated moments of inertia.
Their g dependence resembles the irrotational, the so-called
g-reversed, and the rigid-body moments of inertia, ing,0,
0,g,40°, and 50°øgø60°, respectively. These model
moments of inertia are given by

Jk
irr = 4Bb2 sin2Sg +

2

3
pkD , s26d

FIG. 3. Deformation dependence of(a) exci-
tation energy of the wobbling motion,(b) expec-
tation values of angular momenta in the yrast
state, and(c) transition quadrupole moment in the
yrast state in 168Hf, calculated at "vrot

=0.25 MeV withg=20° andDn=Dp=0.3 MeV.

FIG. 4. Pairing gap dependence of(a) excita-
tion energy of the wobbling motion and(b) ex-
pectation values of angular momenta in the yrast
state in 168Hf, calculated at"vrot=0.25 MeV
with e2=0.43 andg=20°. Dn=Dp is assumed for
simplicity.
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Jk
rev = 4Bb2 sin2S− g +

2

3
pkD , s27d

and

Jk
rig = J0F1 −Î 5

4p
b cosSg +

2

3
pkDG , s28d

where k=1–3 denote thex–z principal axes,B the irrota-
tional mass parameter,J0 the rigid moment of inertia in the
spherical limit, andb is a deformation parameter likee2. The
g-reversed moment of inertia was introduced to describe
positive-g rotations in the particle-rotor modelf3g but its
physical meaning has not been very clear; in particular, it
does not fulfill the quantum-mechanical requirement that the
rotations about the symmetry axis should be forbidden. We
have clarified in the preceding paperf23g that the contribu-
tions from aligned quasiparticles superimposed on
irrotational-like moments of inertiasJx,Jyd can realize
Jx.Jy and this is the very reason why the wobbling exci-
tation fsee Eq.s12dg appears in positive-g nuclei. We also
discussed that multiple alignments could eventually lead to a
rigid-body-like moment of inertia. Figure 1scd indicates that,
in the present calculation in which configuration is specified
as the adiabatic quasiparticle vacuum at eachvrot, two pi13/2
protons align forg.0 as mentioned above while they
have not fully aligned forg,0 at thisvrot. In other words,
these figures cover both regions in which thespi13/2d2

alignment is necessarysg.0d and that is not necessary
sg,0d for obtaining wobbling excitations. This aligned
angular momentum determines the overallg dependence
of Jx in Fig. 1sbd. As for the neutron part, corresponding
to the disappearance of the solution at aroundg=40°, the
expectation value of the neutron angular momentum,kJxln,
drops around this region.

To look at this more closely, we investigate the Nilsson
single-particle diagram atvrot=0. Figure 2(a) graphs neutron
single-particle energies for 0øe2ø0.43 with g=0, while

Fig. 2(b) for 0øgø60° with e2=0.43. The chemical poten-
tial that gives correct neutron numberN=96 for g.0 at
"vrot=0.25 MeV is also drawn in the latter. This figure
clearly shows that with thise2 a shell gap exists forg
&20° at N=96. And by comparing this with Fig. 1 we see
that the dropping ofkJxln is a consequence of the deoccupa-
tion of the orbital that isf651 1/2g at g=0 (hereafter simply
referred to as thef651 1/2g orbital even atgÞ0) originating
from the mixedsg9/2-i11/2d spherical shell. Figure 2(b) also
explains the reason why the wobbling excitation revives at
aroundg=50° again; the occupation of other oblate-favoring
orbitals such asf503 7/2g makes it possible and leads to a
rigid-body-like behavior of the moments of inertia. Figures
2(c) and 2(d) are corresponding ones for protons. This indi-
cates that the proton shell gap is robuster.

Figure 1(d) graphs the quadrupole transition amplitudes
TKsK=1,2d associated with the wobbling mode.[TK corre-
sponds tos−1dK−1QK in Ref. [15].] This shows that their
relative sign changes with that ofg as discussed in Refs.
[14,15]. This feature can be understood as follows:g,0 is
the g-vibrational region because theK=2 component is
dominant[see alsoJx.Jy

seffd andJz
seffd.0 in Fig. 1(b)], and

the mixing of theK=1 component due to triaxiality and ro-

FIG. 5. The same as Fig. 1 but for167Lu.

FIG. 6. Energies of the lowestfpsNosc=6dg2 two quasiparticle
states in168Hf and 167Lu, calculated at the same time in Figs. 1 and
5, respectively.
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tation gives rise to the character of the wobbling motion.
This relative sign leads to a selection rule of the interband
transition probabilitiesBsE2dout [15]. In the present case we
obtain BsE2:I → I −1dout_BsE2:I → I +1dout for g_0, and
typically their ratio to the in-band ones isBsE2:I → I
−1dout/BsE2:I → I −2din,0.1.

Figure 3 shows dependence one2 calculated with keeping
g=20° andDn=Dp=0.3 MeV. The steep rises at arounde2
=0.33 in Figs. 3(a) and 3(b) indicate the necessity of the
spi13/2d2 [thef660 1/2g orbital in Fig. 2(c)] alignment for the
appearance of the wobbling mode although the critical value
of e2 itself is frequency dependent. Aside from this,vwob is
almost constant in the calculated range. The slight increase at
arounde2=0.4 stems from the occupation of thenf651 1/2g
orbital. We have confirmed that in this case thesn j15/2d2

alignment at arounde2=0.47 seen in Fig. 3(b) does not affect
vwob visibly sinceDJy

seffd in this case is almost the same as
DJx although its reason is not clear. Figure 3(c) graphsQt.
This figure indicates that the chosen shapee2=0.43 andg
=20° reproduces the measuredQt.

Figure 4(a) shows dependence on the pairing gaps. Since
we do not have detailed information about the gaps, we as-
sumeDn=Dp for simplicity. This figure shows that the de-
pendence on the gaps is weak unless they are too large. Since
the static pairing gapD is expected to be small, say,D
ø0.6 MeV, in the observed frequency range,vwob is not
sensitive to the value ofD. This is a striking contrast to theb
and g vibrations; it is well known that pairing gaps are in-
dispensable for them. Here we note that the behavior of the
vwob correlates well withkJxlp presented in Fig. 4(b).

2. The odd-A nucleus167Lu

Next we study167Lu in a way similar to the preceding
168Hf case. We chooseg=20° andDn=Dp=0.3 MeV as rep-
resentative mean-field parameters as above. As fore2, how-
ever, we examined various possibilities becauseQt has not
been measured in this nucleus. Since the sensitivee2 depen-
dence through the occupation of thenf651 1/2g orbital ap-

pears only at"vrot.0.4 MeV and therefore the “bandhead”
properties do not depend one2 qualitatively, first we discuss
them adoptinge2=0.43 in order to look at the difference
between the even-even and the odd-Z cases.

Figure 5 shows dependence ong at "vrot=0.25 MeV with
keepinge2=0.43 andDn=Dp=0.3 MeV constant. Figure 5(a)
graphsvwob. In theg.0 region, the solution is quite similar
to the168Hf case. In theg,0 region, for −60°øg&−30° it
is quite similar again but for −30°&g,0 its character is
completely different. In this region the presented solution is
the lowest in energy and becomes collective gradually asg
decreases. The largeness ofvwob corresponds to that ofJx

−Jy
seffd in Fig. 5(b). Comparison of Figs. 5(c) and 1(c) certi-

fies that the alignment of thepi13/2 quasiparticle(s) is almost
complete forg.0 whereas less forg,0. This produces
quantitative even-odd differences as explained below.

Having confirmed that these features are independent of
e2 andN except that we did not obtain any low-lying solu-
tions for 35°&gø60° in the small-e2 cases, we look into
underlying unperturbed 2QP energies to see the even-odd
difference. In Fig. 6 we present the energies of the lowest
fpsNosc=6dg2 states which represent the biggest difference.
In the yrastspi13/2d2 configuration,Ap and Bp in the usual
notation are occupied in the even-Z case, the lowest 2QP

FIG. 7. Rotational frequency dependence of
(a) excitation energy of the wobbling motion,(b)
expectation values of angular momenta in the
yrast state, and(c) three moments of inertia asso-
ciated with the wobbling motion in168Hf, calcu-
lated with e2=0.43, g=20°, and Dn=Dp

=0.3 MeV.

FIG. 8. Rotational frequency dependence of excitation energy of
the wobbling motion in174Hf, calculated withe2=0.453,g=16°,
andDn=Dp=0.3 MeV.
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state of signaturea=1 with respect to this isB̄pCp [where −
denotes the conjugate state, see Eq.(4)]. In the odd-Z case in

which Ap is occupied, the lowest one isBpĀp. Since botheBp
8

ande
Āp

8 decrease asg decreases, this 2QP state becomes the

dominant component in the lowest-energy RPA solution.
Note here that the sumeBp

8 +e
Āp

8 corresponds to the signature

splitting betweenAp and Bp when they are seen from the

usual even-even vacuum. Since bothBp and Āp are of K
=1/2 character, the resulting RPA solution cannot have the
K=2 collectivity as shown in Fig. 5(d). According to the
relation [15]

Jy
seffd

Jx
= 31 +

vwob

vrot

sin g

sin Sg +
4

3
pD

T1

T24
−1

, s29d

Jy
seffd in Fig. 5sbd becomes small for −30°&g,0. This

discussion serves to exclude the possibility ofg.−20° for
the TSDs that support collective wobbling excitations in

the odd-Z cases, whereas the even-odd difference ing.0
is merely quantitative.

C. Dependence on the rotational frequencyvrot

1. 168Hf and 174Hf

The analyses above indicate that the chosen mean-field
parameters are reasonable, and therefore we proceed to study
vrot dependence with keeping these parameters constant. Fig-
ure 7 shows the result for168Hf. These figures indicate again
the spi13/2d2 alignment that makesJx larger thanJy

seffd is
indispensable for the formation of the wobbling excitation.
At around"vrot=0.45 MeV thesn j15/2d2 alignment occurs. In
contrast to the low-frequency case reported in Fig. 3, in the
present case its effect onvwob is visible as a small bump.
Although the character of the observed excited TSD bands
has not been resolved, some anomaly is seen at around this
vrot in one of them[29]. We suggest that this is related to the
sn j15/2d2 alignment since this is the only alignable orbital in
this frequency region of this shape. However we note that in
167Lu an interaction with a normal deformed state at around
this frequency is discussed in Ref.[22].

FIG. 9. The same as Fig. 7 but for167Lu. Ex-
perimental values taken from Ref.[22] are also
included in(a).

FIG. 10. InterbandE2 transition rates forI (wobbling on yrast TSD) →I ±1 (yrast TSD) transitions in(a) 168Hf and (b) 167Lu. The latter
is presented as functions of 23 spin I, while the former is presented as functions of the rotational frequency since experimental spin
assignment has not been done for168Hf. The rotational-frequency range corresponding to(b) is very narrow in comparison to(a). Interband
transition rates are divided by the in-band ones. Experimental values[22] are also shown in(b). Noting that, for167Lu, the statesI +1 (TSD1)
are slightly higher in energy thanI (TSD2) at I .51/2" and BsTl ; I → I +1d.BsTl ; I +1→ Id holds at high spins, we plotted those forI
→ I +1 at the places with the abscissasI +1 in order to show clearly their characteristic staggering behavior.
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We performed calculations also forg=−20°. In that case,
however, wobbling excitation exists only at smallvrot be-
causeJx−Jy

seffd is small as seen from Fig. 1(b).
Very recently TSD bands were observed in another even-

even nucleus,174Hf [30]. It is not trivial if a similar band
structure is observed in the nucleus with six neutrons more
since the existence of the TSD states depends on the shell
gap. Multiple TSD bands were observed but connectingg
rays have not been resolved also in this nucleus. We per-
formed a calculation adoptinge2=0.453 andg=16° sug-
gested in Ref.[30] andDn=Dp=0.3 MeV. The result is pre-
sented in Fig. 8. The most striking difference from the case
of 168Hf above is thatvwob decreases steadily asvrot in-
creases after thespi13/2d2 alignment is completed. This is
because thesn j15/2d2 alignment that causes the small bump in
the168Hf case shifts to very lowvrot due to the larger neutron
number.

2. 167Lu

The wobbling excitation was first observed experimen-
tally in 163Lu [19], later it was also observed in165Lu [21]
and 167Lu [22]. The characteristic features common to these
isotopes are(1) vwob decreases asvrot increases contrary to
the consequence of calculations adopting constant moments
of inertia and (2) BsE2:I → I −1dout/BsE2:I → I −2din is
large—typically around 0.2.

Here we concentrate on the isotone of168Hf discussed
above, that is,167Lu in order to see the even-odd difference.
A comparison of Figs. 7 and 9 proves that all the differences
are due to the fact that the number of the alignedpi13/2
quasiparticle is less by one:(1) the spi13/2d2 alignment at
around"vrot=0.2 MeV is absent and(2) the BpCp crossing
occurs at around"vrot=0.55 MeV, which is proper to the
spi13/2d1 configuration. Figure 9(a) shows that our calculation
does not reproduce the data, although in each frequency
range in which the configuration is the samevwob decreases
at highvrot as in the cases of the even-even nuclei presented
above. This result might indicate that there is room for im-
proving the mean field. TheJx in Fig. 9(c) is larger than the
experimentally deduced value by about 20–30 %. This is
due to the spurious velocity dependence of the Nilsson po-
tential mentioned in Sec. II.

D. Interband B„E2… transitions

Compared to the excitation energy, the interbandBsE2d
values relative to the in-band ones have been measured in
only few cases. In Fig. 10, we report calculatedBsE2d ratios
for I (wobbling on yrast TSD) →I ±1 (yrast TSD) transitions
in 168Hf and 167Lu. The measured ones are also included for
the latter.

The first point is the magnitude of the largersI → I −1d
ones. Apparently, the calculatedBsE2d values are smaller by
factor 2–3. The measured interbandBsE2d values amount
almost to the macroscopic rotor value. In the RPA calcula-
tions, as summarized in Sec. II, theBsE2d value is reduced
by a factorcn=wob

2 [see Eq.(24)]: only in the case with the
full-strengthcn=wob

2 =1 the rotor value is recovered. Although

the obtained RPA wobbling solutions are extremely collec-
tive in comparison with the usual low-lying collective vibra-
tions, such as theb or g vibrations, for which typicallyucnu
.0.3–0.4, this factor is stillucn=wobu.0.6–0.8. This is the
main reason why the calculatedBsE2d values are a factor
2–3 off the measured ones. As is well known, giant reso-
nances also carry considerable amount of quadrupole
strengths, so it seems difficult for the microscopic correction
factor cn=wob

2 to be unity; it is not impossible, however, be-
cause the “sum rule” discussed in Sec. II is not the sum of
positive-definite terms. In the RPA formalism, the reduction
factor cn=wob

2 for the BsE2d value, Eq.(24), comes from the
fact that the wobbling motion is composed of the coherent
motion of two quasiparticles, and reflects the microscopic
structure of collective RPA solutions. The measurement that
the BsE2d value suffers almost no reduction may be a chal-
lenge to the microscopic RPA theory in the case of the wob-
bling motion. CalculatedBsE2d ratios for 174Hf are slightly
smaller than those for168Hf in Fig. 10(a).

The second point is the staggering, that is, the difference
betweenI → I ±1. We clarified [15] its unique correspon-
dence to the sign ofg as mentioned in Sec. III B; that holds
for both even-even and odd-A systems. Recently this stag-
gering was discussed from a different point of view[31], but
it looks to apply only tog,0 cases.

IV. CONCLUSION

The nuclear wobbling motion, which is a firm evidence of
stable triaxial deformations, was identified experimentally in
the triaxial superdeformed odd-A Lu isotopes. In principle,
wobbling excitation is possible both ing.0 andg,0 nu-
clei. Every information, theoretical and experimental, sug-
gestsg.0 for these bands. According to the wobbling fre-
quency formula[8], cf. Eq. (12), its excitation in nuclei
rotating principally about thex axis requiresJx.Jy,Jz, al-
though irrotational-like model moments of inertia give
Jx,Jy for g.0. To solve this puzzle, we studied the
nuclear wobbling motion, in particular, the three moments of
inertia associated with it in terms of the cranked shell model
plus random phase approximation. This makes it possible to
calculate the moments of inertia of the whole system includ-
ing the effect of aligned quasiparticle(s). The results indicate
that theg dependence of the calculated moment of inertia is
basically irrotational-like(Jx_Jy for g+0) if aligned qua-
siparticle(s) (pi13/2 in the present case) does not exist. But
once it is excited, it produces an additional contribution,
DJx= iQP/vrot, and consequently can lead toJx.Jy even for
g.0. This is the very reason why wobbling excitation exists
in g.0 nuclei. In this sense, the wobbling motion is a col-
lective motion that is sensitive to the single-particle align-
ments.

The resulting moment of inertia for 0,g&30° resembles
theg-reversed one, i.e., the irrotational moment of inertia but
with Jx andJy being interchanged. That for 50°&g&60°,
where single-particle angular momenta dominate, is rigid-
body-like. That forg,0 is irrotational-like except for odd-A
nuclei with −30°&g,0 where a specific 2QP state deter-
mines the lowest RPA solution.
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Having studied qualitative features of the three moments
of inertia at a low rotational frequency, we calculated wob-
bling bands up to highvrot. Experimentally they were con-
firmed only in odd-A Lu isotopes as mentioned above. The
most characteristic feature of the data is thatvwob decreases
asvrot increases. This obviously excludes constant moments
of inertia. In our calculation three moments of inertia are
automaticallyvrot dependent even when mean-field param-
eters are fixed constant. It should be stressed that the wob-
blinglike solution in our RPA calculations is insensitive to
the mean-field parameters, especially to the pairing gaps, as
is shown in Sec. III B 1. This distinguishes the wobblinglike
solution from the usual collective vibrations, which are sen-
sitive to the pairing correlations. Thus, our microscopic RPA
calculation confirms that the observed band is associated
with a new type of collective excitation, although compari-

sons to the observed excitation energy indicate that there is
room for improving the calculation.

As for the interband transition rates, our calculation ac-
counted for only about one-half or less of the measured ones,
even though the wobblinglike solution is extremely collec-
tive compared to the usual vibrational modes. This issue is
independent of the details of choosing parameters. This con-
fronts microscopic theories with a big challenge.
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By means of the adiabatic self-consistent collective coordinate method and the pairing-
plus-quadrupole interaction, we have obtained a self-consistent collective path connecting
the oblate and prolate local minima in 68Se for the first time. The result of the calculation
indicates the importance of triaxial deformation dynamics in oblate-prolate shape coexistence
phenomena.

Shape coexistence phenomena are typical examples of large amplitude collective
motion in nuclei. The existence of these phenomena implies that different solutions
of the Hartree-Fock-Bogoliubov (HFB) equations (local minima in the deformation
energy surface) appear in the same energy region and that the nucleus exhibits
large amplitude collective motion connecting these different equilibrium points. The
identities and mixings of these different shapes are determined by the dynamics of
such collective motion. Some years ago, we proposed a new method of describing
such large-amplitude collective motion, called the adiabatic self-consistent collective
coordinate (ASCC) method.1) This is a new method of solving the basic equations of
the SCC method2) using an expansion in terms of the collective momentum. It does
not assume a single local minimum, and therefore it is believed to be suitable for
the description of shape coexistence phenomena. The ASCC method also enables us
to include pairing correlations self-consistently, with separating the spurious number
fluctuation modes. To examine the feasibility of the ASCC method, we first applied
it to an exactly solvable model called the multi-O(4) model, which is a simplified
version of the pairing-plus-quadrupole (P+Q) interaction model.3) It was also shown
that this method yields a faithful description of tunneling motion through a barrier
between prolate and oblate local minima in the collective potential.4)

In this paper, we give a brief report of our first application of the ASCC method
to a realistic P+Q interaction model. We illustrate its practicality, treating as a
typical example the oblate-prolate shape coexistence phenomenon in 68Se recently
observed in experiments.5) The self-consistent collective path obtained by means of
the ASCC method is found to run approximately along the valley connecting the
oblate and prolate local minima in the collective potential energy landscape. To the
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best of our knowledge, this is the first time that a self-consistent collective path has
been obtained for a realistic situation starting from the microscopic P+Q Hamilto-
nian. We note that a similar approach to the study of large amplitude collective
motion was recently employed by Almehed and Walet,6) although they investigated
different nuclei and encountered some difficulties in obtaining self-consistent collec-
tive paths.

We assume that large amplitude collective motion can be described by a set of
time-dependent HFB state vectors |φ(q, p, ϕ, N)〉 parametrized by a single collective
coordinate q, the collective momentum p conjugate to q, the particle number N , and
the gauge angle ϕ conjugate to N . As discussed in Ref. 1), the state vector can be
written

|φ(q, p, ϕ, N)〉 = e−iϕN̂ |φ(q, p, N)〉 = e−iϕN̂eipQ̂(q)|φ(q)〉. (1)

Carrying out an expansion with respect to p and requiring the time-dependent vari-
ational principle to be satisfied up to second order in p, we obtain the following set
of equations to determine |φ(q)〉, the infinitesimal generator Q̂(q), and its canonical
conjugate P̂ (q):

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2)

δ 〈φ(q)| [ĤM (q), Q̂(q)] − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3)

δ 〈φ(q)| [ĤM (q),
1
i
P̂ (q)] − C(q)Q̂(q)

− 1
2B(q)

[[ĤM (q), (Ĥ − λ(q)N̂)A], Q̂(q)] − ∂λ

∂q
N̂ |φ(q)〉 = 0. (4)

Here,

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) (5)

is the Hamiltonian in the moving frame,

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
(6)

is the local stiffness, (Ĥ−λN̂)A represents the two-quasiparticle creation and annihi-
lation parts of (Ĥ −λN̂), and Q̂(q) and P̂ (q) satisfy the canonical variable condition

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i. (7)

Once |φ(q)〉 and the infinitesimal generators are determined for every value of q, we
obtain the collective Hamiltonian H(q, p) = 1

2B(q)p2+V (q) with the collective poten-
tial V (q) = 〈φ(q)| Ĥ |φ(q)〉 and the inverse mass B(q) = −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉.

We use the P+Q interaction model with the prescriptions of Ref. 3) for the
microscopic Hamiltonian Ĥ, but here the pairing and quadrupole force parameters
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Table I. Spherical single-particle orbits and their energies used in the calculation. The energies

relative to those of 1g9/2 are given in units of MeV.

orbits 1f7/2 2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 3s1/2 2d3/2

protons −8.77 −4.23 −2.41 −1.50 0.0 6.55 5.90 10.10 9.83

neutrons −9.02 −4.93 −2.66 −2.21 0.0 5.27 6.36 8.34 8.80

are chosen as G = 0.320 MeV (for both protons and neutrons) and χ′ = 0.248 MeV
so that the constrained HFB potential energy surface (represented by contour lines in
Fig. 1) exhibits two local minima, corresponding to prolate and oblate shapes, whose
pairing gaps, quadrupole deformation and energy difference approximately reproduce
those obtained in a recent Skyrme-HFB calculation done by Yamagami et al.7) The
spherical single-particle energies are taken from those of the modified oscillator model
of Ref. 8) and are listed in Table I. In this way, the effective Hamiltonian provides a
suitable situation with which shape coexistence dynamics can be studied, although
it may be necessary to make further improvements, e.g., including the quadrupole
pairing and/or neutron-proton pairing interactions, in order to allow for quantitative
comparison with experimental data.

We have used the following algorithm to solve the set of ASCC equations, (2),
(3), (4) and (7). Let the state vector |φ(q)〉 be known at a specific value of q. We first
solve the local harmonic equations in the moving frame (the moving frame RPA),
(3) and (4), under the condition (7) to obtain Q̂(q) and P̂ (q). This is done through
a straightforward extension of the procedure described in Ref. 4). We then construct
a state vector at the neighboring point q + δq by using the infinitesimal generator
P̂ (q) as

|φ(q + δq)〉 = e−iδqP̂ (q)|φ(q)〉 (8)

and solve the moving frame RPA with respect to this state to obtain Q̂(q + δq)
and P̂ (q + δq). Though the above |φ(q + δq)〉 does not necessarily satisfy the HFB
equation in the moving frame (2), we can use this state vector as an initial solution
of (2) at q + δq. We search for the solution of (2) under the constraints

〈φ(q + δq)|N̂ |φ(q + δq)〉 = N, (9)
〈φ(q + δq)|Q̂(q)|φ(q + δq)〉 = δq (10)

by means of the gradient method. Here, the nucleon-number constraint (9) is actually
applied for both proton and neutron numbers. Equation (10) is the constraint for
the increment δq of the collective coordinate. After finding a solution of Eq. (2), we
renew Q̂(q + δq) and P̂ (q + δq) by again solving the moving frame RPA equations,
(3) and (4), for the new state vector |φ(q + δq)〉 obtained above. Then we again
solve Eq. (2) with the renewed Q̂(q + δq). If this iterative procedure converges, we
obtain self-consistent solutions that satisfy Eqs. (2), (3), (4) and (7) simultaneously
at q + δq, and we can then proceed to the next point, q + 2δq. In actual numerical
calculations, we start the procedure from one of the HFB local minima and examine
whether we arrive at the other local minimum by going along the collective path
obtained in the manner described above. We have checked that the same collective
path is obtained by starting from the other local minimum and proceeding inversely.
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Fig. 1. The bold curve represents the ASCC

path connecting the oblate and prolate

minima in 68Se projected onto the (β, γ)

plane. The contour lines are calculated

using the conventional constrained HFB

method and plotted for every 100 keV.

Fig. 2. Collective potential V (q) plotted as

a function of the collective coordinate q.

Here, the origin of q is chosen to coin-

cide with the prolate local minimum, and

its scale is defined such that the collective

mass is given by M(q) = 1 MeV−1.

Fig. 3. Collective mass M(s) with respect to

the geometrical length s along the collec-

tive path in the (β, γ) plane plotted as a

function of the triaxiality parameter γ.

Fig. 4. The triaxiality parameter γ plotted as

a function of the collective coordinate q.

Carrying out the above procedure, we have successfully obtained the collective
path connecting the oblate and prolate local minima in 68Se. The result is plotted in
Fig. 1. The deformation parameters β and γ are defined here as usual, through the
expectation values of the quadrupole operators.7) Roughly speaking, the collective
path goes through the valley that exists in the γ direction and connects the oblate and
prolate minima. If β is treated as a collective coordinate and the oblate and prolate
shapes are connected through the spherical point, the variation of the potential
energy would be much greater than that along the collective path we obtained. The
potential energy curve V (q) along the collective path evaluated using the ASCC
method is shown in Fig. 2. We have defined the scale of the collective coordinate q
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Fig. 5. Neutron and proton pairing gaps, ∆n

and ∆p, plotted as functions of γ.

Fig. 6. Lowest three eigen-frequencies squared

(i.e. ω2 = BC) of the moving frame RPA,

plotted as functions of γ.

such that the collective mass is given by M(q) = B(q)−1 = 1 MeV−1. The collective
mass as a function of the geometrical length s along the collective path in the (β, γ)
plane can be defined by M(s) = M(q)(ds/dq)−2, with ds2 = dβ2 + β2dγ2. This
quantity is presented in Fig. 3 as a function of γ. The triaxial deformation parameter
γ is plotted as a function of q in Fig. 4. Variations of the pairing gaps and of the
few lowest eigen-frequencies of the moving frame RPA along the collective path are
plotted in Figs. 5 and 6. The solid curve in Fig. 6 represents the frequency squared,
ω2(q) = B(q)C(q), given by the product of the inverse mass B(q) and the local
stiffness C(q), for the moving frame RPA mode that develops from the γ-vibration
in the oblate and prolate limits and determines the infinitesimal generators Q̂(q)
and P̂ (q) along the collective path. The other two curves represent solutions of
the moving frame RPA, which possess the characteristics of the collective rotational
motion and the β-vibration. These are, however, irrelevant to the collective path.
Note that the frequency of the γ mode becomes imaginary in the region 12◦ <
γ < 45◦. These results should reveal interesting dynamical properties of the shape
coexistence phenomena in 68Se. For instance, the large collective mass in the vicinity
of γ = 60◦ (Fig. 3) might increase the stability of the oblate shape in the ground
state. Detailed investigation of these quantities as well as solutions of the collective
Schrödinger equation will be given in a forthcoming full-length paper.11)

In summary, we have applied the ASCC method to the oblate-prolate shape co-
existence phenomena in 68Se. It was found that the collective path goes through the
valley of the potential energy landscape in the (β, γ) plane, along which the triaxial
deformation parameter γ changes between 0◦ and 60◦, while the axially symmetric
deformation parameter β remains approximately constant. This is the first time that
a self-consistent collective path between the oblate and prolate minima has been ob-
tained for the realistic P+Q interaction model. Recently, the generater coordinate
method has often been used to describe a variety of shape coexistence phenomena,
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with β employed as the generater coordinate.9) The triaxial shape vibrational de-
grees of freedom are also ignored in the extensive microscopic calculation given in
Ref. 10). The result of the ASCC calculation, however, strongly indicates the ne-
cessity of taking into account the γ degree of freedom, at least for the purpose of
describing the oblate-prolate shape coexistence in 68Se. The effects of triaxial defor-
mation dynamics on various properties of shape coexistence, including the results of
the calculation for neighboring nuclei, will be studied in a full-length paper.11)

We thank Drs. D. Almehed and N. R. Walet for useful discussions and kindly
pointing out a graphical error in the preprint version of this paper. The numer-
ical calculations were performed on the NEC SX-5 supercomputer at the Yukawa
Institute for Theoretical Physics, Kyoto University. This work was supported by
Grants-in-Aid for Scientific Research (Nos. 13640281, 14540250 and 14740146) from
the Japan Society for the Promotion of Science.
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By means of the adiabatic self-consistent collective coordinate method and the pairing-
plus-quadrupole interaction, we have for the first time obtained a self-consistent collective
path connecting the oblate and prolate local minima in 68Se and 72Kr. This self-consistent
collective path is found to run approximately along the valley connecting the oblate and pro-
late local minima in the collective potential energy landscape. The result of this calculation
clearly indicates the importance of triaxial deformation dynamics in oblate-prolate shape
coexistence phenomena.

§1. Introduction

The microscopic description of large amplitude collective motion in nuclei is a
long-standing fundamental subject of nuclear structure physics.1)–5) In spite of the
steady development of various theoretical concepts and mathematical formulations,
the application of microscopic many-body theory to actual nuclear phenomena still
remains a challenging task.6)–33) Shape coexistence phenomena are typical examples
of large amplitude collective motion in nuclei, and both experimental and theoreti-
cal investigations of such phenomena are currently being carried out.34)–57) We are
particularly interested in the recent discovery of two coexisting rotational bands in
68Se and 72Kr, which are associated with oblate and prolate intrinsic shapes.41),42)

Clearly, these data strongly call for further development of a theory that is able to
describe them and revise our understanding of nuclear structure. From the viewpoint
of the microscopic mean-field theory, the coexistence of different shapes implies that
different solutions of the Hartree-Fock-Bogoliubov (HFB) equations (local minima
in the deformation energy surface) appear in the same energy region and that the
nucleus exhibits large amplitude collective motion connecting these different equilib-
rium points. The identities and mixings of these different shapes are determined by
the dynamics of such collective motion.

On the basis of the time-dependent Hartree-Fock (TDHF) theory, the self-
consistent collective coordinate (SCC) method was proposed as a microscopic theory
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of such large amplitude collective motion.12) This method was extended to the case
of time-dependent HFB (TDHFB) including pairing correlations,23) and it has been
successfully applied to various kinds of anharmonic vibration and high-spin rotational
phenomena.58)–69) In order to apply this method to shape coexistence phenomena,
however, we need to further develop the theory, because the existing method of
solving the basic equations of the SCC method, called the η-expansion method,12)

assumes a single local minima, whereas several local minima of the potential energy
surface compete in these systems. Some years ago, we proposed a new method of
describing such large-amplitude collective motion, called the adiabatic self-consistent
collective coordinate (ASCC) method.70) This method provides a practical scheme
for solving the basic equations of the SCC method12) using an expansion in terms
of the collective momentum. It does not assume a single local minimum, and there-
fore it is believed to be suitable for the description of shape coexistence phenomena.
The ASCC method inherits the major advantages of the adiabatic TDHF (ATDHF)
methods and, in addition, enables us to include pairing correlations self-consistently.
In this method, the spurious number fluctuation modes are automatically decoupled
from the physical modes within the self-consistent framework of the TDHFB theory.
This will certainly be a great advantage when the method is applied to realistic
nuclear problems. To examine the feasibility of the ASCC method, in Ref. 71), we
applied it to an exactly solvable model called the multi-O(4) model,72)–75) which is a
simplified version of the pairing-plus-quadrupole (P+Q) interaction model.76)–78) It
was shown that this method yields a faithful description of tunneling motion through
a barrier between prolate and oblate local minima in the collective potential.71)

In this paper, we report on our first application of the ASCC method to the P+Q
interaction model. The major task here is to develop a practical procedure for solving
the basic equations of the ASCC method in order to obtain a self-consistent collective
path. We investigate, as typical examples, the oblate-prolate shape coexistence
phenomena in 68Se and 72Kr,41),42) and we find that the self-consistent collective
paths run approximately along the valley connecting the oblate and prolate local
minima in the collective potential energy landscape. To the best of our knowledge,
this is the first time that, starting from the microscopic P+Q Hamiltonian, the
collective paths have been fully self-consistently obtained for realistic situations,
although a similar approach to the study of large amplitude collective motion was
recently employed by Almehed and Walet.79),80)

This paper is organized as follows. In §2, the basic equations of the ASCC
method are summarized. In §3, we present a concrete formulation of the ASCC
method for the case of the P+Q Hamiltonian. In §4, an algorithm to solve the
basic equations of the ASCC method is discussed. In §5, we present the results of
numerical calculations for the oblate-prolate shape coexistence phenomena in 68Se
and 72Kr. Concluding remarks are given in §6.

A preliminary version of this work was reported previously in this journal.81)
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§2. Basic equations of the ASCC method

In this section, we summarize the basic equations of the ASCC method.70) The
basic assumption of our approach is that large-amplitude collective motion can be
described by a set of time-dependent HFB state vectors |φ(q, p, ϕ, N)〉 parameterized
by a single collective coordinate q, the collective momentum p conjugate to q, the
particle number N and the gauge angle ϕ conjugate to N . Then, the state vectors
can be written in the following form:

|φ(q, p, ϕ, N)〉 = e−iϕN̂ |φ(q, p, N)〉 = e−iϕN̂eipQ̂(q)|φ(q)〉. (2.1)

Carrying out an expansion with respect to p and requiring that the time-dependent
variational principle be satisfied up to second order in p, we obtain the following set
of equations to determine |φ(q)〉, the infinitesimal generator Q̂(q), and its canonical
conjugate P̂ (q). First, we have the HFB equation in the moving frame, given by

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2.2)

where
ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) (2.3)

represents the Hamiltonian in the moving frame. Then, we have the local harmonic
equations in the moving frame,

δ 〈φ(q)| [ĤM (q), Q̂(q)] − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (2.4)

δ 〈φ(q)|
[
ĤM (q),

1
i
P̂ (q)

]
− C(q)Q̂(q)

− 1
2B(q)

[[ĤM (q), (Ĥ − λ(q)N̂)A], Q̂(q)] − ∂λ

∂q
N̂ |φ(q)〉 = 0, (2.5)

where
B(q) = −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 (2.6)

represents the inverse mass,

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
(2.7)

the local stiffness, and (Ĥ − λN̂)A denotes the two-quasiparticle creation and anni-
hilation parts of (Ĥ − λN̂).

The infinitesimal generators, Q̂(q) and P̂ (q), satisfy the canonical variable con-
dition:

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i. (2.8)
Once |φ(q)〉 and the infinitesimal generators are determined for every value of q,
we obtain the collective Hamiltonian H(q, p) = 1

2B(q)p2 + V (q) with the collective
potential V (q) = 〈φ(q)| Ĥ |φ(q)〉.

In the above equations, no distinction is made between protons and neutrons for
simplicity in the notation. In the actual calculations described below, however, we
explicitly treat the neutron number N and the proton number Z separately.
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§3. Application of the ASCC method to the P+Q model

3.1. The P+Q Hamiltonian and signature quantum number

Let us start with the well-known P+Q Hamiltonian,76)–78)

Ĥ =
∑

k

εkc
†
kck −

∑
τ

Gτ

2

(
A†

τAτ + AτA†
τ

)
− χ

2

2∑
K=−2

D†
2KD2K , (3.1)

where

A†
τ =

∑
k∈τ

′
c†kc

†
k̃
, Aτ =

∑
k∈τ

′
ck̃ck,

D2K =
∑

τ=n,p

∑
kl∈τ

D
(τ)
2K(kl)c†kcl. (3.2)

Here, we have D
(τ)
2K(kl) = α2

τ 〈k| r2Y2K |l〉, Gτ and χ denote the pairing and quadrupole
force strengths, respectively, and c†k and ck are the nucleon creation and annihila-
tion operators in the single-particle state k, while c†

k̃
and ck̃ denote those in the

time-reversed state of k. The index τ indicates protons (with τ = p) and neutrons
(with τ = n). Although it is not explicitly mentioned below, it should be kept in
mind that the single-particle index k actually includes the index τ . The notation
Σ′ in the pair operators, A†

τ and Aτ , represents a sum over the pairs (k, k̃). The
factors αn = (2Z/A)2/3 and αp = (2N/A)2/3, multiplying the quadrupole matrix el-
ements, yield equivalent root-mean-square radii for protons and neutrons. Following
Baranger and Kumar,77) we take into account two major shells as the model space,
and we multiply the quadrupole matrix elements D

(τ)
2K(kl) of the upper harmonic-

oscillator shell by the reduction factor ζ = (NL + 3/2)/(NL + 5/2), NL being the
total number of oscillator quanta of the lower shell. Following the conventional pre-
scription of the P+Q interaction,76)–78) we ignore the exchange (Fock) terms. In
other words, we employ the Hartree-Bogoliubov (HB) approximation throughout
this paper.

We introduce the following notations:

F̂ (±)
s ≡ 1

2
(F̂s ± F̂ †

s ),

F̂ (±)
s ≡ {A(±)

n , A(±)
p , D

(±)
20 , D

(±)
21 , D

(±)
22 }. (s = 1 − 5) (3.3)

We then write the P+Q Hamiltonian in the form

Ĥ =
∑

k

εkc
†
kck −

5∑
s=1

κs

2
F̂ (+)

s F̂ (+)
s +

5∑
s=1

κs

2
F̂ (−)

s F̂ (−)
s , (3.4)

where κs = {2Gn, 2Gp, χ, 2χ, 2χ} for s = 1 − 5. Our Hamiltonian is invariant with
respect to a rotation by π about the x axis. The symmetry quantum number asso-
ciated with it is called the signature, r = e−iπα. To exploit the signature symmetry,
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it is convenient to use nucleon operators with definite signatures defined by

dk ≡ 1√
2
(ck + ck̃), r = −i (α = 1/2),

dk̄ ≡ 1√
2
(ck̃ − ck), r = +i (α = −1/2), (3.5)

and their Hermite conjugates, d†k and d†
k̄
. The operators F̂

(±)
s are then classified

according to the signature quantum numbers, r = ±1 (α = 0, 1), as

{A(±)
n , A(±)

p , D
(+)
20 , D

(−)
21 , D

(+)
22 }, (r = +1)

{D(+)
21 , D

(−)
22 }. (r = −1) (3.6)

Note that D
(−)
20 = 0. The HB local minima corresponding to the oblate and prolate

equilibrium shapes possess positive signature, r = +1(α = 0). Therefore, the oper-
ators Q̂(q) and P̂ (q), generating large amplitude collective motion associated with
these shapes, also possess positive signature. In other words, the negative signature
degrees of freedom are exactly decoupled from the large amplitude collective motion
of interest, and hence we can ignore them. Also, it is readily confirmed that the
K = 1 components associated with the quadrupole operator D̂

(−)
21 exactly decouple

from the K = 0 and 2 components in the local harmonic equations, (2·2) and (2·4).
As is well known, they are associated with the collective rotational motion, and the
large amplitude shape vibrational motion under consideration is exactly decoupled
from them in the present framework. We note, however, that it is possible, with a
rather straightforward extension, to formulate the ASCC method in a rotating frame
of reference. By means of such an extension, we are able to take into account the
coupling effects between the two kinds of large amplitude collective motion. It is cer-
tainly a very interesting subject to study how the properties of the large-amplitude
shape vibrational motion change as a function of the angular momentum, but such an
investigation is beyond the scope of this paper. We note, however, that an attempt
to treat this subject was recently made by Almehed and Walet.80)

Thus, only the components {A(±)
n , A

(±)
p , D

(+)
20 , D

(+)
22 } are pertinent to the shape

coexistence dynamics of interest presently. They all belong to the positive signature
sector, and we are able to adopt a phase convention with which their single-particle
matrix elements are real. In the following, we assume that this is the case.

3.2. Quasiparticle-random-phase approximation (QRPA) at the HB local minima

As discussed in the introduction, shape coexistence phenomena imply the exis-
tence of several local minima in the deformation energy surface, which are solutions
of the HB equations. Let us choose one of them and write it |φ0〉. The HB equation
is given by

δ〈φ0|Ĥ −
∑

τ

λτ N̂τ |φ0〉 = 0, (3.7)

where λτ represents the chemical potentials for protons (τ = p) and neutrons (τ = n).
The quasiparticle creation and annihilation operators, a†µ and aµ, associated with
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the HB local minimum are defined by aµ|φ0〉 = 0. Similar equations hold for their
signature partners, µ̄. They are introduced through the Bogoliubov transformations,(

a†µ
aµ̄

)
=

∑
k

(
Uµk Vµk̄

Vµ̄k Uµ̄k̄

) (
d†k
dk̄

)
, (3.8)

and their Hermite conjugate equations. (Here and hereafter, we do not mix protons
and neutrons in these transformations.) In terms of the two quasiparticle creation
and annihilation operators,

A†
µν̄ ≡ a†µa†ν̄ , Aµν̄ ≡ aν̄aµ, (3.9)

the RPA normal coordinates and momenta describing small amplitude vibrations
about the HB local minimum |φ0〉 are written

Q̂ρ =
∑
µν̄

Qρ
µν̄(A

†
µν̄ + Aµν̄), (3.10)

P̂ρ = i
∑
µν̄

P ρ
µν̄(A

†
µν̄ − Aµν̄), (3.11)

where the sum is taken over the proton and neutron quasiparticle pairs (µν̄), and ρ
labels the QRPA modes. The amplitudes Qρ

µν and P ρ
µν are determined by the QRPA

equations of motion,

δ 〈φ0|
[
Ĥ −

∑
τ

λτ N̂τ , Q̂ρ

]
− 1

i
BρP̂ρ |φ0〉 = 0, (3.12)

δ 〈φ0|
[
Ĥ −

∑
τ

λτ N̂τ ,
1
i
P̂ρ

]
− CρQ̂ρ |φ0〉 = 0, (3.13)

and the orthonormalization condition 〈φ0| [Q̂ρ, P̂ρ′ ] |φ0〉 = iδρ,ρ′ .

3.3. The HB equation and the quasiparticles in the moving frame

For the P+Q Hamiltonian, the HB equation (2.2) determining the state vector
|φ(q)〉 away from the local minimum reduces to

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (3.14)

where ĥM (q) is the mean-field Hamiltonian in the moving frame,

ĥM (q) = ĥ(q) −
∑

τ

λτ (q)N̂τ − ∂V

∂q
Q̂(q), (3.15)

ĥ(q) =
∑

k

εk(d
†
kdk + d†

k̄
dk̄) −

∑
s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 . (3.16)

The state vector |φ(q)〉 can be written in terms of a unitary transformation of |φ0〉:
|φ(q)〉 = eθ̂(q) |φ0〉 ,

θ̂(q) ≡
∑
µν̄

θµν̄(q)
(
A†

µν̄ − Aµν̄

)
. (3.17)



Collective Paths Connecting the Oblate and Prolate Shapes 135

Here, the sum is taken over the proton and neutron quasiparticle pairs (µν̄). The
quasiparticle creation and annihilation operators, a†µ(q) and aµ(q), associated with
the state |φ(q)〉, which satisfy the condition aµ(q)|φ(q)〉 = 0, are written

a†µ(q) ≡ eθ̂(q)a†µe−θ̂(q) =
∑

ν

(
Uµν(q)a†ν + Vµν̄(q)aν̄

)
,

aµ̄(q) ≡ eθ̂(q)aµ̄e−θ̂(q) =
∑

ν

(
Vµ̄ν(q)a†ν + Uµ̄ν̄(q)aν̄

)
, (3.18)

where
(

Uµν(q) Vµν̄(q)
Vµ̄ν(q) Uµ̄ν̄(q)

)
=




cos(
√

θθT ) −θ
sin(

√
θT θ)√

θT θ

θT sin(θθT )√
θθT

cos(
√

θT θ)


 . (3.19)

Here, θ on the r.h.s. represents the matrix composed of θµν(q), and it is understood
that its elements corresponding to those on the l.h.s. should be taken.

In terms of the quasiparticle operators defined above, the mean-field Hamiltonian
in the moving frame ĥM (q), the neutron and proton number operators N̂τ , and the
pairing and quadrupole operators F̂

(±)
s are written in the following forms:

ĥM (q) = 〈φ(q)| ĥM (q) |φ(q)〉 +
∑

µ

Eµ(q)
(
Bµµ(q) + Bµ̄µ̄(q)

)
, (3.20)

N̂τ = 〈φ(q)| N̂τ |φ(q)〉 +
∑

µ

Nτ (µ)
(
A†

µµ̄(q) + Aµµ̄(q)
)

+
∑

µ

NB,τ (µ)
(
Bµµ(q) + Bµ̄µ̄(q)

)
, (3.21)

F̂ (±)
s = 〈φ(q)| F̂ (±)

s |φ(q)〉 +
∑
µν̄

F (±)
s (µν̄)

(
A†

µν̄(q) ± Aµν̄(q)
)

+
∑
µν

F
(±)
B,s (µν)

(
Bµν(q) + Bµ̄ν̄(q)

)
, (3.22)

where

A†
µν̄(q) ≡ a†µ(q)a†ν̄(q), Aµν̄(q) ≡ aν̄(q)aµ(q), Bµν(q) ≡ a†µ(q)aν(q). (3.23)

Note that Eµ̄(q) = Eµ(q) and also that the equalities F
(±)
B,s (µ̄ν̄) = F

(±)
B,s (µν) hold for

the operators under consideration. Explicit expressions for the expectation values
and the quasiparticle matrix elements appearing in the above equations are given in
Appendix A.

3.4. Local harmonic equations in the moving frame

We can represent the infinitesimal generators Q̂(q) and P̂ (q) in terms of A†
µν̄(q)

and Aµν̄(q) as

Q̂(q) =
∑
µν̄

Qµν̄(q)
(
A†

µν̄(q) + Aµν̄(q)
)
, (3.24)
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P̂ (q) = i
∑
µν̄

Pµν̄(q)
(
A†

µν̄(q) − Aµν̄(q)
)
, (3.25)

where the sum is taken over the proton and neutron quasiparticle pairs (µν̄). For
the P+Q Hamiltonian, the local harmonic equations, (2.4) and (2.5), in the moving
frame reduce to

δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s F̂ (−)

s − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3.26)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
−

∑
s

f
(+)
P,s F̂ (+)

s − B(q)C(q)Q̂(q) −
∑

s

f
(+)
R,s F̂ (+)

s

+
∑

s

f
(−)
Q,s R̂(−)

s −
∑

τ

fN,τ N̂τ |φ(q)〉 = 0, (3.27)

where the quantities f
(−)
Q,s , etc., are given by

f
(−)
Q,s ≡ −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 = 2κs(F (−)
s , Q(q)), (3.28)

f
(+)
P,s ≡ κs 〈φ(q)|

[
F̂ (+)

s ,
1
i
B(q)P̂ (q)

]
|φ(q)〉 = 2κsB(q)(F (+)

s , P (q)), (3.29)

f
(+)
R,s ≡ −1

2
κs 〈φ(q)| [R̂(+)

s , Q̂(q)] |φ(q)〉 = κs(R(+)
s , Q(q)), (3.30)

fN,τ ≡ B(q)
∂λτ

∂q
. (3.31)

Here we have introduced the notation

R̂(±)
s ≡ [F̂ (±)

B,s ,
(
ĥ(q) −

∑
τ

λτ (q)N̂τ

)
A
] ≡

∑
µν̄

R(±)
s (µν̄)

(
A†

µν̄(q) ∓ Aµν̄(q)
)
, (3.32)

where (ĥ(q)−∑
τ λτ (q)N̂τ )A represents the A†

µν̄(q) and Aµν̄(q) parts of the operator
in parentheses. We also use the notation

(F (−)
s , Q(q)) ≡

∑
µν̄

F (−)
s (µν̄)Qµν̄(q), etc. (3.33)

Note that f
(−)
Q,s , f

(+)
P,s and f

(+)
R,s are linear functions of Qµν̄(q) or Pµν̄(q).

We can easily derive the following expressions for the matrix elements Qµν̄(q)
and Pµν̄(q) from the local harmonic equations in the moving frame, (3.26) and (3.27):

Qµν̄(q) =
∑

s

g1(µν̄)F (−)
s (µν̄)f (−)

Q,s +
∑

s

g2(µν̄)
{

F (+)
s (µν̄)f (+)

PR,s

+ R(−)
s (µν̄)f (−)

Q,s +
∑

τ

Nτ (µν̄)fN,τ

}
(3.34)

Pµν̄(q) =
∑

s

g1(µν̄)
{

F (+)
s (µν̄)f (+)

PR,s + R(−)
s (µν̄)f (−)

Q,s +
∑

τ

Nτ (µν̄)fN,τ

}

+ ω2(q)
∑

s

g2(µν̄)F (−)
s (µν̄)f (−)

Q,s , (3.35)
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where f
(+)
PR,s = f

(+)
P,s + f

(+)
R,s and

g1(µν̄) ≡ Eµ + Eν̄

(Eµ + Eν̄)2 − ω2(q)
, g2(µν̄) ≡ 1

(Eµ + Eν̄)2 − ω2(q)
. (3.36)

Note that ω2, representing the square of the frequency of the local harmonic mode,
ω(q) =

√
B(q)C(q), is not necessarily positive. The values of B(q) and C(q) depend

on the scale of the collective coordinate q, while ω(q) does not. In other words, the
scale of q can be chosen arbitrarily without affecting the frequency ω(q). We thus
require B(q) = 1 everywhere on the collective path to uniquely determine the scale
of q.

Inserting expressions (3·34) and (3·35) for Qµν̄(q) and Pµν̄(q) into Eqs. (3·28)–
(3·30) and combining them with the condition of orthogonality to the number oper-
ators,

〈φ(q)|[N̂τ , P̂ (q)]|φ(q)〉 = 2i(P (q), Nτ ) = 0, (3.37)

we obtain the linear homogeneous equations

∑
s′τ ′




SQ,Q
ss′ SQ,PR

ss′ SQ,N
sτ ′

SPR,Q
ss′ SPR,PR

ss′ SPR,N
sτ ′

SN,Q
τs′ SN,PR

τs′ SN,N
ττ ′







f
(−)
Q,s′

f
(+)
PR,s′

fN,τ ′




= 0 (3.38)

for the vectors f
(−)
Q , f

(+)
PR, and fN defined by

f
(−)
Q ≡ {f (−)

Q,1 , f
(−)
Q,1}, (3.39)

f
(+)
PR ≡ {f (+)

PR,1, f
(+)
PR,2, f

(+)
PR,3, f

(+)
PR,5}, (3.40)

fN ≡ {fN,n, fN,p}. (3.41)

Here, we have

SQ,Q
ss′ ≡ 2(F (−)

s , F
(−)
s′ )g1 + 2(F (−)

s , R
(−)
s′ )g2 −

1
κs

δss′ , (3.42)

SQ,PR
ss′ ≡ 2(F (−)

s , F
(+)
s′ )g2 , (3.43)

SQ,N
sτ ′ ≡ 2(F (−)

s , Nτ ′)g2 , (3.44)

SPR,Q
ss′ ≡ 2(F (+)

s , R
(−)
s′ )g1 + 2ω2(q)(F (+)

s , F
(−)
s′ )g2 + (R(+)

s , R
(−)
s′ )g2 ,

+ (R(+)
s , F

(−)
s′ )g1 , (3.45)

SPR,PR
ss′ ≡ 2(F (+)

s , F
(+)
s′ )g1 + (R(+)

s , F
(+)
s′ )g2 −

1
κs

δss′ , (3.46)

SPR,N
sτ ′ ≡ 2(F (+)

s , Nτ ′)g1 + (R(+)
s , Nτ ′)g2 , (3.47)

SN,Q
τs′ ≡ ω2(q)(Nτ , F

(−)
s′ )g2 + (Nτ , R

(−)
s′ )g1 , (3.48)

SN,PR
τs′ ≡ (Nτ , F

(+)
s′ )g1 , (3.49)

SN,N
ττ ′ ≡ (Nτ , Nτ ′)g1 , (3.50)
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with the notations

(F (−)
s , F

(−)
s′ )g1 ≡

∑
µν̄

F (−)
s (µν̄)g1(µν̄)F (−)

s′ (µν̄), etc. (3.51)

Equation (3.38) takes the form

8∑
σ′=1

Sσσ′(ω2(q))fσ′ = 0 (3.52)

for the vector f composed of

{fσ=1−8} ≡ {f (−)
Q , f

(+)
PR, fN} (3.53)

≡ {f (−)
Q,1 , f

(−)
Q,2 , f

(+)
PR,1, f

(+)
PR,2, f

(+)
PR,3, f

(+)
PR,5, fN,n, fN,p}. (3.54)

Thus, the frequency ω of the local harmonic mode is determined by the condition
det S = 0. The normalizations of f are fixed by

〈φ(q)|[Q̂(q), P̂ (q)]|φ(q)〉 = 2i(Q(q), P (q)) = i. (3.55)

Note that ω2 represents the curvature of the collective potential,

ω2 =
∂2V

∂q2
, (3.56)

for the choice of coordinate scale with which the mass is unity, i.e., B(q) = 1.
In concluding this section, we mention that the reduction of the local harmonic

equations to linear homogeneous equations like (3.52) can be done for any effective
interaction that can be written as a sum of separable terms. Below, we call the local
harmonic equations in the moving frame the “moving frame QRPA” for brevity.

§4. Procedure of the calculation

4.1. Algorithm to find collective paths

In order to find the collective path connecting the oblate and prolate local min-
ima, we have to determine the state vectors |φ(q)〉 and the infinitesimal generators
Q̂(q) and P̂ (q) by solving the moving frame HB equation (3.14) and the moving
frame QRPA equations, (3.26) and (3.27). Because Q̂(q) and |φ(q)〉 are mutually
dependent, we have to resort to some iterative procedure. We carry this out through
the following algorithm.

Let us assume that the state vector |φ(q)〉 and the infinitesimal generators Q̂(q)
and P̂ (q) are known at a specific point of q. We then find the state vector |φ(q+δq)〉
and the infinitesimal generators Q̂(q+δq) and P̂ (q+δq) at a neighboring point q+δq
through the following steps.
Step 1: Construct a state vector at the neighboring point q + δq using P̂ (q):

|φ(q + δq)〉(0) = e−iδqP̂ (q)|φ(q)〉. (4.1)
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Though |φ(q + δq)〉(0) does not necessarily satisfy the moving frame HB equation,
(3.14), we can use this state vector as an initial guess for q + δq.
Step 2: Solve the moving frame HB equation (3.14) using Q̂(0)(q + δq) = Q̂(q) as an
initial guess for Q̂(q + δq) and obtain an improved state vector |φ(q + δq)〉(1). Doing
this, we find it important to impose the constraint

〈φ(q + δq)|Q̂(q)|φ(q + δq)〉 = δq (4.2)

for the increment δq of the collective coordinate q, together with the constraints

〈φ(q + δq)|N̂τ |φ(q + δq)〉 = Nτ , τ = p, n (4.3)

for the proton and neutron numbers (Np = Z, Nn = N). The constraint (4.2) is
easily derived by combining Eq. (4.1) with the canonical variable condition (2.8).
The details of this step are described in Appendix B.
Step 3: Solve the moving frame QRPA equations, (3.26) and (3.27), with the use of
|φ(q + δq)〉(1) to obtain Q̂(1)(q + δq) and P̂ (1)(q + δq).
Step 4: Return to Step 2 and solve Eq. (3.14) using Q̂(1)(q + δq).

If the iterative procedure, Steps 2-4, converges, we obtain self-consistent solu-
tions, Q̂(q+δq), P̂ (q+δq) and |φ(q+δq)〉, that satisfy Eqs. (3.14), (3.26) and (3.27)
simultaneously at q + δq. Then, we return to Step 1 to construct an initial guess
|φ(q + 2δq)〉(0) for the next point, q + 2δq, and repeat the above procedure. In this
way, we proceed step by step along the collective path.

The above is a brief summary of the basic algorithm. In actual numerical cal-
culations, we start the procedure from one of the HB local minima and choose the
lowest frequency QRPA mode as an initial condition for the infinitesimal gener-
ators Q̂ and P̂ at q = 0. Under ordinary conditions, we can proceed along the
collective path following the procedure described above. In some special situations,
however, we need additional considerations concerning the choice of the initial guess,
Q̂(0)(q+δq), in Step 2. Actually, we encounter such situations in some special regions
of the collective path for 72Kr. We give detailed discussion of this point in §5.3.

We have checked that the same collective path is obtained by starting from the
other local minimum and proceeding in the inverse manner.

4.2. Details of the calculation

In the numerical calculation, we use the spherical single-particle energies of the
modified oscillator model of Ref. 83), which are listed in Table I, and follow the
conventional prescriptions of the P+Q interaction model,77) except that the pair-
ing and quadrupole interaction strengths, Gτ and χ, are chosen to approximately
reproduce the pairing gaps and quadrupole deformations obtained in the Skyrme-
HFB calculation carried out by Yamagami et al.82) The values they obtained are
Gn = 0.320 (0.299) Gp = 0.320 (0.309) and χ′ ≡ χb4 = 0.248 (0.255) in units of
MeV for 68Se (72Kr), where b is the length parameter given by b2 = 4

5

(
2
3

)1/3
r2
0A

1/3.
The pairing gaps, ∆τ=p,n, and deformation parameters, β and γ, are defined as usual
through the expectation values of the pairing and quadrupole operators:

∆τ (q) = Gτ 〈φ(q)|
∑
k∈τ

d†kd
†
k̄
|φ(q)〉, (4.4)
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Table I. Spherical single-particle orbits and their energies used in the calculation. The energies

relative to those of 1g9/2 are given in units of MeV.

orbits 1f7/2 2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 3s1/2 2d3/2

protons −8.77 −4.23 −2.41 −1.50 0.0 6.55 5.90 10.10 9.83

neutrons −9.02 −4.93 −2.66 −2.21 0.0 5.27 6.36 8.34 8.80

β cos γ = χ′〈φ(q)|D̂(+)
20 |φ(q)〉/(�ω0b

2), (4.5)

β sin γ =
√

2χ′〈φ(q)|D̂(+)
22 |φ(q)〉/(�ω0b

2). (4.6)

Here, �ω0 denotes the frequency of the harmonic oscillator potential.

§5. Results of the calculation

5.1. Properties of the QRPA modes at the local minima in 68Se and 72Kr

For the P+Q Hamiltonian described in §4, the lowest HB solution corresponds to
a oblate shape, while the second lowest HB solution possesses a prolate shape for both
68Se and 72Kr (see Table II). Their energy differences are 0.30 and 0.82 MeV for 68Se
and 72Kr, respectively. In the QRPA calculations at these local minima, we obtain
strongly collective quadrupole modes with low frequencies. They correspond to the
β and γ vibrations in deformed nuclei with axial symmetry. Although the former
in fact contains pairing vibrational components, we call it a β vibration, because
the transition matrix elements for the quadrupole operator D

(+)
20 are enhanced. (A

neutron pairing vibrational mode appears as the second QRPA mode at the oblate
minimum in 72Kr; see Table II.) We note that there is an important difference
between 68Se and 72Kr concerning the relative excitation energies of the β and γ
vibrational modes: In the case of 68Se, the frequencies of the γ vibrational QRPA
mode are lower than those of the β vibrational one for both the oblate and prolate
local minima. The situation is opposite in the case of 72Kr; that is, the frequencies of
the β vibrations are lower than those of the γ vibrations. As we see in the succeeding
subsections, this difference leads to an important difference in the properties of the
collective path connecting the two local minima.

Table II. The equilibrium quadrupole deformation parameters (β, γ), the pairing gaps (∆τ ) in

units of MeV, the QRPA eigenenergies ~ωρ=1,2 in units of MeV, and the relevant quadrupole

transition matrix elements squared, |Mρ|2 ≡ |〈ρ|D(+)
2K |0〉|2 (ρ = 1, 2). Here, |ρ〉 and |0〉 denote

the QRPA one-phonon and the ground states. The symbols β, γ and ∆n in the eighth column

respectively indicate the β-, γ- and neutron-pairing vibrational modes; the |Mρ|2 values for

K = 0, 2 and 0 are presented in Weisskopf units.

β γ ∆n ∆p ω1 |M1|2 ω2 |M2|2
68Se (prolate) 0.234 0◦ 1.34 1.42 1.02(γ) 33.66 1.91(β) 12.19
68Se (oblate) 0.284 60◦ 1.17 1.27 1.55(γ) 13.64 2.25(β) 7.67

72Kr (prolate) 0.376 0◦ 1.15 1.29 1.60(β) 12.97 1.67(γ) 14.61
72Kr (oblate) 0.354 60◦ 0.86 1.00 1.15(β) 5.37 1.91(∆n) 0.19
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5.2. Collective path connecting the oblate and prolate minima in 68Se

As the γ vibrational mode is the lowest frequency and most collective QRPA
mode at the prolate local minimum, we have chosen this mode as the initial condition
for solving the basic equations of the ASCC method and carried out the procedure
described in §4.1. We thus obtained the collective path connecting the oblate and
prolate local minima in 68Se, which is plotted in Fig. 1(a). As we have extracted
the collective path in the TDHB phase space, which has a very large number of
degrees of freedom, the path drawn in this figure should be regarded as a projection
of the collective path onto the (β, γ)-plane. Roughly speaking, the collective path
goes through the valley that exists in the γ direction and connects the oblate and
prolate minima. If β is treated as a collective coordinate and the oblate and prolate
shapes are connected through the spherical point, the variation of the potential
energy would be much greater than that along the collective path we obtained. The
potential energy curve V (q) along the collective path evaluated using the ASCC
method is displayed in Fig. 1(b). Because we have defined the scale of the collective
coordinate q such that the collective mass is given by M(q) = B(q)−1 = 1 MeV−1,
the collective mass as a function of the geometrical length s along the collective path
in the (β, γ) plane can be defined by

M(s(q)) = M(q)
(ds

dq

)−2
, (5.1)

with ds2 = dβ2 + β2dγ2. This quantity is presented in Fig. 1(c) as a function of
q. The triaxial deformation parameter γ is plotted as a function of q in Fig. 1(d).
Variations of the pairing gaps, ∆τ (q), and of the eigen-frequencies of the moving
frame QRPA equations along the collective path are plotted in Figs. 1(e) and (f).
The solid curve in Fig. 1(f) represents the frequencies squared, ω2(q) = B(q)C(q),
given by the product of the inverse mass B(q) and the local stiffness C(q) of the
solutions of the moving frame QRPA equations, which correspond to the γ-vibration
in the oblate and prolate limits. These QRPA solutions determine the infinitesimal
generators Q̂(q) and P̂ (q) along the collective path. For reference, we also present in
Fig. 1(f) another solution of the moving frame QRPA equations, which possesses the
β-vibrational properties and is irrelevant to the collective path in the case of 68Se.
Note that the frequency of the γ-vibrational mode becomes imaginary in the region
12◦ < γ < 45◦. These results should reveal interesting dynamical properties of the
shape coexistence phenomena in 68Se. For instance, the large collective mass in the
vicinity of γ = 60◦ [Fig. 1(c)] might increase the stability of the oblate shape in the
ground state. A detailed investigation of these quantities as well as solutions of the
collective Schrödinger equation will be given in a succeeding paper.84)

5.3. Collective path connecting the oblate and prolate minima in 72Kr

In contrast to 68Se, the lowest-frequency QRPA mode is the β vibration at the
prolate local minimum in 72Kr. For this reason, we have chosen this mode as the
initial condition at the prolate minimum and started the procedure of extracting the
collective path. Then, the collective path first goes in the direction of the β axis in
the (β, γ)-plane. As we go along the β axis, we eventually encounter a situation in
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Fig. 1. Results of the calculation for 68Se. (a) The bold curve represents the ASCC path projected

onto the (β, γ) plane, which connects the oblate and the prolate minima designated by filled

circles. The contour lines were calculated using the conventional constrained HB method and

plotted at intervals of 50 keV. (b) Collective potential V (q) plotted as a function of the collective

coordinate q. Here the origin of q is chosen to coincide with the prolate local minimum, and its

scale is defined such that the collective mass is given by M(q) = 1. (c) Collective mass M(s(q))

with respect to the geometrical length s(q) along the collective path in the (β, γ)-plane, plotted

as a function of q. (d) The triaxiality parameter γ as a function of q. (e) Neutron and proton

pairing gaps, ∆n and ∆p, as functions of q. (f) The lowest two eigen-frequencies squared (i.e.,

ω2 = BC) of the moving frame RPA, plotted as functions of q. These modes at triaxial deformed

shapes are more general than the ordinary β- and γ-vibrations in the oblate and prolate limits

and contain both components. The symbols β and γ are used, however, to indicate the major

components of the moving frame RPA modes.
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which the two solutions of the moving frame QRPA equations compete in energy, and
they eventually cross. Thus, we see that the properties of the solution with the lowest
value of ω2 = BC change from those of the β vibrational to those of the γ vibrational
case at some point on the collective path. If only the solution Q̂1(q) with the lowest
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Fig. 2. Results of the calculation for 72Kr. The details here are the same as in Fig. 1, except for the

following: In (a), the contour lines are plotted at intervals of 100 keV. In (f), the lowest three

eigen-frequencies squared (i.e., ω2 = BC) of the moving frame RPA are plotted as functions of

q. As mentioned in the caption to Fig. 1, these modes at triaxial deformed shapes are more

general than the ordinary β- and γ-vibrations in the oblate and prolate limits and contain both

components. The symbols β and γ are used, however, in order to indicate the major components

of the moving frame RPA modes. Similarly, the symbol ∆n is used to indicate that the major

component is the neutron pairing vibrational mode.
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value of ω2 at the previous point q is always chosen as an initial guess for Q̂(q+δq) in
Step 2 of the algorithm described in §4.1, then the direction of the collective path in
the (β, γ) plane changes abruptly from the β direction to the γ direction immediately
after the crossing point (in the vicinity of the point C’ in Fig. 3 presented below),
and the numerical algorithm outlined in §4.1 fails at this point: During the iterative
procedure of solving the moving frame HB equation, we encounter a situation in
which the overlap (Q(q), Q(q + δq)) between the infinitesimal generators Q̂ at the
neighboring points q and q+δq vanishes, because K=0 for the former, whereas K=2
for the latter. The numerical algorithm (whose details are described in Appendix B)
then is no longer effective at this point, where the overlaps (Nτ , Q(q+δq)) also vanish
for the same reason. This problem exists even if we decrease the step size δq. We find,
however, that we can avoid this difficulty by employing a more suitable initial guess
for Q̂(q + δq). Specifically, we take a linear combination of the two solutions Q̂1(q)
and Q̂2(q) at the previous point q, Q̂(0)(q+δq) = (1−ε)Q̂1(q)+εQ̂2(q), with a small
coefficient ε, as an initial guess. This improvement is just for the purpose of starting
the iterative procedure at the next point, q + δq, on the collective path, so that the
self-consistent solution, Q̂(q + δq), obtained upon the convergence of the iterative
procedure, of course, does not depend on the values of ε. For instance, we obtain
an axially symmetric solution |φ(q + δq)〉 and a generator Q̂(q + δq) preserving the
K quantum number in the region satisfying β > 0.24 around the prolate minimum,
even when we start the iterative procedure using an initial guess for Q̂(q + δq) that
breaks the axial symmetry. We confirmed that this is indeed the case as long as ε is
a small finite value around 0.1. This special care is needed only near such crossing
points (as shown below in Figs. 3–5), where two solutions of the moving frame QRPA
equations with different K quantum numbers compete in energy.

With the improved algorithm mentioned above, we have successfully obtained
the smooth deviation of the direction of the collective path from the β axis toward
the γ direction [see Fig. 2(a)]. We note that the properties of the lowest ω2 solution
of the local harmonic equations also gradually change from those of the β vibrational
to those of the γ vibrational case [see Fig. 2(f)]. The details of the turnover region
are presented in Fig. 3. It can clearly be seen in Fig. 3(a) that there is a gradual onset
of axial-symmetry breaking in the solutions |φ(q)〉 of the moving frame HB equation.
It can also be seen in Fig. 3(b) that there is an avoided crossing between the lowest
two solutions of the moving frame QRPA equations associated with mixing of the
components with K=0 and 2. After a smooth turn in the γ direction, the γ value
increases, with the value of β roughly constant, and the collective path eventually
approaches the γ = 60◦ axis. Then, we again encounter a similar situation. Adopting
the improved algorithm, we have confirmed that the properties of the lowest ω2

solution change smoothly this time, from those of the γ vibrational to those of the
β vibrational case. The collective path thus merges with the γ = 60◦ axis, and it
finally reaches the oblate minimum.

We have also carried out a calculation starting from the oblate minimum and
proceeded in the inverse manner, obtaining the same collective path. This should
be regarded as a crucial test of the consistency of our calculation. Figure 4 presents
the details of this test: The collective path that started from the prolate minimum
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Fig. 3. Enlargement of the turnover region of Figs. 2(a) and (f) for 72Kr, where the collective path

turns in the γ direction. A step size δq = 0.0157 and the value ε = 0.1 were used in the

numerical calculation. Every step δq is represented by a filled circle and connected by a solid

curve. The points designated A, B, C, D on the collective path in (a) correspond to those

in (b), which displays the squared frequencies, ω2, of the lowest two solutions of the moving

frame QRPA equations as functions of the collective coordinate q. The open circles represent

those obtained in the calculation with ε = 0, where the mixing effects between the K=0 and 2

components are ignored. The points designated A’, B’, C’ in the latter calculation correspond

to the points A, B, C in the former calculation. In the latter calculation, we could not obtain

the point corresponding to D, because the problem discussed in the main text is encountered in

the numerical algorithm. It was checked that the same collective path is obtained with use of

δq = 0.0314, except that the distances between the successive points are doubled.

and turned in the γ direction gradually merges with the γ = 60◦ axis. Moving
in the opposite direction, we see a gradual onset of axial symmetry breaking in
the collective path that started from the oblate minimum. We see that the two
results of the calculation for the collective path agree nicely. The importance of
taking account of the mixing between the β- and γ-vibrational degrees of freedom in
solving the moving frame HB and QRPA equations is again demonstrated in Fig. 5,
which displays the details of the turnover region from the γ = 60◦ axis.

Although the collective path plotted in Fig. 2(a) should be regarded as its projec-
tion onto the (β, γ)-plane, the result of calculation indicates that the collective path
runs roughly along the valley in this plane. The potential energy curve V (q), the
collective mass M(s(q)), and the variations of the pairing gaps, ∆τ (q), are presented
in Figs. 2(b), (c) and (e), respectively. Their properties are similar to those for 68Se.
In particular, we notice again a significant increase of M(s(q)) in the vicinity of the
oblate minimum.

Quite recently, Almehed and Walet studied the oblate-prolate shape coexistence
phenomenon in 72Kr by means of an approach similar to the ASCC method but with
some additional approximations80) and found a collective path going from the oblate
minimum over a spherical energy maximum into the prolate secondary minimum.
We have also obtained such a collective path when we impose axial symmetry on the
solutions |φ(q)〉 of the moving frame HB equation and always use only K=0 solutions



146 M. Kobayasi, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi

 0.16

 0.18

 0.1  0.12

βcosγ

βsinγ

Fig. 4. Enlargement of the turnover region of Figs. 2(a) for 72Kr, where the collective path (solid

curve) coming from the prolate minimum merges with the γ = 60◦ axis (dotted line). Every

step δq is represented by an open circle and connected by a solid curve. For comparison, the

result of calculation starting from the oblate minimum and moving in the opposite direction

is represented by open squares. Slight deviations from the solid curve indicate the degree of

precision of the present numerical calculation. The step size δq = 0.0157 and the value ε = 0.1

were used in both cases. The collective path obtained with these different calculations agree

well.

of the moving frame QRPA equations. However, when we relax such symmetry
restrictions and follow the lowest ω2 solution of the moving frame QRPA equations,
we obtain the collective path presented in Fig. 2, which breaks the axial symmetry.
The reason for this disagreement is not clear at present. With the parameter values
they used for the P+Q Hamiltonian, they did not encounter the change in properties
of the lowest moving-frame-QRPA mode on the collective path from those of the β
vibrational to those of the γ vibrational case. However, it is interesting that they in
fact encountered the avoided crossing with a γ-vibrational mode, similar to the one
shown in Fig. 2(f), and obtained a collective path that turns into the triaxial plane
in their calculation for states with angular momentum I = 2.

§6. Concluding remarks

We have applied the ASCC method to the oblate-prolate shape coexistence phe-
nomena in 68Se and 72Kr. It was found that the self-consistent collective paths run
approximately along the valley connecting the oblate and prolate local minima in the
collective potential energy landscape. This is the first time that the self-consistent
collective paths between the oblate and prolate minima have been obtained in real-
istic situations starting from the microscopic P+Q Hamiltonian. Recently, the gen-
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Fig. 5. Enlargement of the turnover region of Figs. 2(a) and (f) for 72Kr, where the collective path

(solid curve) coming from the oblate minimum starts to deviate from the γ = 60◦ axis (dotted

line). The numerical calculation was done starting from the oblate minimum and using the

step size δq = 0.0157 and the value ε = 0.1. Every step δq is represented by a filled circle

and connected by a solid curve. The points designated A, B, C, D on the collective path in

(a) correspond to those in (b), which displays the squared frequencies, ω2, of the lowest two

solutions of the moving frame QRPA equations as functions of the collective coordinate q. Note

that the values of q in this figure are measured from the oblate minimum. The open circles

represent those obtained in the calculation with ε = 0, where the mixing effects between the

K=0 and 2 components are ignored. The points designated A’, B’, C’ in the latter calculation

correspond to the points A, B, C in the former calculation. In the latter calculation, we cannot

get the point corresponding to D, because the problem discussed in the main text is encountered

in the numerical algorithm. The slight wiggles along the successive points seen in (b) are due to

numerical error, and they indicate the degree of precision of the present numerical calculation.

It was checked that the same collective path is obtained with use of δq = 0.0314, except that

the distances between the successive points are doubled.

erator coordinate method has been used in a number of cases to describe a variety of
shape coexistence phenomena, with β employed as the generator coordinate.47),48)

The triaxial shape vibrational degrees of freedom were also ignored in the extensive
variational calculations by the Tübingen group.49),50) The result of the ASCC calcu-
lation, however, strongly indicates the necessity of taking into account the γ degree
of freedom, at least for the purpose of describing the oblate-prolate shape coexis-
tence in 68Se and 72Kr. In order to evaluate the mixing effects between the oblate
and prolate shapes, taking into account the triaxial deformation dynamics, we have
to quantize the classical collective Hamiltonian obtained in this paper and solve the
resulting collective Schrödinger equation. This will be the subject of a subsequent
paper.84)
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Appendix A
Explicit Expressions of the Quasiparticle Matrix Elements

Combining the successive Bogoliubov transformations, (3·8) and (3·18), the
quasiparticles, a†µ(q) and aµ(q), associated with the state |φ(q)〉, can be written
in terms of the nucleon operator, d†k and dk̄, as

(
a†µ(q)
aµ̄(q)

)
=

∑
k

(
Uµk(q) Vµk̄(q)
Vµ̄k(q) Uµ̄k̄(q)

)(
d†k
dk̄

)
. (A.1)

Making use of the inverse transformation,
(

d†k
dk̄

)
=

∑
µ

(
Ukµ(q) Vkµ̄(q)
Vk̄µ(q) Uk̄µ̄(q)

)(
a†µ(q)
aµ̄(q)

)
, (A.2)

one can easily derive explicit expressions for the expectation values and the matrix
elements of the operators F̂

(±)
s appearing in Eq. (3.22):

〈φ(q)| F̂ (+)
s=1,2 |φ(q)〉 = −2

∑
µ

∑
k

(kk̄|A(+)
τ=n,p|0)Ukµ(q)Vk̄µ(q),

F
(±)
s=1,2(µν̄) =

∑
k

(kk̄|A(±)
τ=n,p|0)

(
Ukµ(q)Uk̄ν̄(q) ± Vkν̄(q)Vk̄µ(q)

)
,

F
(±)
B,s=1,2(µν) =

∑
k

(kk̄|A(±)
τ=n,p|0)

(
Ukµ(q)Vk̄ν(q) ± Ukν(q)Vk̄µ(q)

)
,

〈φ(q)| F̂ (+)
s=3,5 |φ(q)〉 = 2

∑
µ̄

∑
kl

(k|D(+)
2,K=0,2|l)Vkµ̄(q)Vlµ̄(q),

F
(+)
s=3,5(µν̄) =

∑
kl

(k|D(+)
2,K=0,2|l)

(
Ukµ(q)Vlν̄(q) + Ukν(q)Vlµ̄(q)

)
,

F
(+)
B,s=3,5(µν) =

∑
kl

(k|D(+)
2,K=0,2|l)

(
Ukµ(q)Ulν(q) − Vkν̄(q)Vlµ̄(q)

)
. (A.3)

The expectation values of the anti-Hermitian operators A
(−)
τ=n,p vanish. The quantities

(k|D(+)
2K |l), etc., appearing in the above expressions are the matrix elements between

the single-particle states defined by Eq. (3.5):

(k|D(+)
2K |l) ≡ (0|dkD

(+)
2K d†l |0),

(kk̄|A(±)
τ |0) ≡ (0|dk̄dkA

(±)
τ |0), etc., (A.4)
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where |0) is the vacuum for the nucleon operators (d†, d). The matrix elements of
the Bogoliubov transformations, (A·1) and (A·2), possess the following symmetries:

Uµk = Uµ̄k̄ = Ukµ = Uk̄µ̄, Vµk̄ = −Vµ̄k = Vkµ̄ = −Vk̄µ. (A.5)

It is also easily seen that equalities

(k̄|D(+)
2,K=0,2|l̄) = (k|D(+)

2,K=0,2|l), (A.6)

F
(±)
B,s (µ̄ν̄) = F

(±)
B,s (µν), F

(±)
B,s (νµ) = ±F

(±)
B,s (µν) (A.7)

hold for the pairing and quadrupole operators under consideration {A(±)
n , A

(±)
p , D

(+)
20 ,

D
(+)
22 }. The expectation values 〈φ(q)| N̂τ |φ(q)〉 and the matrix elements Nτ (µ) and

NB,τ (µ) of the neutron and proton number operators are readily obtained from those
of F̂

(+)
s=3 by replacing (k|D(+)

20 |l) with δkl and restricting the sum over the single-
particle index k to neutrons or protons.

Appendix B
Solving the Moving Frame HB Equation

We solve the moving frame HB equation using a method similar to the imaginary
time method.85) Let

∣∣φ(i)(q)
〉

be the state vector at the iterative step i. We first
calculate the mean-field Hamiltonian associate with it:

ĥ(i)(q) =
∑

k

εk(d
†
kdk + d†

k̄
dk̄) −

∑
s

κs〈F̂ (+)
s 〉(i)F̂ (+)

s ,

〈F̂ (+)
s 〉(i) ≡

〈
φ(i)(q)

∣∣∣ F̂ (+)
s

∣∣∣φ(i)(q)
〉

. (B.1)

Using the quasiparticle operators b
(i)†
µ and b

(i)
µ defined by

b(i)
µ

∣∣∣φ(i)(q)
〉

= 0, (B.2)

we then generate the state vector at the (i + 1)th step as
∣∣∣φ(i+1)(q)

〉
≡ exp X̂(i+1)

∣∣∣φ(i)(q)
〉

X̂(i+1) = − ε
(
ĥ(i)(q) −

∑
τ

λ(i+1)
τ (q)N̂τ − µ(i+1)(q)Q̂(q)

)
+

+ ε
(
ĥ(i)(q) −

∑
τ

λ(i+1)
τ (q)N̂τ − µ(i+1)(q)Q̂(q)

)
−

≡
∑
µν̄

x
(i+1)
µν̄

(
X

(i)†
µν̄ − X

(i)
µν̄

)
, (B.3)

where ε is a small parameter,

X
(i)†
µν̄ = b(i)†

µ b
(i)†
ν̄ , X

(i)
µν̄ = b

(i)
ν̄ b(i)

µ , (B.4)
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and the subscripts + and − denote the two-quasiparticle creation and annihilation
parts of the operator in the parentheses, respectively. It should be noted that, in
contrast to the conventional imaginary time method, the unitary operator exp X̂(i+1)

is used here so that the normalization is preserved during the iteration. The Lagrange
multipliers λ

(i+1)
τ (q) and µ(i+1)(q) are determined by the constraint equations

〈
φ(i+1)(q)

∣∣∣ N̂τ

∣∣∣φ(i+1)(q)
〉

= N (0)
τ ,〈

φ(i+1)(q)
∣∣∣ Q̂(q − δq)

∣∣∣φ(i+1)(q)
〉

= δq, (B.5)

where N
(0)
n and N

(0)
p are the neutron and proton numbers of the nucleus under

consideration. Similar but slightly different constraints were utilized by Almehed
and Walet.79) Expanding the left-hand sides up to first order in x(i+1), we obtain
equations determining them:


 (Nn, Nn) (Nn, Np) (Nn, Q(q))

(Np, Nn) (Np, Np) (Np, Q(q))
(Q(q − δq), Nn) (Q(q − δq), Np) (Q(q − δq), Q(q))







λ
(i+1)
n (q)

λ
(i+1)
p (q)

µ(i+1)(q)




=




(N (0)
n − 〈N̂n〉(i))/2ε + (h(i)(q), Nn)

(N (0)
p − 〈N̂p〉(i))/2ε + (h(i)(q), Np)

(δq − 〈Q̂(q − δq)〉(i))/2ε + (h(i)(q), Q(q − δq)),


 , (B.6)

where the quantities (Nτ , Nτ ′), (Nτ , Q(q)), etc., are defined by (3.33), except that
the coefficients Nτ (µ), Qµν̄(q), etc., involved in these quantities are here defined with
respect to the two-quasiparticle creation and annihilation operators, X

(i)†
µν̄ and X

(i)
µν̄ .

Using the state vector
∣∣φ(i+1)(q)

〉
, we calculate the mean-field Hamiltonian ĥ(i+1)(q)

at the (i + 1)th step, and repeat the above procedure until convergence is attained.
The mean-field Hamiltonian thus obtained takes the following form:

ĥM (q) = ĥ(q) −
∑

τ

λτ (q)N̂τ − µ(q)Q̂(q)

= 〈φ(q)| ĥM (q) |φ(q)〉 +
∑
µν

hµν(q)
(
b†µ(q)bν(q) + b†µ̄(q)bν̄(q)

)
. (B.7)

Finally we introduce the quasiparticle operators a†µ(q) and aµ(q) that diagonalize
ĥM (q):

ĥM (q) = 〈φ(q)| ĥM (q) |φ(q)〉 +
∑

µ

Eµ(q)
(
a†µ(q)aµ(q) + a†µ̄(q)aµ̄(q)

)
. (B.8)

It is easy to see that µ(q) = ∂V/∂q. In actual calculations, the above procedure is a
part of the double iterative algorithm described in §4. Specifically, we carry out the
above iterative procedure using the constraint operator Q̂(q)(n) that is obtained in
the n-th iteration step determining the infinitesimal generators, Q̂(p) and P̂ (q).
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By means of an RPA calculation based on the deformed Woods-Saxon potential in the
coordinate-mesh representation, we make a comparative study of octupole excitations built
on superdeformed states in the 40Ca region and those in 50S. For the N = Z stable nuclei,
32S and 40Ca, enhancement of octupole transition strengths results from the coherence of the
proton and neutron excitations. Contrastingly, for 50S close to the neutron drip line, we find
that the low-lying state created by the excitation of a single neutron from a loosely bound
low Ω state to a high Ω resonance state acquires an extremely large transition strength. A
similar enhancement of the octupole strength is also found in oblately deformed 40Mg close
to the neutron drip line.

§1. Introduction

In recent years, the physics of unstable nuclei close to the drip line has become
one of the most active fields in nuclear structure physics. New features, such as neu-
tron skins and shell structure near the continuum, are currently being actively in-
vestigated both theoretically and experimentally.1)–3) Although, at present, drip-line
nuclei that allow for relevant experiments are largely restricted to light nuclei, the re-
gion of unstable nuclei that can be explored experimentally will soon be significantly
extended to medium-mass regions, when new facilities for radioactive ion beams start
running. To investigate the possibility of the emergence of excitation modes unique
to unstable nuclei in heavier-mass regions, many attempts have been made using
the self-consistent RPA based on the Skyrme-Hartree-Fock (SHF) method4)–6) and
its extensions, including pairing correlations.7)–10) A number of similar approaches
using different mean fields have also been employed.11)–14) (See Refs. 10) and 15) for
extensive lists of references concerning the self-consistent RPA and mean-field the-
ories.) To describe such weakly bound systems for which the Fermi energy is close
to zero, it is essential to properly treat the particle-hole excitations into the contin-
uum. Thus, the continuum RPA method employing the Green functions that satisfy
the scattering boundary condition has been widely used.4)–7),16),17) Quite recently,
this method was extended to the continuum quasiparticle-RPA, taking into account
pairing correlations.18)–22) However, most of these investigations are restricted to
spherical nuclei. For deformed unstable nuclei, although low-lying Gamow-Teller
β-decay strengths have been investigated23) by means of the standard matrix for-
mulation of the RPA, other low-frequency RPA modes remain largely unexplored,
except some recent attempts to describe low-frequency isovector dipole modes using
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the time-dependent Hartree-Fock method with absorbing boundary conditions24),25)

and gamma vibrations using the quasiparticle-RPA with the BCS approximation.26)

In order to clearly see the deformation effects in unstable nuclei, Inakura
et al.27),28) investigated properties of negative-parity collective excitations built on
superdeformed (SD) states in neutron-rich sulfur isotopes by means of the mixed
representation RPA29)–32) based on the SHF mean field, and found many low-energy
modes possessing strongly enhanced isoscalar octupole transition strengths. They
also studied excitation modes built on the SD states in the 40Ca region with N = Z,
for which the SD yrast states have been discovered in recent experiments.33),34) In
the mixed representation RPA, the particle states are treated using the coordinate-
mesh representation, while the HF basis is used for the hole states. This approach is
fully self-consistent in that the same effective interaction is used in both the mean-
field and RPA calculations. Also, it is unnecessary to introduce an upper cutoff
with respect to the energies of the particle states. On the other hand, it is not
easy in this method to identify microscopic particle-hole configurations generating
individual RPA modes. Therefore, using the deformed Woods-Saxon potential and
the conventional matrix formulation of the RPA, we have made a detailed analysis
of the microscopic structure of octupole excitation modes built on the SD states in
the 40Ca region with N = Z and the 50S region close to the neutron drip line. In
this approach, we can easily obtain a simple and transparent understanding of the
particle-hole configurations generating the RPA eigenmodes.

This paper is organized as follows. In the next section, the frameworks of the
mean-field and RPA calculations are described. In §3.1, the results of the RPA
calculation for the SD states in 32S, 36S and 40Ca are presented and discussed. In
§3.2, we present the result for 50S close to the neutron drip line and suggest that
some low-lying states associated with excitations of a single neutron from a loosely
bound state to a resonance state acquire extremely strong transition strengths. In
§3.3, we discuss excitation modes in the oblately deformed 40Mg and suggest that
the results obtained for 50S are not restricted to the SD states but are rather general
phenomena. Conclusions are given in §4.

§2. Method of calculation

2.1. Mean-field calculation

We consider the single-particle motion in an axially symmetric deformed poten-
tial. Using the standard notation, the Schrödinger equation is written{

− �
2

2m
∇2 + VWSf(r) + VSO∇f(r) · (σ × p) + VC(r)

(1 − τ3)
2

}
Φi = eiΦi. (2.1)

The solutions to this equation take the following form:

Φi(x) = Φi(r, σ, τ) = χqi(τ)
[
φ+

i (ρ, z)eiΛ−
i ϕχ 1

2
(σ) + φ−

i (ρ, z)eiΛ+
i ϕχ− 1

2
(σ)
]
. (2.2)

Here, Λ±
i = Ωi ± 1/2, where Λi and Ωi are the z-components of the total and

orbital angular momenta, respectively, and (ρ, z, ϕ) are the cylindrical coordinates
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of r = (x, y, z):
x = ρ cos ϕ, y = ρ sinϕ, z = z. (2.3)

The subscript qi = +1/2 (−1/2) denotes neutrons (protons). In terms of the wave
functions given in (2.2), the nucleon density is given by

�(ρ, z) =
∑

i

[|φ+
i (ρ, z)|2 + |φ−

i (ρ, z)|2], (2.4)

and the mean-square radii of protons and neutrons are calculated as

〈r2〉τ =
∫

ρdρdzr2�τ (ρ, z)∫
ρdρdz�τ (ρ, z)

, (2.5)

where r =
√

ρ2 + z2 and τ=π or ν, with �π(ρ, z) and �ν(ρ, z) being the proton and
neutron densities.

We employ the phenomenological Woods-Saxon potential

f(r) = (1 + exp[(r − R(θ))/a])−1, (2.6)
R(θ) = c(1 + β2Y20(θ)), (2.7)

where c is determined by the volume conservation condition. Though an angle
dependent diffuseness parameter a(θ) is better for a more accurate calculation,35)

we use a constant a = 0.67 fm for simplicity. We also use the standard parameter
values36) for the central and spin-orbit potentials,

VWS = −51 + 33
N − Z

A
τ3, (2.8)

VSO =
1
2
r2
0

(
−22 + 14

N − Z

A
τ3

)
, (2.9)

with r0 = 1.27 fm. The spin-orbit term is written

V̂ls = −1
2
VSO

[
σ+e−iϕ

{
∂f

∂ρ

∂

∂z
− ∂f

∂z

(
∂

∂ρ
+

l̂z
ρ

)}

+ σ−eiϕ

{
−∂f

∂ρ

∂

∂z
+

∂f

∂z

(
∂

∂ρ
− l̂z

ρ

)}
+ σz2

∂f

∂ρ

l̂z
ρ

]
, (2.10)

where σ± = σx ± iσy and l̂z = −i∂/∂ϕ. For protons, we solve the Poisson equa-
tion, ∇2VC(r) = 4πe�π(r), to obtain the Coulomb potential VC . In the present
calculation, we approximate the proton density �π(r) by a Woods-Saxon form.

We can rewrite the Schrödinger equation (2.1) in the matrix form

hφ =
(

h↑↑ h↑↓
h↓↑ h↓↓

)(
φ+

i (ρ, z)
φ−

i (ρ, z)

)
= ei

(
φ+

i (ρ, z)
φ−

i (ρ, z)

)
, (2.11)



1254 K. Yoshida, M. Yamagami and K. Matsuyanagi

where

h↑↑ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ−

ρ

)2
]

+ VWSf(ρ, z) − VSO
∂f(ρ, z)

∂ρ

Λ−

ρ
,

(2.12a)

h↓↓ = − �
2

2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
−
(

Λ+

ρ

)2
]

+ VWSf(ρ, z) + VSO
∂f(ρ, z)

∂ρ

Λ+

ρ
,

(2.12b)

h↑↓ = −1
2
VSO

[
∂f(ρ, z)

∂ρ

∂

∂z
− ∂f(ρ, z)

∂z

(
∂

∂ρ
+

Λ+

ρ

)]
, (2.12c)

h↓↑ = −1
2
VSO

[
−∂f(ρ, z)

∂ρ

∂

∂z
+

∂f(ρ, z)
∂z

(
∂

∂ρ
− Λ−

ρ

)]
. (2.12d)

Because this equation possesses time-reversal symmetry, we know that if
Φi = {φ+

i , φ−
i , Ωi} is a solution, then Φī = {−φ−

i , φ+
i ,−Ωi} is also a solution with the

same eigenvalue ei, and thus it is sufficient to solve it for positive Ω only. We also
assume reflection symmetry with respect to the x-y plane. Then, the wave function
φ± possesses z-parity π(−1)Λ∓

as a good quantum number (π being the parity), and
therefore it is sufficient to consider only positive z.

We solve Eq. (2.11) directly in coordinate space. In comparison to the con-
ventional method of using a deformed harmonic oscillator basis,37) this method is
believed to be more effective in the treatment of spatially extended wave functions,
like loosely bound states, resonant states and continuum states. The Hamiltonian
matrix (2.11) is discretized by use of a coordinate mesh in the (ρ, z) plane. The mesh
points are chosen as

ρi =
(

i − 1
2

)
∆, i = 1, 2, · · ·N, (2.13)

to avoid division by zero, where ∆ represents the lattice mesh size. The mesh points
in the z direction are taken as

zj = (j − 1)∆, j = 1, 2, · · ·M. (2.14)

The boundary conditions are set as

φi,M = φN,j = 0, (2.15)

where φi,j = φ(ρ, z). We construct the discretized Hamiltonian matrix by use of the
finite difference method for derivatives and then diagonalize the matrix to obtain
the single-particle wave functions on the two-dimensional lattice. The kinetic en-
ergy term is evaluated using the 9-points formula; its explicit expression is given in
Appendix A.
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2.2. RPA calculation

Using the single-particle basis obtained in the previous subsection, we solve the
RPA equation in the standard matrix formulation,38)

∑
p′h′

(
Aphp′h′ Bphp′h′

B∗
php′h′ A∗

php′h′

)(
fλ

p′h′

gλ
p′h′

)
= �ωλ

(
1 0
0 −1

)(
fλ

ph

gλ
ph

)
, (2.16)

where
Aphp′h′ = (ep − eh)δpp′δhh′ + v̄ph′hp′ , Bphp′h′ = v̄pp′hh′ . (2.17)

Here, the subscripts p and h denote the single-particle states above and below the
Fermi energy (particles and holes), respectively. The antisymmetrized matrix ele-
ments of the residual interaction v are denoted v̄ph′hp′ and v̄pp′hh′ . For v, we employ
the Skyrme-type interaction16) without momentum-dependent terms,

v(r, r′) =
[
t0(1 + x0Pσ) +

1
6
t3(1 + x3Pσ)�(r)

]
δ(r − r′), (2.18)

with t0 = −1100 MeV·fm3, t3 = 16000 MeV·fm6, x0 = 0.5, and x3 = 1.0, Pσ being
the spin exchange operator. Because our calculation is not self-consistent in the sense
that the residual interaction is not related to the mean-field potential, we renormalize
the residual interaction by multiplying it by a factor f to obtain the spurious modes
at zero excitation energy: v → f · v.

The intrinsic matrix elements 〈0|Q3K |λ〉 of the octupole operator Q3K between
the excited state |λ〉 and the ground state |0〉 are given by

〈0|Q3K |λ〉 =
∑
ph

(
Qhp

3Kfλ
ph + Qph

3Kgλ
ph

)
=
∑
ph

Mph
3K , (2.19)

and

Qph
3K = 2πδK,Ωp−Ωh

∫
ρdρdz

(
φ+

p (ρ, z)φ+
h (ρ, z) + φ−

p (ρ, z)φ−
h (ρ, z)

)
Q3K(ρ, z) (2.20)

≡ 2πδK,Ωp−Ωh

∫
dρdzQph

3K(ρ, z), (2.21)

where Q3K(ρ, z) = Q3K(r)e−iKϕ = r3Y3K(θ, ϕ)e−iKϕ.
The isoscalar octupole strength function is

SIS(ω) =
∑

λ

|〈0|QIS
3K |λ〉|2δ(�ω − �ωλ), (2.22)

where QIS
3K = Qπ

3K + Qν
3K , and Qπ

3K and Qν
3K are the proton and neutron oc-

tupole operators. The reduced isoscalar octupole transition probability is defined
by B(QIS3) = |〈0|QIS

3K |λ〉|2. The reduced proton and neutron octupole transition
probabilities, B(E3) and B(Qν3), are obtained by replacing QIS

3K with eQπ
3K and

Qν
3K , respectively. Note that these quantities represent intrinsic transition strengths,

and hence the appropriate Clebsh-Gordan coefficients should be multiplied to obtain
transition probabilities in the laboratory frame.
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2.3. Details of numerical calculation

We numerically solved the Schrödinger equation (2.11) in a rectangular box,
using a lattice mesh size ∆ = 0.5 fm. The size of the box used was 2.5 (3.5) times
the half density radii in the directions of the major and minor axes for 32,36S and
40Ca (50S). Bode’s rule was used for the numerical integrations of the RPA matrix
elements (see Appendix B). The deformation parameters β2 were determined so as
to approximately reproduce the shell structure near the Fermi level obtained in the
SHF calculation by Inakura et al.39) Their values for protons and neutrons are not
necessarily the same. The actual values of the box size used in the calculations
are indicated in the figure captions for individual cases, together with the β2 values
adopted. The RPA matrix (2.17) was diagonalized with the cutoff at 30 MeV for
the particle-hole excitation energy. In spherical systems, there is only one spurious
Jπ = 1− mode associated with the center-of-mass motion. In deformed systems,
this mode splits into the Kπ = 0− and 1− modes. We find that, e.g., for 32S, the
factors f0 = 0.7545 and f1 = 0.7723 are needed to obtain the spurious Kπ = 0− and
Kπ = 1− modes at zero energy. Using these f0 and f1 values, we obtain low-lying
Kπ = 2− states at 2.653 and 2.557 MeV, respectively. This difference of about 0.1
MeV indicates the magnitude of the numerical uncertainty caused by ignoring self-
consistency in our calculation. In the following, we choose the factor f such that the
excitation energy of the spurious Kπ = 1− mode becomes zero.
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Fig. 1. Neutron single-particle levels in the deformed Woods-Saxon potential, plotted as functions

of the quadrupole deformation parameter β2. The solid and dotted curves denote positive- and

negative-parity levels, respectively. The SD magic numbers are N = 16, 20 and 34. They are

responsible for the appearance of the SD states in 32S, 36S, 40Ca and 50S.
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§3. Results and discussion

3.1. The SD states in 32S, 36S and 40Ca

We first discuss the result of the RPA calculation for the SD state in 32S. Al-
though the existence of the SD band in 32S has been conjectured for a long time,40)

it has not yet been observed, and this remains a great challenge: As discussed in
Refs. 41)–45), the SD local minimum in 32S corresponds to the doubly closed shell
configuration with respect to the SD magic number Z = N = 16. It involves two pro-
tons and two neutrons in the down-sloping single-particle levels originating from the
f7/2 shell (see Fig. 1). The calculated octupole transition strengths with Kπ = 2−
are displayed in Fig. 2. A prominent peak is seen at about 2.6 MeV with a strongly
enhanced transition strength of about 23 Weisskopf units (1 W.u. � 61 fm6 for 32S).
There are no peaks representing strengths greater than 1 W.u. for other values of K
in this energy region. As shown in Table I, the major component of this RPA mode
is the particle-hole excitation from the [211]1/2 state to the [321]3/2 state. The pro-
ton and neutron excitations act coherently. Other particle-hole configurations also
contribute coherently. Here we note that, although the RPA amplitude fph for the
particle-hole excitation from the [330]1/2 state to the [202]5/2 state is appreciable,
its contribution to the transition matrix element Mph

32 is very small. This can be un-
derstood from the asymptotic selection rules47) for low-energy octupole transitions
in the SD harmonic-oscillator potential with the axis ratio 2:1:

Q30 : ∆Nsh = 1, ∆n3 = 1, ∆Λ = 0, (3.1a)
Q31 : ∆Nsh = 0, ∆n3 = 2, ∆Λ = 1, (3.1b)
Q32 : ∆Nsh = 1, ∆n3 = 1, ∆Λ = 2, (3.1c)
Q33 : ∆Nsh = 2, ∆n3 = 0, ∆Λ = 3. (3.1d)

Here, the shell quantum number is defined as Nsh = 2n⊥ + n3. These selection
rules hold approximately also for the SD Wood-Saxon potential under consideration.
Accordingly, the [330]1/2 → [202]5/2 octupole matrix element is very small, while
that of the [211]1/2 → [321]3/2 excitation is large. Thus, the coherent proton and
neutron excitations from the [211]1/2 hole state to the [321]3/2 particle state are the
major origin of the large octupole transition strength for this RPA mode.

Next, let us discuss the result of the RPA calculation for the SD state in 40Ca.
As mentioned in §1, for this nucleus, the SD yrast band has been discovered in
recent experiments.33),34) The SD shell gap at Z = N = 20 is associated with the
4p-4h excitation (for both protons and neutrons) from below the spherical closed
shell to the f7/2 shell. Figure 3 presents the calculated octupole transition strengths
with Kπ = 1−. It is seen that there are no peaks representing strengths greater
than 1.5 W.u. for other values of K in this energy region. There is a prominent
peak at 2.2 MeV with an isoscalar strength of about 6 W.u. (1 W.u. � 95 fm6 for
40Ca). As shown in Table II, this RPA eigenstate consists of components from the
coherent proton and neutron excitations from [321]3/2 to [200]1/2, which satisfy the
asymptotic selection rule (3.1b).

The SD states in 32S and 40Ca are associated with the SD magic numbers N =
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Fig. 2. Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for the Kπ = 2−

excitations on the SD state in 32S are plotted in the top and middle panels as functions of the

excitation energy. These were obtained using an RPA calculation with β2 = 0.78 for both

protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed

particle-hole strengths are also plotted with dashed lines in the bottom panel. Right: Particle-

hole configurations generating the lowest Kπ = 2− state at 2.6 MeV. Excitations satisfying

the asymptotic selection rule Eq. (3.1) are indicated by thick arrows. The asymptotic quan-

tum numbers [Nn3Λ]Ω are displayed for pertinent levels. The Fermi surfaces for protons and

neutrons are indicated by the dashed lines.

Table I. RPA amplitudes for the 2− state at 2.6 MeV in 32S, calculated with β2 = 0.78 for both

protons and neutrons. It is characterized by B(E3) = 408 e2fm6, B(Qν3) = 306 fm6, B(QIS3) =

1422 fm6, and
P |gph|2 = 1.86×10−1. The single-particle levels are labeled with the asymptotic

quantum numbers [Nn3Λ]Ω. Only components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[202]5/2 ν[330]1/2 4.01 −0.293 −0.101 0.040

ν[321]3/2 ν[211]1/2 4.19 −0.631 −13.0 11.5

ν[321]1/2 ν[211]3/2 12.6 −0.141 −11.2 2.27

π[202]5/2 π[330]1/2 3.97 −0.282 −0.248 0.096

π[321]3/2 π[211]1/2 3.93 −0.733 −13.8 13.7

π[321]1/2 π[211]3/2 12.3 −0.138 −11.8 2.35

Table II. RPA amplitudes for the 1− state at 2.2 MeV in 40Ca, calculated with β2 = 0.6 for

both protons and neutrons. It is characterized by B(E3) = 122 e2fm6, B(Qν3) = 153 fm6,

B(QIS3) = 549 fm6, and
P |gph|2 = 4.69 × 10−2. Only components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
31 (fm3) Mph

31 (fm3)

ν[200]1/2 ν[321]3/2 2.46 0.836 9.08 8.87

π[200]1/2 π[321]3/2 2.59 0.568 10.1 7.06
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Fig. 3. Left: The isoscalar and proton octupole strengths, B(QIS3) and B(E3)/e2, for the Kπ = 1−

excitations on the SD state in 40Ca are plotted in the top and middle panels as functions of

the excitation energy. These were obtained using an RPA calculation with β2 = 0.6 for both

protons and neutrons, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed

particle-hole strengths are also plotted with dashed lines in the bottom panel. Right: Particle-

hole configurations generating the lowest Kπ = 1− state at 2.2 MeV. The notation here is the

same as in Fig. 2.

Table III. RPA amplitudes for the 1− state 2.6 MeV in 36S, calculated with β2 = 0.565 and 0.685

for protons and neutrons, respectively. It is characterized by B(E3) = 5.95 e2fm6, B(Qν3) =

189 fm6, B(QIS3) = 262 fm6, and
P |gph|2 = 9.18 × 10−3. Only components with |fph| > 0.03

are listed.

particle hole εp − εh(MeV) fph Qph
31 (fm3) Mph

31 (fm3)

ν[200]1/2 ν[321]3/2 2.71 −0.999 9.71 −10.5

ν[200]1/2 ν[330]1/2 6.11 −0.038 4.46 −0.22

π[200]1/2 π[330]1/2 5.23 −0.062 3.62 −0.28

Table IV. RPA amplitudes for the 2− state 3.9 MeV in 36S, calculated with β2 = 0.565 and 0.685

for protons and neutrons, respectively. It is characterized by B(E3) = 352 e2fm6, B(Qν3) =

97.0 fm6, B(QIS3) = 819 fm6, and
P |gph|2 = 3.52 × 10−2. Only components with |fph| > 0.1

are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[321]1/2 ν[202]5/2 4.75 −0.141 −8.37 1.34

ν[440]1/2 ν[321]3/2 5.19 0.137 6.34 1.01

ν[321]1/2 ν[211]3/2 11.7 −0.114 −12.5 1.85

π[321]3/2 π[211]1/2 4.45 −0.970 −12.5 14.2

π[321]1/2 π[211]3/2 12.9 −0.101 −10.8 1.43
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Fig. 4. Upper left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 1− excita-

tions on the SD state in 36S is plotted in the top panel as a function of the excitation energy.

This was obtained using an RPA calculation with β2 = 0.565 and 0.685 for protons and neutrons,

respectively, using a box of size ρmax × zmax = 8.25 fm ×14.0 fm. The unperturbed particle-

hole strength distribution is also plotted with dashed lines in the bottom panel. Upper right:

Particle-hole configurations generating the lowest Kπ = 1− state at 2.5 MeV. The notation is

the same as in Fig. 2. Lower left: Same as above, but for the Kπ = 2− excitations. Lower right:

Same as above, but for the Kπ = 2− excitation at 3.9 MeV.
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Z = 16 and 20, respectively. It is thus interesting to consider the SD state in
36S, which has Z = 16 and N = 20. Evidence for the existence of the SD band
in this nucleus has been obtained from an SHF calculation.39) The result of the
RPA calculation is presented in Fig. 4, Table III and Table IV. There is a peak
corresponding to Kπ = 1− at 2.6 MeV with an isoscalar strength of about 3.4 W.u.
and another peak corresponding to Kπ = 2− at 3.9 MeV with an isoscalar strength
of about 11 W.u. (1 W.u. � 77 fm6 for 36S). The Kπ = 1− peak is associated
with the particle-hole excitation from [321]3/2 to [200]1/2, while the Kπ = 2− peak
corresponds to the [211]1/2 → [321]3/2 excitation. These particle-hole configurations
are the same as for the Kπ = 1− state in 40Ca and the Kπ = 2− in 32S discussed
above. However, in contrast to the N = Z nuclei, 32S and 40Ca, the coherence of
proton and neutron excitations is absent in the case of 36S. Thus, these RPA modes
in 36S are dominated by specific particle-hole configurations, although appreciable
amounts of other particle-hole configurations collectively contribute to the Kπ =
2− mode (see Table IV). The collectivity of these modes is apparently weak in
comparison with the octupole vibrations built on the SD states in heavy nuclei,48),49)

because the number of particle-hole configurations contributing to the RPA modes
is rather small in the nuclei under consideration. It should be mentioned, however,
that transition strengths much larger than those in our results are obtained for
these nuclei in the mixed representation RPA calculation carried out by Inakura et
al.,27),28) where no cutoff is imposed in the particle-hole excitation energy. The major
cause of this difference may be the rather severe energy cutoff in the present RPA
calculation. (See Ref. 50) for a numerical analysis of the contributions from very
high-lying particle-hole configurations to the transition strengths of the low-lying
RPA modes.)

3.2. The SD state in 50S

In this subsection, we discuss the result for 50S, which is, according to the SHF
calculations,39),46) close to the neutron drip line. The existence of the SD band in this
nucleus is suggested in Ref. 39). The isoscalar octupole strength distribution with
Kπ = 2− calculated with the RPA is presented in Fig. 5. There are no peaks at any
values of K in this energy region other than those corresponding to excitations to the
discretized continuum. As we explain in detail below, the highest peak, at 3.1 MeV,
with Kπ = 2− is associated with the excitation of a single neutron from the loosely
bound [310]1/2 state to the resonance [422]5/2 state. We obtain a peak of similar
nature but with a smaller strength at 2.9 MeV. It is associated with the excitation

Table V. RPA amplitudes for the 2− state at 3.1 MeV in 50S, calculated with β2 = 0.54 and 0.73

for protons and neutrons, respectively. It is characterized by B(E3) = 19.4 e2fm6, B(Qν3) =

5359 fm6, B(QIS3) = 6023 fm6, and
P |gph|2 = 6.42× 10−3. Only components with |fph| > 0.1

are listed.

particle hole εp − εh(MeV) fph Qph
32 (fm3) Mph

32 (fm3)

ν[303]7/2 ν[431]3/2 3.01 0.133 −11.6 −1.49

ν[422]5/2 ν[310]1/2 3.20 0.967 65.7 66.1

π[321]3/2 π[211]1/2 4.69 −0.138 −12.4 2.26
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Fig. 5. Left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 2− excitations

built on the SD state in 50S is plotted in the top panel as a function of the excitation energy.

This was obtained using an RPA calculation with β2 = 0.54 and 0.73 for protons and neutrons,

respectively, using a box of size ρmax × zmax = 14.25 fm ×22.0 fm. The unperturbed particle-

hole strengths are also plotted with dashed lines in the bottom panel. The arrow indicates

the threshold energy, Eth = 1.4 MeV. Right: Particle-hole configurations generating the lowest

Kπ = 2− state at 3.1 MeV. The notation here is the same as in Fig. 2.
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of a single neutron from the loosely bound [431]3/2 state to the resonance [303]7/2
state. This difference in strength between the two peaks can be understood from
the asymptotic selection rule (3.1c): The former particle-hole excitation satisfies it,
whereas the latter does not. On the other hand, the second highest peak, at 2.8 MeV,
is due to a neutron excitation from the [431]3/2 state to a discretized continuum state
with Ωπ = 1/2−.
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Fig. 7. Angle dependence of the centrifugal

barrier height for the Λ = 2 states in su-

perdeformed 50S. The z- and ρ-axes corre-

spond to θ = 0◦ and 90◦, respectively.

We now discuss the microscopic
structure of the Kπ = 2− excitation at
3.1 MeV in detail. It has an extremely
strong isoscalar strength of B(QIS3) =
41 W.u. and a weak electric strength of
B(E3) = 0.13 W.u. (1 W.u. � 149 fm6

for 50S). As shown in Table V, the ma-
jor component of this RPA mode is the
[310]1/2 → [422]5/2 excitation of a neu-
tron. Their wave functions are plotted
in Fig. 6. Because the [310]1/2 state is
loosely bound and the [422]5/2 state is
a resonance state, their wave functions
extend significantly outside of the half-
density radius of this nucleus. Together
with the fact that this particle-hole con-
figuration satisfies the asymptotic selec-
tion rule (3.1c), the very extended spatial structures of their wave functions are the
main reason why it has the extremely large transition strength.
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Fig. 8. Box size dependence of single-particle

levels with Ωπ = 5/2+ in superdeformed
50S. The [422]5/2 level is stable with re-

spect to variation of the box size.

This [422]5/2 state has an inter-
esting property: Because the centrifu-
gal barrier is angle dependent, it lies
below the barrier along the z-axis and
0.2 MeV above it along the ρ-axis (see
Fig. 7). To determine whether or not
the resonance interpretation of this state
is valid, we first examined the box size
dependence of calculated single-particle
energies. As shown in Fig. 8, the energy
of the [422]5/2 state is found to be stable
with respect to variation of the box size.
We next evaluated the sum of the eigen-
phase, ∆(E) =

∑
a δa(E), following the

procedure of Ref. 51). The eigenphase
is obtained through eigenvalues of the
S-matrix, and their sum has the same
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energy dependence around a resonance as the phase shift in a spherical system,52)

tan(∆(E) − ∆0(E)) =
Γ

2(E − ER)
, (3.2)
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Fig. 9. The eigenphase sum (upper panel) and

its derivative (lower panel) for the Ωπ =

5/2+ state in superdeformed 50S are plot-

ted as functions of energy.
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p〈r2〉 of

neutron single-particle states in superde-

formed 50S, obtained in a calculation

using a box of size ρmax × zmax =

14.25 fm × 22.0 fm. Here, the root-mean-

square radius of neutrons
p〈r2〉ν is 4.44

fm.

where ER and Γ denote the resonance
energy and the total width, respectively.
The sum of the background eigenphases,
∆0(E), is considered a slowly-varying
quantity. The result of this calcula-
tion, presented in Fig. 9, confirms that
the [422]5/2 state can be regarded as
a resonance. Its width is estimated to
be about 0.14 MeV. Furthermore, we
confirmed that the root-mean-square ra-
dius of this state is clearly distinguish-
able from those of discretized contin-
uum states (see Fig. 10). In this fig-
ure, the root-mean-square radius of var-
ious single-particle states are plotted.
We find that not only the resonance
[422]5/2 state but also the weakly bound
[310]1/2 state has a root-mean-square
radius about 2 fm larger than the av-
erage value for neutrons,

√〈r2〉ν = 4.44
fm. This is because the low angular mo-
mentum p1/2 component that has a spa-
tially extended structure becomes dom-
inant in such a Ωπ = 1/2− neutron
level as the binding energy approaches
zero.53),54)

In contrast to the peak at 3.1 MeV
discussed above, the peak at 2.8 MeV
corresponds to the excitation of the
loosely bound [431]3/2 neutron to a dis-
cretized continuum state with Ωπ =
1/2−. Therefore, its position and height
do not have definite physical mean-
ings. In fact, these values change as
the box size is varied. This peak
even disappears when smaller boxes are
used in the numerical calculation (see
Fig. 11), whereas the peak position and
the height associated with the [310]1/2
→ [422]5/2 excitation is stable, as long

as a box larger than ρmax×zmax = 12.25 fm ×20.0 fm is used. We should also mention
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Fig. 11. The isoscalar octupole strength B(QIS3) distributions for the Kπ = 2− excitations on the

SD state in 50S, obtained using an RPA calculation with β2 = 0.54 and 0.73 for protons and

neutrons, respectively, using a box of size ρmax × zmax = 10.25 fm ×16.0 fm (left) and 12.25 fm

×20.0 fm (right). The neutron root-mean-square radii
p〈r2〉ν are 4.42 fm and 4.44 fm. The

unperturbed particle-hole strengths are also plotted with dashed lines in the bottom panels.

The arrows indicate the threshold energy, Eth = 1.4 MeV.

that the convergence of the numerical calculation is insufficient for the unperturbed
strength of the [310]1/2 → [422]5/2 transition, because the root-mean-square radius
of the [422]5/2 state still increases from 5.90 fm to 6.54 fm for a larger box, with
ρmax × zmax = 14.25 fm ×22.0 fm. Therefore, the calculated transition strength has
only qualitative meaning.

Finally, let us make a comparison between the spatial distributions of the Kπ =
2− octupole strength associated with individual particle-hole excitations on the SD
state in the drip line nucleus 50S and those in the stable nucleus 32S. Figure 12 plots
the spatial distribution functions Qph

3K(ρ, z) for some major configurations generating
the low-lying Kπ = 2− modes in 32S and 50S. It is clear that the particle-hole
excitations in 50S have spatial distributions significantly extended outside of the
nucleus, while those in 32S are peaked around the surface region. This spatially
extended structure brings about a strong enhancement of the octupole strength in
50S. This can be regarded as one of the unique properties of excitation modes in nuclei
close to the drip line. Note that this mechanism of transition strength enhancement
is different from the threshold effect associated with the excitation of a loosely bound
neutron into the non-resonant continuum.55)
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3.3. The oblately deformed state in 40Mg

To show that the strong enhancement of the transition strength for an excitation
from a loosely bound state to a resonance state is not restricted to the SD states
but expected to be a rather general phenomenon in nuclei close to the drip line,
we present in this subsection another example of the RPA calculation for 40Mg.
According to the HF-Bogoliubov calculations,56),57) this nucleus is situated close to
the neutron drip line and possesses both prolate and oblate local minima.

Figure 13 displays the octupole transition strengths for the Kπ = 3− excita-
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Fig. 13. Left: The isoscalar octupole strength B(QIS3) distribution for the Kπ = 3− excitations on

the oblate state in 40Mg is plotted in the top panel as a function of the excitation energy. This

was obtained using an RPA calculation with β2 = −0.2 for both protons and neutrons, using

a box of size ρmax × zmax = 14.25 fm ×12.0 fm. The unperturbed particle-hole strengths are

also plotted with dashed lines in the bottom panel. The arrow indicates the threshold energy

Eth = 0.82 MeV. Right: Particle-hole configurations of neutrons generating the Kπ = 3− state

at 6.2 MeV. The levels denoted [404]9/2 and [404]7/2 correspond to resonances, while other

levels in the positive energy region represent discretized continuum states.

Table VI. RPA amplitudes for the 3− state at 6.2 MeV in the oblately deformed 40Mg, calculated

with β2 = −0.2 for both protons and neutrons. It is characterized by B(E3) = 1.09 e2fm6,

B(Qν3) = 9280 fm6, B(QIS3) = 9482 fm6, and
P |gph|2 = 1.46 × 10−3. The particle states

other than the ν[404]9/2 and ν[404]7/2 resonances represent discretized continuum states. Only

components with |fph| > 0.1 are listed.

particle hole εp − εh(MeV) fph Qph
33 (fm3) Mph

33 (fm3)

ν 7/2+ ν[301]1/2 5.84 −0.142 −56.0 7.81

ν 5/2+ ν[301]1/2 5.92 0.156 49.6 7.58

ν 5/2+ ν[301]1/2 6.06 0.211 −0.526 −0.109

ν[404]9/2 ν[301]3/2 6.24 0.909 −96.7 −89.5

ν 3/2+ ν[301]3/2 6.45 0.171 −37.4 −6.51

ν[404]7/2 ν[301]1/2 6.52 0.160 −82.1 −13.3

tions on the oblately deformed state in 40Mg. Among several peaks in the isoscalar
strength distribution, we can give a clear physical interpretation for the two promi-
nent peaks at 6.2 and 6.6 MeV: The former is created by the excitation of a neutron
from the loosely bound [301]3/2 state to the resonance [404]9/2 state, while the lat-
ter is from the loosely bound [301]3/2 state to the resonance [404]7/2 state. These
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is 4.06 fm. (b) Spatial distribution function Qph
33 (ρ, z) for the [301]3/2 → [404]9/2 excitation on

the oblately deformed state in 40Mg. The contour lines are plotted at intervals of 0.02 fm. (c)

Same as (b), but for the [301]1/2 → [404]7/2 excitation.

resonance states are associated with the g9/2 orbit, which has a high centrifugal bar-
rier. Due to the spatially extended structure of this type of particle-hole excitation,
they acquire extremely large transition strengths; the isoscalar octupole strength
of the former (latter) is about 90 (39) W.u. (1 W.u. � 95 fm6 for 40Mg). The
major components of the RPA amplitudes of the Kπ = 3− mode at 6.2 MeV are
presented in Table VI. Other peaks in this figure are due to excitations to discretized
continuum states; e.g., the peak at 3.8 (5.8) MeV is associated with the excitation
from the [301]3/2 ([301]1/2) state to the discretized continuum Ωπ=3/2+ (7/2+)
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state. Therefore, their positions and peak heights do not have definite physical
meanings. This conclusion was obtained by examining the box size dependence of
single-particle energies and their eigenphase sums. Typical results of these calcu-
lations are presented in Figs. 14 and 15. The widths of the resonant [404]9/2 and
[404]7/2 states are estimated to be about 0.8 and 1.2 MeV, respectively.

Finally, we show in Fig. 16 the spatial distribution functions Qph
33(ρ, z) for the

[301]3/2 → [404]9/2 and [301]1/2 → [404]7/2 excitations, together with the neutron
density distribution of the oblately deformed state in 40Mg. It is clearly seen that
the strengths of these particle-hole excitations extend far from the nuclear surface.
Furthermore, we notice that the peak positions of the two distributions, shown in
(b) and (c), differ considerably. This can be regarded as the major reason that the
two particle-hole configurations do not strongly mix with each other in the RPA
eigenmodes, despite the fact that their unperturbed energies are fairy close (see
Table VI). This is quite different from the familiar situations for low-frequency RPA
modes in stable nuclei, in which the strength distribution functions of many particle-
hole configurations have peaks near the nuclear surface and tend to mix with each
other, generating collective vibrational modes.

§4. Conclusions

By means of the RPA calculation based on the deformed Woods-Saxon potential
in the coordinate-mesh representation, we have carried out a comparative study of
octupole excitations built on the SD states in the 40Ca region and those in 50S. In
the N = Z stable nuclei, 32S and 40Ca, the enhancement of the octupole transition
strength results from the coherence between the proton and neutron excitations. By
contrast, in 50S close to the neutron drip line, we have found that the low-lying state
created by the excitation of a single neutron from a loosely bound low Ω state to
a high Ω resonance state acquires an extremely large transition strength. We have
made a detailed study of the spatial distributions of particle-hole transition strengths
and confirmed that this enhancement of the strength is a natural consequence of the
fact that these particle and hole wave functions extend significantly outside of the
nuclear surface. To show that this kind of enhancement phenomenon is not restricted
to the SD states, we have also presented another example for oblately deformed 40Mg
close to the neutron drip line.

The present calculation indicates that, as we approach the drip line, it becomes
increasingly difficult to generate collective modes of excitation by coherent superpo-
sitions of many particle-hole excitations. This is because the bound particle states
disappear and individual resonance wave functions possess different spatial struc-
tures. It should be emphasized, however, that the pairing correlation is not taken
into account in the present calculation. Quite recently, one of the authors (M. Y.)
showed58) that collectivity emerges in nuclei close to the drip line, owing to the pair-
ing anti-halo effect:59) The self-consistent pairing correlation in the continuum brings
about spatial localization of particle-hole excitations, which helps in generating the
collective modes of excitation. Thus, it is an important next step to investigate how
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the results presented in this paper are modified by the pairing correlation.
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Appendix A
Numerical Derivative

For wave functions of the form Φ(ρ, ϕ, z) = φ(ρ, z)eiΛϕ, we have

∇2φ(ρ, z)eiΛϕ =
(

1
ρ

∂

∂ρ
+

∂2

∂ρ2
− Λ2

ρ2
+

∂2

∂z2

)
φ(ρ, z)eiΛϕ. (A.1)

Using the coordinate-mesh representation and the 9-points formula, the derivative
parts can be written as

(
1
ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2

)
φi,j

=
1

∆2

[
287000
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φi,j +
(
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5040

+
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840(i − 1/2)
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φi+1,j +
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8064
5040
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)
φi−1,j

−
(

1008
5040

+
168

840(i − 1/2)

)
φi+2,j −

(
1008
5040

− 168
840(i − 1/2)

)
φi−2,j

+
(

128
5040

+
32

840(i − 1/2)

)
φi+3,j +

(
128
5040

− 32
840(i − 1/2)

)
φi−3,j

−
(

9
5040

+
3

840(i − 1/2)

)
φi+4,j −

(
9

5040
− 3

840(i − 1/2)

)
φi−4,j

+
8064
5040

(φi,j+1 + φi,j−1) − 1008
5040

(φi,j+2 + φi,j−2)

+
128
5040

(φi,j+3 + φi,j−3) − 9
5040

(φi,j+4 + φi,j−4)

]
. (A.2)
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Appendix B
Numerical Quadrature

For numerical integration, we use Bode’s rule given by∫ xi+4

xi

f(x)dx =
2∆

45
(7fi + 32fi+1 + 12fi+2 + 32fi+3 + 7fi+4) + O(∆7). (B.1)

This formula is a generalization of the well-known Simpson’s rule, and it is derived
by taking into account polynomials up to quartic order in the Taylor expansion for
interpolation between the mesh points.60)

References

1) Ed. I. Tanihata, Nucl. Phys. A 693 (2001), Issues 1, 2.
2) Ed. H. Horiuchi, T. Otsuka and Y. Suzuki, Prog. Theor. Phys. Suppl. No. 142 (2001).
3) Ed. K. Hagino, H. Horiuchi, M. Matsuo and I. Tanihata, Prog. Theor. Phys. Suppl. No.

146 (2002).
4) I. Hamamoto, H. Sagawa and X. Z. Zhang, Phys. Rev. C 53 (1996), 765; ibid. 55 (1997),

2361; ibid. 56 (1997), 3121; ibid. 57 (1998), R1064; ibid. 64 (2001), 024313.
5) I. Hamamoto and H. Sagawa, Phys. Rev. C 60 (1999), 064314; ibid. 62 (2000), 024319;

ibid. 66 (2002), 044315.
6) S. Shlomo and B. Agrawal, Nucl. Phys. A 722 (2003), C98.
7) K. Hagino and H. Sagawa, Nucl. Phys. A 695 (2001), 82.
8) M. Bender, J. Dobaczewski, J. Engel and W. Nazarewicz, Phys. Rev. C 65 (2002), 054322.
9) M. Yamagami and Nguyen Van Giai, Phys. Rev. C 69 (2004), 034301.

10) J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz and M. Stoitsov, nucl-
th/0407111.
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High-K precession modes: Axially symmetric limit of wobbling motion in the cranked
random-phase approximation description
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The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band
of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction
of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase approximation
(RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes
in 178W: the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type
of rotation can be well described by the RPA formalism, which gives new insight into the wobbling motion in
the triaxial superdeformed nuclei from a microscopic viewpoint.

DOI: 10.1103/PhysRevC.72.014306 PACS number(s): 21.10.Re, 21.60.Jz, 23.20.Lv, 27.70.+q

I. INTRODUCTION

Rotation is a typical collective motion in atomic nuclei.
It manifests itself as a rotational band, a sequence of states
connected by strong electromagnetic (e.g., E2) transitions.
Most of the rotational bands observed so far are based
on the uniform rotation about an axis perpendicular to the
symmetry axis of axially symmetric deformation. The well-
known ground state rotational bands and the superdeformed
rotational bands with axis ratios about 2:1 are typical ex-
amples of this type of rotational motion. Quite recently,
exotic rotational motions, in contrast to the normal ones
mentioned above, have been under discussion. They are
generally neither uniform nor rotating about one of three
principal axes of deformation, and they clearly indicate the
possible existence of three-dimensional rotations in atomic
nuclei. The recently observed wobbling rotational bands
[1–5] and the chiral rotation/vibration bands [6–9] are such
examples.

Such exotic rotations are very interesting because they
give hints to answering a fundamental question: How does
an atomic nucleus rotate as a three-dimensional object? They
may also shed light on collective motions in nuclei with triaxial
deformation, which are characteristic in these rotational bands
and are very scarce near the ground state region. Although the
triaxial deformation is crucial for those exotic rotations, it is not
a necessary condition for three-dimensional rotations to occur.
For example, the chiral rotation is a kind of “magnetic rotation”
or “tilted axis rotation” [10], where the axis of rotation is
neither along a principal axis of deformation nor in the plane of
two principal axes, but is pointing inside a triangle composed of
three principal axes. In the case of the typical magnetic rotation
observed in the Pb region, the so-called shears band [10], the
deformation is axially symmetric and weakly oblate. Similarly,
one can think of an axially symmetric limit of the wobbling
motion: the so-called “precession band”, which is nothing but
a rotational band excited on a high-K isomeric state, in analogy
to the classical motion of the symmetric top. The main purpose

of the present paper is to investigate the precession band from
a microscopic viewpoint.

In recent publications [11,12], we studied the nuclear
wobbling motions associated with the triaxial superdeformed
(TSD) bands in Lu and Hf isotopes on the basis of the
microscopic framework: the cranked mean-field and the
random-phase approximation (RPA) [13–19]. It has been
found that RPA eigenmodes, which can be interpreted as the
wobbling motions, appear naturally if appropriate mean-field
parameters are chosen. The deformation of the mean-field is
large (ε2 > 0.35) with a positive triaxial shape (γ ≈ +20◦ in
the Lund convention), i.e., mainly rotating about the shortest
axis, and the static pairing is small (�n,p < 0.6 MeV), both of
which properties are in accordance with the potential energy
surface calculation [20]. It should be stressed that the solution
of the RPA eigenvalue is uniquely determined, once the mean
field is fixed, as long as the “minimal coupling” residual
interaction is adopted (see Sec. III). Therefore, it is highly
nontrivial that we could obtain wobbling-like RPA solutions
at correct excitation energies. However, the detailed rotational
frequency dependence of the observed excitation energy in Lu
isotopes, monotonically decreasing with frequency, could not
be reproduced, and the out-of-band B(E2) values from the
wobbling band were considerably underestimated in our RPA
calculation.

In the axially symmetric deformation with a uniform rota-
tion about a principal axis, the angular momentum of high-spin
states is built up either by a collective rotation, i.e., the rotation
axis is perpendicular to the symmetry axis, or by alignments
of single-particle angular momenta, i.e., the rotation axis is
the same as the symmetry axis. Thus, four rotation schemes
are possible: oblate noncollective, prolate collective, oblate
collective, and prolate noncollective rotations, corresponding
to the triaxiality parameter γ = 60◦, γ = 0◦, γ = −60◦, and
γ = −120◦ in the Lund convention, respectively. The axially
symmetric limit of the RPA wobbling formalism can be
taken for the so-called noncollective rotation schemes with
oblate or prolate deformation, namely γ = 60◦ or γ = −120◦
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cases. In both cases, long-lived isomers are observed, but
the rotational bands starting from the isomers have not been
observed in the oblate noncollective case. On the other hand,
the high-K isomers and the associated rotational bands have
been known for many years in the Hf and W region with
prolate deformation. Making full use of the axial symmetry, the
RPA formalism has been developed [21–24], which is capable
of describing the rotational band based on the high-K state
as a multi-phonon band, i.e., the precession band. Recently,
the same kind of rotational bands built on high-K isomers
have also been studied by means of the tilted axis cranking
model [25–28].

In this paper, we would like to make a link between the
two RPA formalisms, the one for the (triaxial) wobbling and
the one for the (axially symmetric) precession motions. In
fact, we will show that the precession mode can be naturally
obtained as the axially symmetric limit of the noncollective
rotation in the cranked-RPA description for the wobbling
mode. Moreover, applying the formalism to a typical nucleus
178W, where many high-K isomers have been observed, allows
us to study the properties of the precession bands in detail, not
only the excitation energies but also the B(E2) and B(M1)
values. This kind of study for the precession band sheds new
light on understanding the recently observed wobbling motion.
For completeness of explanation in the following sections, we
review the wobbling and precession bands in the rotor model
in Sec. II, while in Sec. III the RPA wobbling formalism and
the connection to the precession band in the axially symmetric
limit are considered. The result of calculations for 178W is
presented and discussed in Sec. IV. Section V is devoted to
some concluding remarks. Preliminary results for the magnetic
property of the precession band were already reported [29].

II. WOBBLING AND PRECESSION IN SCHEMATIC
ROTOR MODEL

The macroscopic rotor model is a basic tool for studying
the nuclear collective rotation, and its high-spin properties
have been investigated within a harmonic approximation
[30] or by including higher order effects [31–33]. In this
section, we review the consequences of the simple rotor model
according to Ref. [30]. We use h̄ = 1 unit throughout this
paper. The Hamiltonian of the simplest triaxial rotor model is
given by

Hrot = I 2
x

2Jx

+ I 2
y

2Jy

+ I 2
z

2Jz

, (1)

where I’s are angular momentum operators in the body-
fixed coordinate frame, and the three moments of inertia,
Jx,Jy , and Jz, are generally different. We assume, for
definiteness, the rotor describes the even-even nucleus (integer
spins).

Following the argument of Ref. [30], let us consider the
high-spin limit, I � 1, and assume that the main rotation is
about the x axis; namely, the yrast band is generated by a
uniform rotation about the x axis. Then, the excited band at
spin I can be described by the excitation of the wobbling

phonon,

X
†
wob = a√

2I
iIy + b√

2I
Iz, (2)

where a and b are the amplitudes determined by the eigenmode
equation, [Hrot, X

†
wob] = ωwob(I )X†

wob, at each spin I in the
harmonic approximation. The resultant eigenvalue ωwob(I ) is
given by the well-known formula

ωwob(I ) = I
√

(1/Jy − 1/Jx)(1/Jz − 1/Jx)

= ωrot(I )

√
(Jx − Jy)(Jx − Jz)

Jy Jz

, (3)

with the rotational frequency of the main rotation

ωrot(I ) ≡ I

Jx

. (4)

It should be noted that the triaxial deformation of the
nuclear shape is directly related to the intrinsic quadrupole
moments, e.g., tan γ = −√

2Q22/Q20, but does not give a
definite relation between three moments of inertia. One has to
introduce a model, e.g., the irrotational flow model, in order
to relate the triaxiality parameter γ of deformation to three
inertia. However, the simple irrotational moment of inertia
is inconsistent with the existence of wobbling mode if the
positive γ shape is assumed, since then Jy > Jx,Jz and
therefore the wobbling frequency (3) becomes imaginary.

The spectra of the rotor near the yrast line are given in the
harmonic approximation by

Erot(I, n) = I (I + 1)

2Jx

+ ωwob(I )
(
n + 1

2

)
, (5)

and are composed of two sequences, the �I = 2 horizontal
one,

E(hor)
n (I ) = Erot(I, n), I = n, n + 2, n + 4, . . . (6)

with given phonon numbers n = 0, 1, 2, . . ., and the �I = 1
vertical sequence,

E
(ver)
I0

(I ) = Erot(I, I − I0), I = I0, I0 + 1, I0 + 2, . . . (7)

with given bandhead spins I0 = 0, 2, 4, . . ., both of which
are connected by E2 transitions. The horizontal sequences
are conventional rotational bands with transition energies
Eγ ≈ 2ωrot, and the �I = −2 in-band B(E2) values are
proportional to the square of the quadrupole moment about
the x axis. The vertical sequences look like phonon bands
with transition energies Eγ ≈ (ωwob + ωrot), and the �I = −1
vertical B(E2) values are O(1/I ) smaller than the horizontal
B(E2). These features are summarized schematically in Fig. 1.
In fact, the �I = −1 out-of-band transition was crucial to
identifying the wobbling motion in Lu isotopes [1]. If the
wobbling-phonon energy ωwob(I ) is larger than the �I = 2 ro-
tational energy �Erot(I ) = Erot(I + 1, n) − Erot(I − 1, n) =
(2I + 1)/Jx , both the �I = ±1 transitions are possible. The
�I = −1 transition is much stronger than the �I = +1 one
for the positive γ shape, and vice versa for the negative γ

shape, which also supports that the TSD bands in the Lu region
have positive γ shape.
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FIG. 1. Rotational spectra of a triaxial rotor Hamiltonian. Hori-
zontal rotational bands are connected by solid lines; vertical phonon
bands, by dotted lines.

Next, let us consider the precession band [22] built on a
high-K isomeric state. In this case, the spin Ix ≈ I = K is
composed of single-particle alignments, and the deformation is
axially symmetric about the x axis. Since no collective rotation
exists about the x axis, the rotational energy spectra are given
simply by [30]

Ehigh-K (I ) = 1

2J⊥
[I (I + 1) − K2], (8)

where J⊥ is the moment of inertia with respect to the
perpendicular axis (J⊥ ≡ Jy = Jz). The excitation energy of
this band can be rewritten, by putting I = K + n, as

Ehigh-K (I ) = ωprec

(
n + 1

2
+ n(n + 1)

K

)
, (9)

with

ωprec ≡ K

J⊥
, (10)

leading to a harmonic phonon band structure with a one-
phonon energy (10), when K is sufficiently large. The spectra
in this limit are drawn in Fig. 2. The harmonic picture
holds not only for the energy spectra but also for the
B(E2) values; for example, by using B(E2) ∝ 〈If K20|IiK〉2,
one finds, in the leading order, B(E2; n → n − 1) ∝ 3(n/K)
and B(E2; n → n − 2) ∝ (3/2)(n(n − 1)/K2), where n =
I − K is the number of the precession phonon quanta,
so that the two-phonon transition is hindered when K is
large.

Now, let us discuss the relation [22] between the wobbling
phonon energy (3) and the precession phonon energy (10). By
putting Jy = Jz ≡ J⊥ with keeping Jx > Jy,Jz in Eq. (3),
the wobbling frequency reduces to

ωwob(I ) = I

J⊥
− ωrot(I ). (11)

Namely, at the bandhead I = K , the precession phonon
energy ωprec = ωwob + ωrot coincides with the vertical �I = 1
transition energy in the wobbling spectra in such a case.
This result can be interpreted to mean that each horizontal
band (6) in the wobbling spectra disappears (no collective
rotations), leaving one vertical band, whose transition energy
is ωprec. This interpretation is possible in the microscopic

FIG. 2. Precession bands excited on high-K isomeric states. All
|�I | = 2 horizontal sequences shown in Fig. 1 disappear, leaving
only one |�I | = 1 vertical band in the case of the noncollective
rotation.

cranked-RPA description [14] in the next section, where the
rotational frequency ωrot is replaced by the cranking frequency
ωcr about the x axis and the moment of inertia about this axis
is defined by Jx ≡ 〈Jx〉/ωcr; i.e., it is the kinematic moment
of inertia containing the contribution from the quasiparticle
alignments, so that the condition Jx > Jy,Jz can be satisfied.
The cranking frequency ωcr is a redundant variable in this case
of the noncollective rotation, but all physical observables do
not depend on it. In this way, both the wobbling and precession
bands can be treated in a unified manner in the framework of
the RPA wobbling formalism, which is shown in more detail
in the next section (see Sec. III B).

III. AXIALLY SYMMETRIC LIMIT OF RPA
WOBBLING FORMALISM

A. Minimal coupling and RPA wobbling equation

Microscopic RPA theories for nuclear wobbling motion
have been developed in Refs. [14,15,17]. The most important
among them is that of Marshalek [14], where the transforma-
tion to the principal axis frame (body-fixed frame) is performed
and the theory is formulated in that frame. Moreover, it is
shown that the RPA equation for the wobbling mode can
be cast into the same form as Eq. (3) if three moments of
inertia are replaced with those appropriately defined in the
microscopic framework; we call this equation the wobbling
form equation. The adopted microscopic Hamiltonian in
Ref. [14] is composed of the spherical mean-field and the
quadrupole-quadrupole interaction (with the monopole pairing
if necessary). In Ref. [17], however, it was pointed out that the
RPA equation could not be reduced to the wobbling form
equation if a most general residual interaction is used. A
closer look into the argument in Ref. [17] shows, however,
that the following “minimal coupling,” being used as a residual
interaction, leads to the wobbling form equation as the RPA
dispersion equation.

In Marshalek’s theory the rotational Nambu-Goldstone
(NG) modes (or spurious modes as conventionally called),
Jy and Jz, play a crucial role. The RPA guarantees the
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decoupling of these modes if the self-consistency of the mean
field is satisfied in the Hartree-Fock sense. In many cases,
however, non-self-consistent mean fields are necessary; for
example, the deformation is more properly determined by the
Strutinsky procedure than by the Hartree-Fock calculations
with simple interactions, or one wants to study the system
by hypothetically changing the mean-field parameters, as has
been done in our previous calculations [12] for the nuclear
wobbling motions. Thus, we consider that the mean field h
rather than the interaction is given, and we look for the residual
interaction H (m)

res , which fulfills the decoupling condition of
the NG modes within the RPA [34]. The same idea has been
formulated in the context of the particle-vibration coupling
theory [30], where the rotational invariance is restored by
considering the coupling resulting from a small rotation about
the x, y, or z axis. Thus the minimum requirement is what we
call the “minimal coupling” given by

H (m)
res = −1

2

∑
k,l=x,y,z

χklFkFl. (12)

Here, the Hermitian operator Fk and the 3 × 3 symmetric
force-strength matrix χkl are defined as

Fk = i[h, Jk], (13)

(χ−1)kl = −〈�|[[h, Jk], Jl]|�〉, (14)

with the mean-field vacuum state |�〉 (the Slater determinant if
no pairing is included), on which RPA eigenmodes are created.
If the mean field is given by the anisotropic harmonic oscillator
potential, the minimal coupling leads to the doubly stretched
Q′′Q′′ interaction combined with the Landau prescription
[21,35–41]. One has to include the monopole pairing inter-
action in realistic calculations. It should be stressed that the
minimal coupling can be used for any type of mean fields, e.g.,
the Woods-Saxon potential.

For the wobbling modes in the yrast region, the mean-field
vacuum state |�(ωcr)〉 is obtained as the lowest eigenstate of
the cranked mean-field Hamiltonian,

h′ = h − ωcrJx, (15)

as a function of the cranking frequency ωcr. Assuming the
signature symmetry (with respect to a π rotation about the x
axis) of the mean field and the conventional phase convention
that the matrix elements of the single-particle operators iJy

and Jz are real in the mean-field basis, it can be shown that
the force-strength matrix χkl is diagonal. The excitation of
the wobbling phonon corresponds to the vertical �I = ±1
transitions in Sec. II, therefore only the part of the RPA
equations which transfer the signature quantum number by
α = 1 is relevant; i.e., only k, l = y, z parts of H (m)

res in
Eq. (12) contribute. It is now straightforward to follow the
same procedure as has been done in Ref. [14], but with the
modification that the quadrupole field of the interaction is
replaced with Fk in Eq. (12). Then one finds that the same
RPA dispersion equation can be derived as

(
ω2 − ω2

cr

)∣∣∣∣Ay(ω) Bz(ω)
By(ω) Az(ω)

∣∣∣∣ = 0, (16)

where

Ay(ω) = I − ωcrJy(ω) + ωJyz(ω),

Az(ω) = I − ωcrJz(ω) + ωJyz(ω),
(17)

By(ω) = ωJy(ω) − ωcrJyz(ω),

Bz(ω) = ωJz(ω) − ωcrJyz(ω),

with the following definitions:

I = 〈�(ωcr)|Jx |�(ωcr)〉
=

∑
µ<ν

2Jy(µν)Jz(µν),

Jy(ω) =
∑
µ<ν

2EµνJy(µν)2

E2
µν − (ω)2

,

(18)

Jz(ω) =
∑
µ<ν

2EµνJz(µν)2

E2
µν − (ω)2

,

Jyz(ω) =
∑
µ<ν

2ωJy(µν)Jz(µν)

E2
µν − (ω)2

.

In these expressions, ω is the phonon excitation energy,
Eµν = Eµ + Eν are two-quasiparticle energies with α =
1, and Jy(µν) = 〈µν|iJy |�〉(Jz(µν) = 〈µν|Jz|�〉) are two-
quasiparticle matrix elements of the operator iJy (Jz), which
are associated with the vacuum state |�(ωcr)〉 and determined
by the mean-field Hamiltonian h′ in the rotating frame. It is
now clear that once the mean-field Hamiltonian is given and
the vacuum state |�(ωcr)〉 is obtained, the RPA eigenmodes
can be calculated without any ambiguity. This is precisely the
consequence of the minimal coupling given by Eq. (12).

The rotational NG mode appears as a decoupled ω = ωcr

solution in the RPA dispersion equation (16);


† = 1√
2I

(iJy + Jz)RPA = 1√
2I

(iJ−)RPA, (19)

J± ≡ Jy ± iJz, (x-axis quantization), (20)

where the subscript RPA means the two-quasiparticle transfer
part (the particle-hole part if no pairing is included) of
the operator. Note that it is normalizable, [
,
†]RPA = 1,
because 〈�|[Jz, iJy]|�〉 = 〈�|Jx |�〉 = I �= 0. The cranked
mean field (15) describes the rotating state, which has an
angular momentum vector aligned with the x axis, and this
NG mode plays a role to tilt the whole system by changing
the x component of the angular momentum by −1 unit. The
reason why the NG mode has a finite excitation energy is that
there is a cranking term in the Hamiltonian (15) (the Higgs
mechanism).

Finally, Marshalek [14] has shown that the non-NG part of
the RPA dispersion equation (16) is reduced to the wobbling
form, where the rotational frequency ωrot is replaced by the
cranking frequency ωcr:

(ω)2 = (ωcr)
2

[
Jx − J (eff)

y (ω)
][
Jx − J (eff)

z (ω)
]

J (eff)
y (ω)J (eff)

z (ω)
, (21)

014306-4



HIGH-K PRECESSION MODES: AXIALLY SYMMETRIC . . . PHYSICAL REVIEW C 72, 014306 (2005)

if three moments of inertia are replaced with microscopically
defined ones in the following way:

Jx = I

ωcr
= 〈�(ωcr)|Jx |�(ωcr)〉

ωcr
,

J (eff)
y (ω) = Jy(ω) − Jyz(ω)

Ay(ω)

Bz(ω)
, (22)

J (eff)
z (ω) = Jz(ω) − Jyz(ω)

Az(ω)

By(ω)
.

Since the y- and z-effective inertia are ω dependent, the
equation is non-linear and they are determined only after
solving it.

As for the electromagnetic transition probabilities, Mar-
shalek proposed a 1/I -expansion technique by utilizing the
perturbative boson expansion method [13]. The �I = ∓1 E2
and M1 vertical transitions from the one-phonon wobbling
band to the yrast band, discussed in Sec. II, can be calculated
within the RPA, which is the lowest order in 1/I , as

B(E2; I ± 1 → I ) ≈ |〈�|[Q2∓1, X
†
wob]|�〉|2, (23)

B(M1; I ± 1 → I ) ≈ |〈�|[µ1∓1, X
†
wob]|�〉|2, (24)

where X
†
wob is the wobbling phonon creation operator, and the

E2 and M1 operators quantized with respect to the x axis,

Q2±1 = i√
2

(
Q

(−)
21 ± Q

(−)
22

)
, (25)

µ1±1 = ± i√
2

(iµy ∓ µz), (26)

are introduced (see also Ref. [19]). Here Q
(±)
2K (K = 0, 1, 2)

are electric quadrupole operators (z-axis quantization) with a
good signature,

Q
(−)
21 = −

√
15

4π
e

Z∑
a=1

(xz)(π)
a ,

(27)

Q
(−)
22 = i

√
15

4π
e

Z∑
a=1

(xy)(π)
a ,

and µk (k = x, y, z) are magnetic dipole operators,

µk =
√

3

4π
µN

A∑
a=1

(
g

(τ )
l lk + g(τ )

s sk

)
a
, (τ = π, ν). (28)

B. Axially symmetric limit and RPA precession equation

If the deformation is axially symmetric about the x axis, the
angular momentum is generated not by the collective rotation,
but by the alignment of the angular momenta of quasiparticles
along the symmetry axis. The mean-field vacuum state |�〉, a
high-K state, is a multiple-quasiparticle excited state, and its
spin value is the sum of the projections, �µ, of their angular
momenta on the symmetry axis; I = K = ∑(occ)

µ �µ, i.e., the
time reversal invariance is spontaneously broken in |�〉. In
this case, the cranking term in Eq. (15) does not change the
vacuum state |�〉, so that the cranking frequency ωcr is a

redundant variable. All observables should not depend on ωcr.
It is reflected in the fact that the quasiparticle energies linearly
depend on the rotational frequency:

Eµ(ωcr) = E0
µ − ωcr�µ, (29)

where E0
µ are quasiparticle energies for the non-cranked mean-

field Hamiltonian h. Since the eigenvalue of Jx,�, is a good
quantum number, it is convenient to rewrite the RPA dispersion
equation (16) in terms of the matrix elements of J± rather than
iJy and Jz. After a little algebra, the equation decouples into
two equations,

(ω ± ωcr)S±1(ω ± ωcr) = 0, (30)

where the functions Sρ(ω) with ρ = ±1 determine the �� =
±1 solutions, respectively, and are given by

S±1(ω) = 1

2

∑
µ<ν

{
(Eµν ± ωcr)|J±(µν)|2

Eµν ± ωcr − ω

− (Eµν ∓ ωcr)|J∓(µν)|2
Eµν ∓ ωcr + ω

}
. (31)

The precession is a �� = +1 mode, as is clear from the
rotor model in Sec. II, and then only the �I = −1 E2 and
M1 transitions are allowed; i.e., their �I = +1 probabilities
vanish in Eqs. (23) and (24) because the two RPA transition
amplitudes, 〈�|[Q(−)

21 , X
†
wob]|�〉 and 〈�|[Q(−)

22 , X
†
wob]|�〉, are

the same in their absolute value with the opposite sign; a
corresponding relation holds for the M1 amplitudes.

On the other hand, the y and z inertia are the same due to the
axial symmetry about the x axis, and then, just like Eq. (11),
Eq. (21) reduces to

ω = ± K

J (eff)
⊥ (ω)

∓ ωcr (�� = ±1), (32)

where I = 〈�|Jx |�〉 is denoted by K, and the perpendicular
inertia J (eff)

⊥ (ω) ≡ J (eff)
y (ω) = J (eff)

z (ω) is simply written as

J (eff)
⊥ (ω) = J⊥(ω) ∓ Jyz(ω) (�� = ±1), (33)

with J⊥(ω) ≡ Jy(ω) = Jz(ω).
The vibrational treatment of the rotational band built on

the high-K isomeric state in terms of the RPA has been
done for a harmonic oscillator model in Refs. [21,22], and
for realistic nuclei by employing the Nilsson potential in
Ref. [23], followed by calculations with the Woods-Saxon
potential in Ref. [24]. The residual interaction adopted in
Refs. [23,24] is derived by applying the vibrating potential
model of Bohr-Mottelson [30] to an infinitesimal rotation
about the perpendicular axis, and is equivalent to the minimal
coupling (12). In the axially symmetric case,

Hint = − 1
4κ(F †

+F+ + F
†
−F−), (34)

with F± being defined by using J± in Eq. (20),

F± = i

κ
[h, J±], κ = −1

2
〈�|[[h, J−], J+]|�〉. (35)

Note that the mean-field state |�〉 is now a multi-quasiparticle
excited state for the noncranked mean-field Hamiltonian h, and
so ωcr does not appear, although it can be used as the “sloping
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Fermi surface” to obtain optimal states [42]. The cranking
procedure is totally unnecessary in this approach.

The resultant RPA dispersion equations are given for the
parts associated with the fields F± separately,

ω S±1(ω) = 0, (36)

where the functions S±1(ω) are defined by

S±1(ω) = 1

2

∑
µ<ν

{
E0

µν |J±(µν)|2
E0

µν − ω
− E0

µν |J∓(µν)|2
E0

µν + ω

}
, (37)

which turn out to be the same functions as Eq. (31) be-
cause of the property (29) of quasiparticle energies in the
noncollective rotation scheme. It is worth mentioning that
S+1(ω) = −S−1(−ω), so that �� = −1 modes are obtained
as negative energy solutions of the �� = +1 dispersion
equation and vice versa. For the physical �� = +1 modes,
the eigenenergies of the wobbling dispersion equation (30) and
the precession one (36) are related as

ωwob = ωprec − ωcr. (38)

By comparing it with Eq. (32), we obtain

ωprec = K

J (eff)
⊥

, (39)

with J (eff)
⊥ being written as

J (eff)
⊥ = 1

2

∑
µ<ν

{
|J+(µν)|2

E0
µν − ωprec

+ |J−(µν)|2
E0

µν + ωprec

}
, (40)

which is the microscopic RPA version of Eq. (10) in Sec. II.
This J (eff)

⊥ does not depend on ωcr, while both J⊥ = Jy =
Jz and Jyz in Eq. (33) do. This result can also be obtained
directly from the precession dispersion Eq. (36). Note that the
perpendicular inertia (40) reduces to the Inglis cranking inertia
(or that of Belyaev if pairing is included) in the adiabatic limit
ωprec → 0.

The reason why the ωcr-dependent wobbling eigenenergy
and the ωcr-independent precession eigenenergy is related in a
simple way (38) is that the RPA treatment in Refs. [21–24]
is formulated in the laboratory frame, while Marshalek’s
wobbling theory is in the principal axis frame (body-fixed
frame). The energies in the laboratory frame E(L) and in the
uniformly rotating frame described by the cranked mean-field
E(UR) are related by E(UR) = E(L) − �ωcr for the state which
has a projection � of angular momentum on the cranking
axis. Moreover, the energies in the principal axis and the
uniformly rotating frames are the same under the small
amplitude approximation in the RPA. Thus the difference
of phonon energies in (38) comes from the difference of
coordinate frames where the two approaches are formulated.
The rotational NG mode 
† (20) appears at zero energy in
the precession dispersion Eq. (36) by the same reason. The
transformation between the laboratory and the principal axis
frames have been discussed more thoroughly in Refs. [14,22].

As for the electromagnetic transition probabilities in the
precession formalism [23,24], the RPA vacuum state |RPA〉
is considered to be a stretched eigenstate of the angular mo-
mentum |I = K,M = K〉, because 
|RPA〉 = 0 for the NG

mode (20) [
 ∝ (J+)RPA]. In the same way, the �� = +1 one-
phonon precession state X

†
prec|RPA〉 corresponds to |I = K +

1,M = K + 1〉, because 
X
†
prec|RPA〉 = [
,X

†
prec]|RPA〉 =

0. Then, by using the Wigner-Eckart theorem, we obtain, for
example,

〈I = K||M(E2)||I = K + 1〉

= √
2K + 1

〈RPA|Q2 −1X
†
prec|RPA〉

〈K + 1 K + 1 2 − 1|K K〉 . (41)

Thus, by inserting explicit expressions of the Clebsch-Gordan
coefficients, one finds

B(E2; K + 1 → K) = K + 2

K
|〈�|[Q2 −1, X

†
prec]|�〉|2, (42)

B(M1; K + 1 → K) = |〈�|[µ1 −1, X
†
prec]|�〉|2, (43)

which coincide, within the lowest order in 1/K , with Eqs. (23)
and (24) in the wobbling formalism.

IV. RESULT AND DISCUSSION

A. Calculation of precession bands in 178W

In the previous papers [11,12], we studied the wobbling
motions in the triaxial superdeformed bands in Hf and
Lu isotopes. As demonstrated in the previous section, the
precession mode can be described as an axially symmetric
limit of the RPA wobbling formalism. Thus we have performed
calculations of the precession bands in 178W, for which
the richest experimental information is available [43–45].
Exactly the same wobbling formalism is used, but taking the
prolate noncollective limit suitable for high-K isomers, i.e.,
the triaxiality parameter γ = −120◦ in the Lund convention.
The first result for this nucleus, concentrating on the magnetic
property, was reported already in Ref. [29].

The procedure of the calculation is the same as in
Refs. [11,12,29]. The standard Nilsson potential [46] is
employed as a mean field with the monopole pairing being
included,

h = hNils(ε2, γ ) −
∑

τ=ν,π

�τ (P †
τ + Pτ ) −

∑
τ=ν,π

λτNτ . (44)

Here the ε4 deformation is neglected, and all the mean-field
parameters are fixed for simplicity. There are a few refinements
of calculation, however: (1) the difference of the oscillator
frequencies for neutrons and protons in the Nilsson potential is
taken into account, and the correct electric quadrupole operator
is used, while Z/A times the mass quadrupole operator was
used previously, and (2) the model space is fully enlarged;
Nosc = 3–8 for neutrons and 2–7 for protons, which guarantees
the NG mode decoupling with sufficient accuracy in numerical
calculations. As for point (1), Q(π) ≈ (Z/A)(Q(ν) + Q(π))
usually, holds for static and RPA transitional quadrupole
moments in stable nuclei, and therefore the simplification in
the previous paper was a good approximation. It is, however,
found that Q(π) is appreciably smaller, by about 4−8%, than
(Z/A)(Q(ν) + Q(π)) in 178W. Thus, in this paper, we make a
more precise calculation using the electric (proton) part of the
quadrupole operator.
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TABLE I. Configurations assigned for high-K isomers in 178W [43–45], which are used in the RPA
calculations for the precession bands excited on them. The experimental values of the precession one-phonon
energy, ωexp

prec = EK (I = K + 1) − EK (I = K), are also tabulated in the last column. The neutron states are
1/2−[521], 5/2−[512], 7/2−[514], 7/2+[633], 9/2+[624], and 7/2−a[503]. The proton states are 1/2−[541],
5/2+[402], 7/2+[404], 9/2−[514], and 11/2−[505]. The bold letters indicate the h9/2 proton and the i13/2

neutron quasiparticles.

Kπ Neutron configuration Proton configuration ω
exp
prec(keV)

13− 7/2+, 7/2− 5/2+, 7/2+ 164
14+ 7/2+, 7/2− 5/2+, 9/2− 150
15+ 7/2+, 7/2− 7/2+, 9/2− 207
18− 7/2+, 7/2− 1/2−, 5/2+, 7/2+, 9/2− 184
21− 5/2−, 7/2+, 7/2−, 9/2+ 5/2+, 9/2− 362
22− 5/2−, 7/2+, 7/2−, 9/2+ 7/2+, 9/2− 373
25+ 5/2−, 7/2+, 7/2−, 9/2+ 1/2−, 5/2+, 7/2+, 9/2− 288
28− 5/2−, 7/2+, 7/2−, 9/2+ 1/2−, 7/2+, 9/2−, 11/2− 328
29+ 5/2−, 7/2+, 7/2−, 9/2+, 1/2−, 7/2−a 1/2−, 5/2+, 7/2+, 9/2− 437
30+ 5/2−, 7/2+, 7/2−, 9/2+ 5/2+, 7/2+, 9/2−, 11/2− 559
34+ 5/2−, 7/2+, 7/2−, 9/2+, 1/2−, 7/2−a 5/2+, 7/2+, 9/2−, 11/2− 621

The calculation is performed for the high-K isomeric
configurations listed in Table I; they cover almost all the
multi-quasiparticle states higher than or equal to four (more
than or equal to two quasineutrons and two quasiprotons),
on which rotational bands are observed. The quadrupole
deformation is chosen to be ε2 = 0.240, which reproduces
in a rough average the value Q0 = 7.0 b for the configurations
in Table I assumed in the experimental analyses [44,45]. The
pairing gap parameters are taken, for simplicity, to be 0.5 MeV
for two-quasiparticle configurations, and 0.01 MeV for those
with more than or equal to four quasiparticles, both for
neutrons and protons. Chemical potentials λτ (τ = ν, π ) are
always adjusted so as to give correct neutron and proton
numbers. These mean that the choice of parameters in this work
is semiquantitative. As explained in detail in Sec. III, the final
results do not depend on the cranking frequency ωcr at all for
the noncollective rotation about the x axis. We have confirmed
this fact numerically and used ωcr = 0.001 MeV in actual
calculations. (Note that the RPA wobbling formalism requires
a finite frequency in numerical calculations.) No effective
charge is used for the E2 transitions, and g(eff)

s = 0.7g(free)
s

is used for the M1 transitions as usual.
We have checked the dependences of the results on the

variations of the deformation parameter ε2 and pairing gaps.
Those on the pairing gaps are shown in Fig. 3. In this figure,
the excitation energy ω and the RPA transition amplitude for
the electric Q

(−)
22 operator (28), Q ≡ |〈[Q(−)

22 , X
†
prec]〉|, which

is a measure of the E2 collectivity, for the precession modes
excited on the K = 25+ and K = 30+ configurations, are
shown as functions of the pairing gap, � = �π = �ν (the
common value for protons and neutrons). For reference sake,
the results are also included for the γ vibrations on the
ground states, i.e., the �K = ±2 vibrational mode excited
on the γ = 0◦ prolate mean field (without cranking), for
166Er, 168Yb, and 178Hf nuclei. Note that the meaning of the
operator Q

(−)
22 is different for γ = −120◦ and γ = 0◦ shapes,

so that the comparison of the magnitude of the amplitude

Q is not meaningful between the precession mode and the
γ -vibrational mode. As stressed in Sec. III A, the precession
mode is calculated without any ambiguity once the mean field
is fixed; we have just used the same parameters explained
above with the exception that the pairing gaps are varied. The
situation for the γ vibration is different; one has to include

FIG. 3. Dependence of numerical results on the pairing gap
parameter � = �π = �ν . Upper panel shows the excitation energies;
lower panel, the RPA transition amplitudes for the electric Q

(−)
22

operator (28). Solid curves show results for the precession modes
excited on the 25+ and 30+ high-K states in 178W; dotted, dashed,
and dot-dashed curves represent those for the γ vibrations in 166Er,
168Yb, and 178Hf, respectively.
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TABLE II. Mean-field parameters used in the calculation for the
γ vibrations on the ground states (γ = 0◦), and observed excitation
energies of γ vibrations [47]. ε2 values are taken from Ref. [48],
where they are deduced from the measured B(E2 : 0+

g → 2+
g )

values. Even-odd mass differences are calculated by the third-order
difference formula using the binding energy data in Ref. [49].

Nucleus ε2 �ν (MeV) �π (MeV) ωexp
γ (MeV)

166Er 0.272 0.966 0.877 0.786
168Yb 0.258 1.039 0.983 0.984
178Hf 0.227 0.694 0.824 1.175

components other than the minimal coupling, (12) or (34).
We use the K = 2 part of the doubly stretched Q′′Q′′ force,
and the force strength is determined in such a way that the
calculations with adopting the even-odd mass differences as
pairing gap parameters reproduce the experimental energies
of the γ vibration; see Table II for the parameters and
data used. Then, with the use of the force strength thus
fixed, calculations are performed while varying the pairing
gaps.

As clearly seen in Fig. 3, the reduction of pairing gaps
makes the excitation energies of γ vibration change in various
ways depending on the shell structure near the Fermi surface;
i.e., the distribution of the �� = ±2 quasiparticle excitations,
which have large quadrupole matrix elements. The energy
becomes smaller and smaller in the case of 166Er, and finally
leads to an instability (ωγ → 0); accordingly, the transition
amplitude Q diverges. No instability takes place in the case
of 168Yb, and the excitation energy decreases with decreasing
�, while it is almost constant for the γ vibration in 178Hf.
However, the transition amplitudesQ reduce by about 40–60%
with decreasing � except for 166Er. These are well-known
features for the low-lying collective vibrations; namely, the
collectivities of the vibrational mode are sensitive to the
pairing correlations and especially enhanced by them. In
contrast, for the case of the precession modes, the excitation
energies are stable and transition amplitudes are surprisingly
constant against the change of the pairing gap. This is a
feature common to the wobbling mode excited on the triaxial
superdeformed band [12]. Although both the precession (or
the wobbling) and the γ vibration are treated as vibrational
modes in the RPA, the structures of their vacua are quite
different; the time reversal invariance is kept in the ground
state while it is spontaneously broken in the high-spin intrinsic
states. Since the precession or the wobbling is a part of
rotational degrees of freedom, this symmetry-breaking may
be an important factor to generate these modes. It should
be mentioned that the transition amplitude Q for 166Er leads
to about a factor of 2 larger B(E2 : 2+

γ → 0+
g ) value than

the observed one in the present calculation, in which the
model space employed is large enough. The RPA calculation
overestimates the B(E2) transition probability for the low-
lying γ vibration if the Nilsson potential is used as a mean field
and the simple pairing plus Q′′Q′′ force is used as a residual
interaction [50].

There are many RPA solutions in general, and it is not
always guaranteed that the collective solution exists. In some

FIG. 4. Excitation energies of the one-phonon precession modes
excited on high-K configurations. Calculated energies are denoted by
filled circles connected by solid lines; experimental data, by crosses.
Data are from Refs. [44,45].

cases, collective solutions split into two or more, whose
energies are close, and the collectivity is fragmented (the
Landau damping), or the character of the collective solution is
exchanged. Moreover, in the case of precession-like solutions,
the � = ±1 modes interact with each other, as shown in
Ref. [23]. In fact, when the deformation is changed, it is
found that the precession mode on the Kπ = 15+ configuration
disappears for ε2 > 0.250, and that on the Kπ = 14− splits
into two for ε2 > 0.245. Similar situations also occur when
changing the pairing gap parameters in a few cases. Apart
from these changes, the results are rather stable against the
change of the mean-field parameters. The fact that we have
been able to obtain collective solutions for all the cases listed
in Table I indicates that our choice of mean-field parameters
are reasonable if not the best.

Figure 4 presents the calculated and observed relative
excitation energies of the first rotational band member,
EI=K+1 − EI=K , i.e., the one-phonon precession energies.
Corresponding perpendicular moments of inertia, Eq. (39),
are shown in Fig. 5, where the contributions to the inertia from
protons and neutrons are also displayed. Our RPA calculation
reproduces the observed trend rather well in a wide range
of isomeric configurations, from four- to ten-quasiparticle
excitations. This is highly nontrivial because, as stressed in
Sec. III, we have no adjustable parameter in the RPA for
the calculation of the precession modes once the mean-field
vacuum state is given. With a closer look, however, one finds
deviations, especially at Kπ = 18−, 25+, 28−, and 29+. The
precession energies on them are smaller in comparison with
others, but the calculated ones are too small. Low calculated
energies correspond to large perpendicular moments of inertia
as clearly seen in Fig. 5. These four configurations contain
the proton high-j decoupled orbital (i.e., with � = ±1/2)
π [541]1/2− originating from the h9/2, whose decoupling
parameter is large. Occupation of such an orbital makes the
Inglis moment of inertia, which is given by Eq. (40) with
setting ωprec = 0, diverge due to the zero-energy excitation
from an occupied � = +1/2 quasiparticle state to an empty
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FIG. 5. Moments of inertia associated with the precession bands
built on high-K configurations. The RPA effective inertia (40) are
shown by filled circles connected by solid lines, the proton part of
them by filled squares connected by dotted lines, and the neutron part
by filled triangles connected by dashed lines. The crosses are values
extracted from the experimental spectra according to the simple
relation (39).

−1/2 state. The reason for a too large moment of inertia may
be overestimation of this effect for the proton contribution
in the calculation. The large effect of this πh9/2 orbital
on the moment of inertia has been pointed out also in
Refs. [25,51].

Except for the case of four configurations including the
π [541]1/2− orbital, the values of moments of inertia are
about 50–80 h̄2/MeV, which are smaller than the rigid-body
value, Jrig = 87.8 h̄2/MeV, and considerably larger than the
ground state value, Jgr = 28.3 h̄2/MeV. Here Jrig is calculated
by assuming the 178W nucleus as an ellipsoidal body with
ε2 = 0.240 and r0 = 1.2 fm, and Jgr by 3/E2+ . The pairing
gaps are already quenched in the calculation for more than
or equal to eight-quasiparticle (four-quasiprotons and four-
quasineutrons) configurations (K � 25+). The value 0.5 MeV
of the pairing gap used for two-quasiparticle configurations
is already small enough to make the moment of inertia quite
large. It is also noticed that the moment of inertia decreases
with increasing K, which is opposite to intuition and clearly
indicates the importance of the shell effect to the moment
of inertia [52]. In Refs. [25,44], the angular momentum
of the precession band is divided into the collective and
aligned ones; the inertia defined in Eq. (39) includes both
of them. It is shown that the collective inertia, in which
the effect of the aligned angular momentum of the high-j
decoupled orbital is removed, takes the value 50–60 h̄2/MeV
consistent with the other configurations. As shown in Fig. 5,
the proton contribution to the inertia is about 20–30% (except
for the four configurations above), which is considerably
smaller than Z/A but consistent with the calculated value
for the gR factor in the ground state rotational band (see
below).

As for the electromagnetic transitions in the rotational
bands built on high-K isomers, the strong coupling rotational
model [30] is utilized as a good description. The expressions

for B(E2) and B(M1) are well known:

B(E2 : I = K + 1 → K)rot

= 5

16π
e2Q2

0〈K + 1K20|KK〉2 (45)

≈ 15

16π

1

K
e2Q2

0, (46)

B(M1 : I = K + 1 → K)rot

= 3

4π
µ2

N (gK − gR)2K2〈K + 1K10|KK〉2 (47)

≈ 3

4π
µ2

N (gK − gR)2K, (48)

where, in the last lines, the Clebsch-Gordan coefficients are
replaced with their lowest order expressions in 1/K . Q0 and
(gK − gR) can be extracted from experiments; the sign of the
mixing ratio is necessary to determine the relative sign of
them. These quantities are calculated within the mean-field
approximation,

Q0 =
√

16π

5

1

e
〈Q20〉 =

〈
Z∑

a=1

(2x2 − y2 − z2)(π)
a

〉
, (49)

gK =
√

4π

3

〈µx〉
µN 〈Jx〉 , gR =

√
4π

3

〈µx〉gr

µN 〈Jx〉gr
, (50)

where 〈 〉 means that the expectation value is taken with respect
to the high-K configuration (γ = −120◦), e.g., 〈Jx〉 = K; and
〈 〉gr, with respect to the ground state rotational band (γ =
0◦). The latter expectation value is calculated by the cranking
prescription (15), with the same ε2 and with the even-odd
mass differences as pairing gaps. The value of gR is thus ωcr

dependent, but its dependence is weak at low frequencies, so
we take the value gR = 0.227 obtained at ωcr → 0, which is
much smaller than the standard value, Z/A = 0.416.

On the other hand, B(E2) and B(M1) are calculated by
Eqs. (23) and (24), respectively, in the RPA wobbling formal-
ism which is in the lowest order in 1/K . By equating these
expressions with those of the rotational model (46) and (48),
we define the corresponding quantities in the RPA formalism
by (K = 〈Jx〉)

(Q0)RPA =
√

16πK

15

1

e
〈[X†

prec,Q2 −1]〉, (51)

(gK − gR)RPA =
√

4π

3K

1

µN

〈[X†
prec, µ1 −1]〉. (52)

Only their relative phase is meaningful, and the overall phase
is chosen in such a way that (Q0)RPA is positive. We compare
calculated values of Q0 in the usual mean-field approximation
(49) and in the RPA formalism (51) in Fig. 6 for all high-K
configurations listed in Table I. These two calculated Q0’s
roughly coincide with each other, but appreciable deviations
are seen for the Kπ = 18−, 25+, 28−, and 29+ isomers. The
high-j decoupled orbital π [541]1/2− has a large prolate
quadrupole moment, so its occupation generally leads to a
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FIG. 6. Quadrupole moments Q0 for high-K configurations.
Those calculated by the RPA, Eq. (51), are denoted by filled circles
connected by solid lines; those by the mean-field approximation (49),
by filled triangles connected by dotted lines.

larger value of Q0. This is clearly seen in Fig. 6 even if ε2

is fixed in our calculation. See Ref. [53], for example, for
the polarization effect of this high-j orbital on Q0. Notice,
however, that the effect is even larger in the RPA calculation,
just as in the case of the excitation energy in Fig. 4. For the
34+ isomer, we have found a less collective RPA solution at a
lower energy, 560 keV, which has about 80% of the (Q0)RPA

value of the most collective one presented in the figure. The
reason why (Q0)RPA for the 34+ isomer is considerably small
is traced back to this fragmentation of the precession mode
in this particular case. This kind of fragmentation sometimes
happens in the RPA calculation.

In Fig. 7, we compare the effective (gK − gR) factors
extracted from the experimental data and those calculated
in two ways, Eq. (50) and Eq. (52). As for the observed
ones, they were determined [44,45] from the branching
ratios of available lowest transitions in respective rotational

FIG. 7. Effective (gK − gR) factors for high-K configurations.
Those calculated by the RPA, Eq. (52), are denoted by filled circles
connected by solid lines; those by the mean-field approximation (49),
by filled triangles connected by dotted lines. Those extracted from
the experimental data [44,45] are shown by crosses.

bands, by using the rotational model expressions (45) and
(47) with Q0 = 7.0 b being assumed. In this way, absolute
value |gK − gR| is obtained, and we assume that its sign is
determined by that of the calculated E2/M1 mixing ratio in the
RPA result. Accordingly, some care is necessary to compare
the experimentally extracted g factors with calculations. The
agreement between the observed and calculated ones is
semiquantitative, but the RPA result follows the observed trend
rather well. Compared to the RPA g factors, those calculated
by the mean-field approximation are poorer. Again, the two
calculations deviate appreciably for the Kπ = 18−, 25+, 28−,
and 29+ configurations, where the high-j decoupled orbital
π [541]1/2−, which has a large positive g factor, is occupied.
The difference between the mean-field (gK − gR) and (gK −
gR)RPA is further discussed in the next subsection by studying
the adiabatic limit of the precession mode in the RPA.

B. Interpretation of the result in the adiabatic limit

As demonstrated in the previous subsection, the RPA calcu-
lation reproduces the precession phonon energies without any
kind of adjustments. The electromagnetic properties obtained
through the RPA wobbling formalism are in good agreement
with those of the strong coupling rotational model, where the
quadrupole moments and the effective g factors are calculated
within the mean-field approximation. Since the rotational band
is described as multi-phonon excitations in the RPA wobbling
(or precession) model, it is not apparent that two models lead to
similar results for observables. Our results indicate, however,
that the RPA treatment of the rotational excitations is valid; it
especially gives a reliable microscopic framework for studying
the wobbling motion recently observed.

The reason why the RPA precession mode gives the
B(E2) and B(M1) similar to those calculated according to
the rotational model is inferred by taking the adiabatic limit
(ωprec → 0) of the RPA phonon creation operator. It has been
shown in Ref. [22] that the precession phonon can be explicitly
written up to the first order in ωprec as

X†
prec ≈ 1√

2K

(
J+ + ωprecJ cr

⊥ i�+
)

RPA

≈ 1√
2K

(J+ + K i�+)RPA. (53)

Here the angle operator �+ is defined by

�± = �y ± i�z, [h, i�k] = 1

J cr
⊥

Jk, (k = y, z), (54)

where J cr
⊥ is the Inglis cranking inertia and given from

the effective inertia (40) by setting ωprec = 0. These angle
operators possess desired properties,

〈[�k, Jl]〉 = iδkl . (55)

For the E2 transitions, the contribution of the �+ part in
Eq. (53) proves to be negligible if the harmonic oscillator
potential is taken as a mean field that is,

〈[X†
prec,Q2 −1]〉 ≈ 1√

2K
〈[J+,Q2 −1]〉 =

√
3

K
〈Q20〉, (56)
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which precisely means Q0 ≈ (Q0)RPA in the adiabatic
limit.

As for the M1 transitions, however, the �+ part also
contributes:

〈[X†
prec, µ1 −1]〉 ≈ 1√

2K
(〈[J+, µ1 −1]〉 + K 〈[i�+, µ1 −1]〉)

= 1√
K

(
〈µx〉 − K√

2
〈[µ1 −1, i�+]〉

)
, (57)

which gives (gK − gR) ≈ (gK − gR)RPA if we identify

gR ↔ ĝR ≡
√

2π

3

1

µN

〈[µ1 −1, i�+]〉. (58)

This identification is reasonable. The magnetic moment
operator µ1 −1 possesses a property of angular momentum
and is approximately proportional to J−. Then the expectation
value of the right-hand side of Eq. (58) is expected to depend
only weakly on the high-K configuration because of Eq. (55).
More precisely, if the operators J−,�+, and µ1 −1 are divided
into the neutron and proton parts like

J− = J
(π)
− + J

(ν)
− , �+ = �

(π)
+ + �

(ν)
+ ,

(59)

µ1 −1 ≈
√

3

8π
µN

(
g(π)J

(π)
− + g(ν)J

(ν)
−

)
,

then the following relation is derived,

ĝR ≈ g(π)J cr(π)
⊥ + g(ν)J cr(ν)

⊥
J cr(π)

⊥ + J cr(ν)
⊥

, (60)

because of 〈[J (τ )
− , i�

(τ )
+ ]〉 = 2J cr(τ )

⊥ /J cr
⊥ with J cr

⊥ = J cr(π)
⊥ +

J cr(ν)
⊥ (τ = π, ν). With a cruder estimate 〈[J (τ )

− , i�
(τ )
+ ]〉 ≈

2Nτ/A (τ = π, ν), one finds a constant gR ≈ ∑
τ Nτg

(τ )/A,
which gives a classical result, Z/A, by setting g(π) = 1 and
g(ν) = 0.

An approximate relation gR = J (π)/(J (π) + J (ν)), which
corresponds to Eq. (60) with g(π) = 1 and g(ν) = 0, has been
used for the ground state rotational band, i.e., the case of
collective rotations [54]. It seems, however, difficult to justify
a similar relation, gR = ZJ (π)/(ZJ (ν) + NJ (π)), which is
used in Ref. [44]. Thus, the “rotor g factor” gR is not a common
constant, but it also depends on the high-K configurations as
the intrinsic g factor gK does. To see how the approximate
relation (60) holds, we compare, in Fig. 8, the two calcu-
lated quantities, gK − (gK − gR)RPA and J (eff,π)

⊥ /(J (eff,π)
⊥ +

J (eff,ν)
⊥ ), where the cranking inertia J cr(τ )

⊥ , which diverges
when the π [541]1/2− orbital is occupied, is replaced with
the neutron or proton part of the effective inertia (40), see
also Fig. 5. As seen in the figure, these two quantities are in
good agreement with each other, again, except for the Kπ =
18−, 25+, 28−, and 29+ configurations, where the high-j
decoupled orbital is occupied and J (eff,π)

⊥ /(J (eff,π)
⊥ + J (eff,ν)

⊥ )
is very large. The excitation energies are underestimated for
these high-K configurations. Therefore, the proton moments
of inertia are overestimated for them; in fact the proton
contributions are considerably larger than the neutron ones in
these configurations, as shown in Fig. 5. Apart from these four
configurations, the deduced gR factors in Fig. 8 are similar to

FIG. 8. Comparison of deduced gR from two calculations. One
from gK − (gK − gR)RPA is denoted by filled circles connected by
solid lines; the quantity J (eff,π )

⊥ /(J (eff,π )
⊥ + J (eff,ν)

⊥ ), by filled squares
connected by dotted lines.

the ground state value, 0.227, though it is appreciably different
from the standard value, Z/A = 0.416. For reference, the
cranking moment of inertia for the ground state rotational band
calculated using the even-odd mass differences as pairing gaps
is J cr

⊥ = 22.7 h̄2/MeV (about 80% of the experimental value,
see the previous subsection). The proton contribution to it is
6.1 h̄2/MeV andJ (cr)(π)

⊥ /(J (cr)(π)
⊥ + J (cr)(ν)

⊥ ) = 0.269, which is
slightly larger but consistent with the calculated ground state
gR value, 0.227.

The above results indicate that the rotor gR should be
considered to depend also on the intrinsic configurations,
but the dependence is conspicuous only for those including
the high-j decoupled orbit, which has a large decoupling
parameter as well as a large g factor. The reason why the
effective (gK − gR) factors of the RPA calculation reproduce
the experimentally extracted ones better than those of the
mean-field g factors is inferred as follows. Since, as is well
known, the g factors of proton orbitals are much larger than
those of neutron orbitals, the amount of the proton contribution
is overwhelming for the mean value 〈µx〉 in comparison
with that for 〈Jx〉. Considering this fact together with the
overestimation of the proton moments of inertia mentioned
in the previous paragraph, it is likely that the calculated
values of gK (50) for the Kπ = 18−, 25+, 28−, and 29+
configurations with a proton high-j decoupled orbital are also
overestimated. In the mean-field calculation, the calculated
values of (gK − gR) for those configurations are thus relatively
large, because the common ground state gR factor (50) is used.
This trend can be seen also in the similar type of mean-field
calculations in Refs. [44,45]. (Note that different gR factors
are used in [44] and [45].) In the RPA calculation, however,
the rotor g factor is given by ĝR , (58) or (60), which is
overestimated for these four configurations (see Fig. 8). Thus,
the overestimation of two g factors may largely cancel out
in the resulting (gK − gR)RPA values, yielding a reasonable
agreement with the experimental data seen in Fig. 7.

The realistic mean field is not very different from the
harmonic oscillator potential, so the approximate equality (56)
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for the E2 operator is expected to hold in general cases. How-
ever, it is not very clear to what extent this equality holds. It is
a subtle problem of whether the adiabatic approximation holds
because the precession phonon energies are 200 to 600 keV,
which are not negligible compared to the quasiparticle ex-
citation energies. (Note that the pairing gap is quenched in
high-K conconfigurations.) In addition to the deviations caused
by the nonadiabatic effects, the adiabatic approximation itself
breaks down if one quasiparticle in a pair of high-j decoupling
orbits (�µ = ±1/2) is occupied, because the Inglis cranking
moment of inertia diverges due to the zero denominator. In such
cases, the present RPA calculation eventually overestimates
the moment of inertia, although it does not diverge. This
effect is also reflected in the calculated transition moments
(Q0)RPA and the effective g factors, which are rather different
from the values given by the mean fields. Whether the RPA
calculation gives reliable results for such cases where the
nonadiabatic effect is large is an important future issue.
The direct measurement of Q0 [i.e., B(E2) value] for the
precession band is desirable for this purpose.

V. CONCLUDING REMARKS

We have investigated the precession bands, i.e., the strongly
coupled rotational bands excited on high-K intrinsic con-
figurations, by means of the RPA, the microscopic theory
for vibrations. It is demonstrated that the observed trend of
the precession phonon energies in 178W is well reproduced
by the RPA calculation. This is highly nontrivial because
we have employed the minimal coupling interaction, which
is determined by the mean field and the vacuum state
based on it, and so there are no adjustable force parameters
whatsoever.

It is emphasized that this precession mode is related to the
three-dimensional motion of the angular momentum vector in
the principal axis frame (body-fixed frame), where a collective
rotation about the perpendicular axis is superimposed on the
large noncollective rotation about the symmetry axis (high-K
quasiparticle alignments). It has been shown that such a preces-
sion mode can be obtained by taking an axially symmetric limit
of more general wobbling motions in the microscopic frame-
work of the cranked-RPA theory. The unique feature of the
ideal wobbling motion is the triaxiality of deformation, which
means that the system can rotate collectively around all three
principal axes. It is, however, noticed that the single-particle
alignments are known to contribute equally well to high-spin
states in real nuclei. Actually, in the case of Lu, Hf nuclei,
where the wobbling phonon bands are observed, the πi13/2

quasiparticle alignments play important roles [11,12,20]. The
angular momentum along the main rotation (cranking) axis
is composed of the collective and the single-particle degrees
of freedom in the microscopic cranking formalism. Then the
axially symmetric limit of the non-collective rotation scheme
can be naturally taken from the case of triaxial deformation;
the portion of the single-particle alignments increases in the
course of taking the limit, and finally it describes the high-K
isomeric state (100% alignments). Although the unique feature
of the triaxial wobbling motion is lost in this limit, the

precession mode is still interesting because it corresponds to
the eigenmode of a nonuniform rotational motion of a classical
symmetric top. It gives us a hint as to how a nucleus rotates as
a three-dimensional object.

The electromagnetic properties, the E2 and M1 transition
probabilities, are also important for this kind of collective
excitation modes. We have shown that the calculated B(E2)
and B(M1) in terms of the RPA correspond to those given
by the conventional rotational model expressions, where the
intrinsic quadrupole moment and the effective g factors are
calculated within the mean-field approximation. The link
between the RPA and the rotational model expressions is given
in the adiabatic limit, where the precession phonon energy goes
to zero. Then the rotor gR factor is not a common factor any
more, but depends on the configurations, especially on the
occupation of the high-j decoupled proton orbital. Since the
RPA formalism includes this effect properly, the calculated
B(M1) values reproduce the experimentally deduced ones
rather well. It is, however, noticed that the adiabatic ap-
proximation is not necessarily a good approximation because
the precession energies are not very small; more crucially,
if a high-j decoupled orbital with � = 1/2 is occupied, the
approximation breaks down completely. Therefore, it is an
important future task to examine how the nonadiabatic effect
plays a role in the realistic cases. More experimental data,
especially B(E2) and B(M1) values, are necessary for this
purpose.

Finally, it is worth mentioning the similar RPA calculations
for the wobbling motion in the Lu and Hf region. We have
presented the result in recent papers [11,12]. Although we
obtained the RPA solutions, which have expected properties
of the wobbling motion, the calculated out-of-band over
in-band B(E2) ratios were smaller than the measured ones
by about a factor 2 to 3; this was the most serious problem
in our microscopic calculation. The measured ratio is almost
reproduced by the simple rotor model. Both the out-of-
band and in-band B(E2), which are vertical and horizontal
transitions discussed in Sec. II, are expressed in terms of
the intrinsic quadrupole moments Q20 and Q22 [30] [or e.g.,
deformation parameters (ε2, γ )], combined with the wobbling
phonon amplitudes. In the RPA wobbling formalism, on the
other hand, the in-band transition is calculated by the intrinsic
moments; while the out-of-band transition is calculated by the
RPA phonon transition in Eq. (23). Thus the underestimation
of the B(E2) ratio above means that the RPA phonon transition
amplitudes are smaller by about 50−70% than the expected
ones.

The adiabatic approximation can also be considered for the
case of the wobbling phonon [14]. Similar correspondence
between the intrinsic moments and the RPA transition ampli-
tudes, like Q0 ≈ (Q0)RPA in the present paper, is obtained with
a nontrivial modification: two amplitudes are related to the
operators Q

(−)
21 and Q

(−)
22 in Eq. (28), and B(E2) is calculated

by a linear combination of them with coefficients involving
the three moments of inertia. Therefore, incorrect coefficients
of amplitudes would make B(E2) values deviate considerably,
even though the adiabatic approximation is applicable and two
amplitudes are obtained in a good approximation. There is, of
course, another possibility that the adiabatic approximation
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itself is no longer valid. It should be noted that the wob-
bling excitation energies observed in Lu isotopes are about
200−500 keV, which are not small if translated to the transition
phonon energy in the laboratory frame, ωwob + ωcr; see
Eq. (38). In light of the present investigation, it may be
possible that the RPA approach yields the correct magnitude
of out-of-band transitions also for the case of the wobbling
mode, because it actually does in the case of the precession
phonon bands. Thus, it is a very important future issue to

examine whether the RPA wobbling formalism can describe
the observed B(E2) ratio in the Lu and Hf region.
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We apply the adiabatic self-consistent collective coordinate (ASCC) method to the multi-
O(4) model and study the collective mass (inertia function) of many-body tunneling motion.
Comparing the results with those obtained from the exact diagonalization, we show that
the ASCC method is capable of describing the gradual change of the excitation spectra
from an anharmonic vibration about a spherical shape to a doublet pattern associated with
a deformed double-well potential possessing oblate-prolate symmetry. It is found that the
collective mass is significantly increased by the quadrupole-pairing contribution to time-odd
components of the moving mean field. In contrast, the cranking (Inglis-Belyaev) mass based
on the constrained mean field, which ignores the time-odd components, is smaller than the
ASCC mass and fails to reproduce the exact spectra.

§1. Introduction

Microscopic theories of large-amplitude collective dynamics are a long-standing
and fundamental subject of nuclear structure physics.1)–3) Though many theories
have been proposed and tested with regard to a variety of phenomena involving
the large-amplitude collective motion,4)–35) many theoretical problems remain un-
solved.36)–38) In particular, the microscopic determination of the collective mass
(i.e., the inertia of the collective motion) has been the subject of much debate.

The Inglis-Belyaev cranking mass,1) which is derived using adiabatic perturba-
tion theory, has been widely used in the literature. It is known that values of the
cranking mass are systematically too low to account for experimental data for the
low-frequency Kπ = 0+ vibrational modes in deformed nuclei.39) The Inglis-Belyaev
cranking mass does not take account of the contributions of the residual interactions.
In particular, the effects of the time-odd components of the moving mean-field are
completely neglected. The importance of such time-odd contributions to the collec-
tive mass has been investigated in connection with the Thouless-Valatin moment of
inertia for rotational motion40),41) and in the context of the adiabatic time-dependent
Hartree-Fock (ATDHF) theory.5),8),11),12),17) It is also well known that, without tak-
ing into account the time-odd components, one cannot obtain the correct mass for the
center of mass motion of a nucleus. In Ref. 11), the contributions from the time-odd
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components were evaluated on the basis of the ATDHF theory, and its importance
was demonstrated for the isoscalar giant quadrupole modes. In this work, however,
the pairing correlations were not taken into account. It should be noted that, in the
time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for nuclei with superflu-
idity, the pairing correlations also cause the appearance of the time-odd components
in the moving mean field. To the best of our knowledge, however, there are very
few papers12) seeking to evaluate the time-odd effects of the pairing correlations on
large-amplitude collective dynamics. This is rather surprising, because we know that
the pairing correlations play crucial roles in low-energy nuclear collective dynamics
(see, e.g., Refs. 42) and 43)). For this reason, in this paper, we develop a microscopic
theory of large-amplitude collective motion in nuclei with superfluidity and study the
time-odd mean-field effects, associated with the pairing correlations, on the inertia
mass of collective motion.

We approach this goal on the basis of the self-consistent collective coordinate
(SCC) method10) and its extension to include the pairing correlations.21) This
method is based on the TDHFB theory, and it enables us to extract, in a fully
self-consistent manner, the optimum collective coordinate and the collective mo-
mentum from the huge dimensional TDHFB phase space. This feature of the SCC
method is in marked contrast to the widely used generator coordinate method,1) in
which the collective coordinate (generator coordinate) is chosen in a phenomeno-
logical manner. The SCC method has been successfully applied to various kinds of
low-frequency anharmonic vibration and high-spin rotational motion.44)–55) How-
ever, for genuine large-amplitude cases, such as the nuclear fission and the shape
coexistence phenomena,56)–58) a practical scheme for solving its basic equations does
not exist. A possible solution to this problem was proposed in Ref. 59), an adia-
batic approximation of the SCC method, called the adiabatic SCC (ASCC) method.
The ASCC method was first applied to the solvable multi-O(4) model and its fea-
sibility was tested.60) The multi-O(4) model can be regarded as a simplified ver-
sion of the pairing plus quadrupole (P+Q) interaction model,61)–63) and it has been
used as a testing ground of microscopic theories of nuclear collective motion.64)–67)

Recently, Kobayasi et al. applied the ASCC method to the oblate-prolate shape
coexistence phenomena in 68Se and 72Kr57),58) and extracted a collective path con-
necting the oblate and prolate equilibrium points.68) It was found that the collective
path runs through the triaxially deformed region, and it almost coincides with the
valley line in the deformation-energy surface obtained with the constrained Hartree-
Bogoliubov (HB) calculation. Similar studies have also been carried out by Almehed
and Walet.34),35) In those works, the P+Q interaction Hamiltonian was adopted.
In order to study the time-odd contributions to the collective mass, however, we
need to use a more general Hamiltonian, including, for instance, the quadrupole-
pairing interaction, because the time-odd contributions from the P+Q interactions
are known to vanish.8),12),69) The importance of the quadrupole-pairing interaction
in low-frequency collective excitations is well known (see references listed in Ref.
55)).

In this paper, we extend the multi-O(4) model to include a quadrupole-type
pairing interaction. Varying its strength within a range consistent with the exper-
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imental data for the ratio ∆2/∆0 of the quadrupole and monopole pairing gaps,55)

we evaluate its effect on the collective mass through the time-odd part of the mean
field.

This paper is organized as follows. In §2, the basic equations of the ASCC
method are briefly reviewed. In §3, we apply the ASCC method to a new version
of the multi-O(4) model with the quadrupole-type pairing interaction. Also there,
a numerical algorithm to solve the ASCC equations for the multi-O(4) model is
presented. In §4, we present results of the numerical analysis. Conclusions are given
in §5. A preliminary version of this work appears in Ref. 70).

§2. Basic equations of the ASCC method

The SCC method enables us to extract the “optimal” collective subspace from
the huge dimensional TDHFB space.10) The large amplitude collective motion takes
place in this collective subspace. In the case that the collective subspace is para-
metrized by a pair of collective variables (a single collective coordinate q and a
momentum p), it is called the “collective path”. In superconducting nuclei, we need
an additional set of collective variables to take into account the pairing rotational de-
grees of freedom, which recovers the particle number symmetry broken by the mean
field approximation.21) The pairing rotation is described by the particle-number
variable N and its canonically conjugate gauge angle ϕ. Thus, a TDHFB state vec-
tor on the collective path is parametrized by four collective variables, (q, p, ϕ, N).
In the SCC method, the large-amplitude collective motion is assumed to be approx-
imately decoupled from the non-collective degrees of freedom. This assumption is
called “the maximal decoupling condition of the collective submanifold”. The time
dependence of the TDHFB state on the collective path is then determined in terms
of this set of collective variables.

The time-dependent variational principle for the collective motion is given by

δ 〈φ(q, p, ϕ, N)| i ∂

∂t
− Ĥ |φ(q, p, ϕ, N)〉 = 0, (2.1)

where |φ(q, p, ϕ, N)〉 represents a TDHFB state vector on the collective path, and
the variation is taken over all possible deviations around it. The intrinsic state
|φ(q, p, N)〉 in the gauge space (associated with the pairing rotation) is defined by

|φ(q, p, ϕ, N)〉 = e−iϕN̂ |φ(q, p, N)〉 . (2.2)

These four collective variables are required to satisfy the following canonical variable
conditions:

〈φ(q, p, N)| i ∂

∂q
|φ(q, p, N)〉 = p, 〈φ(q, p, N)| ∂

i∂p
|φ(q, p, N)〉 = 0, (2.3)

〈φ(q, p, N)| N̂ |φ(q, p, N)〉 = N ≡ N0 + n, 〈φ(q, p, N)| ∂

i∂N
|φ(q, p, N)〉 = 0. (2.4)

Here, N0 denotes the number of particles in the system (we assume a single kind
of fermion, for simplicity), and the difference n = N − N0 represents the dynamical
number fluctuation.
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We now apply the adiabatic approximation to the TDHFB state |φ(q, p, N)〉 by
assuming that the collective momentum and the number fluctuation are small and
that the moving state |φ(q, p, N)〉 is close to |φ(q)〉 = |φ(q, p = 0, N = N0)〉. Using
the fact that an arbitrary TDHFB state vector can be constructed from a given TD-
HFB state vector by a unitary transformation (generalized Thouless theorem),1),2)

we construct the moving TDHFB state vector |φ(q, p, N)〉 from the static state vector
|φ(q)〉 in the form

|φ(q, p, N)〉 = eiĜ(q,p,N) |φ(q)〉 = eipQ̂(q)+inΘ̂(q)|φ(q)〉, (2.5)

where Q̂(q) and Θ̂(q) are one-body operators. Substituting the moving state vector
|φ(q, p, N)〉 of this form into Eqs. (2.3) and (2.4), and comparing the coefficients of
the first order in p and n, we obtain

〈φ(q)| [Q̂(q), P̂ (q)] |φ(q)〉 = i, (2.6)

〈φ(q)| [Θ̂(q), N̂ ] |φ(q)〉 = i, (2.7)

where P̂ (q) is the local shift operator of the collective coordinate q, defined by

P̂ (q) |φ(q)〉 = i
∂

∂q
|φ(q)〉 . (2.8)

The other commutators, such as 〈φ(q)| [Q̂(q), N̂ ] |φ(q)〉 and 〈φ(q)| [N̂ , P̂ (q)] |φ(q)〉,
are zero.

The collective Hamiltonian is also expanded up to second order in p, and we
have

H(q, p, N) ≡ 〈φ(q, p, N)| Ĥ |φ(q, p, N)〉
= V (q) +

1
2
B(q)p2 + λ(q)n, (2.9)

where

V (q) = H(q, p, N)|p=0,N=N0 = 〈φ(q)| Ĥ |φ(q)〉 , (2.10)

B(q) =
∂2H
∂p2


p=0,N=N0

= −〈φ(q)| [[Ĥ, Q̂(q)], Q̂(q)] |φ(q)〉 , (2.11)

λ(q) =
∂H(q, p, N)

∂N


p=0,N=N0

= 〈φ(q)| [Ĥ, iΘ̂(q)] |φ(q)〉 . (2.12)

The collective potential V (q) embodies the static properties of the collective path,
while the mass function B(q) represents the dynamical properties, i.e., the inertia of
the collective motion. The quantity λ(q) is regarded as the locally defined chemical
potential.

The basic equations of the ASCC method are obtained by performing an adi-
abatic expansion of the equation of the collective path (2.1) with respect to the
collective momentum p and requiring the variations to be zero at each order in p.
At zero-th order, we obtain the moving-frame HFB equation,

δ 〈φ(q)| ĤM (q) |φ(q)〉 = 0, (2.13)



Effects of Time-Odd Mean Field on Large Amplitude Collective Dynamics 571

where

ĤM (q) = Ĥ − λ(q)N̂ − ∂V

∂q
Q̂(q) (2.14)

is the moving-frame Hamiltonian.
The first and second orders of the adiabatic expansion of Eq. (2.1) yield the local

harmonic equations (also called the moving-frame quasiparticle RPA equation).59)

They are composed of the following two equations:

δ 〈φ(q)| [ĤM (q), Q̂(q)] − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (2.15)

δ 〈φ(q)|
[
ĤM (q),

1
i
P̂ (q)

]
− C(q)Q̂(q) − 1

2B(q)

[[
ĤM (q),

∂V

∂q
Q̂(q)

]
, Q̂(q)

]

− ∂λ

∂q
N̂ |φ(q)〉 = 0, (2.16)

where C(q) represents the local stiffness defined on the collective path,

C(q) =
∂2V

∂q2
+

1
2B(q)

∂B

∂q

∂V

∂q
. (2.17)

The collective variables (q, p) and the collective Hamiltonian H(q, p, N) are deter-
mined by solving the ASCC equations, (2.13), (2.15), and (2.16).

§3. Application of the ASCC to the multi-O(4) model

In this section, we present an explicit form of the ASCC equations for the multi-
O(4) model Hamiltonian. The ASCC equations take a very simple form for the case
of separable interactions. A numerical algorithm for finding a collective path is also
explained.

3.1. Multi-O(4) model

The multi-O(4) model Hamiltonian has been used to test the validity of various
kinds of theories of nuclear collective motion.64)–67) In this paper, we extend this
model Hamiltonian such that it includes the quadrupole-type pairing interaction in
addition to the monopole-pairing interaction. We write the model Hamiltonian in
the following form:

Ĥ = ĥ0 − 1
2
G0(Â†Â + ÂÂ†) − 1

2
G2(B̂†B̂ + B̂B̂†) − 1

2
χD̂2, (3.1)

ĥ0 =
∑

j

e0
jN̂j .

The first term on the right-hand side of Eq. (3.1) is the single-particle Hamiltonian,
giving a spherical single-particle energy e0

j for each j-shell which possesses (2Ωj)-
fold degeneracy (2Ωj = 2j + 1). The other terms represent the residual two-body
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interactions: the monopole-pairing interaction, the quadrupole-type pairing interac-
tion, and the quadrupole-type particle-hole interaction. Their interaction strengths
are denoted by G0, G2, and χ, respectively. The operators appearing in this model
Hamiltonian are defined in terms of the nucleon creation and the annihilation oper-
ators (c†jm, cjm) by

Â† =
∑

j

Â†
j , B̂† =

∑
j

djB̂
†
j , N̂ =

∑
j

N̂j , D̂ =
∑

j

djD̂j , (3.2)

where

Â†
j =

∑
m>0

c†jmc†j−m, B̂†
j =

∑
m>0

σjmc†jmc†j−m, (3.3)

N̂j =
∑
m

c†jmcjm, D̂j =
∑
m

σjmc†jmcjm, (3.4)

with

σjm =
{

1 |m| < Ωj/2,
−1 |m| > Ωj/2.

(3.5)

Here, the operators Â and N̂ are the monopole-pair and the number operators,
while B̂ and D̂ represent the simplified quadrupole-pair and quadrupole particle-hole
operators, respectively. These operators contain the factors djσjm, which simulate
the basic property of the quadrupole matrix elements 〈jm| r2Y20 |jm〉 in a schematic
way. Although they are not real quadrupole operators, we call them “quadrupole” for
brevity. Exact solutions (eigen-energies and eigen-functions) of the multi-O(4) model
are easily obtained by means of the matrix diagonalization method (see Appendix
A).

3.2. Quasiparticle representation

To solve the ASCC equations, it is convenient to use the quasiparticle basis
locally defined with respect to the state |φ(q)〉 on the collective path. For the multi-
O(4) model, the Bogoliubov transformation to the quasiparticle creation and anni-
hilation operators, a†i (q) and ai(q), satisfying the vacuum condition, ai(q) |φ(q)〉 = 0,
is written (

a†i (q)
a−i(q)

)
≡
(

ui(q) −vi(q)
vi(q) ui(q)

)(
c†i
c−i

)
. (3.6)

Here, the indices ±i represent the set of angular momentum quantum numbers
(j,±m).

Using the quasiparticle bilinear operators

A†
i (q) = a†i (q)a

†
−i(q), (3.7)

N i(q) = a†i (q)ai(q) + a†−i(q)a−i(q), (3.8)
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the nucleon bilinear operators Â†
i and N̂i are rewritten as

Â†
i = ui(q)vi(q) + u2

i (q)A
†
i (q) − v2

i (q)Ai(q) − ui(q)vi(q)N i(q), (3.9)

N̂i = 2v2
i (q) + 2ui(q)vi(q)(A

†
i (q) + Ai(q)) + (u2

i (q) − v2
i (q))N i(q). (3.10)

The quasiparticle bilinear operators A†
i (q), Ai(q), and N i(q) satisfy the following

commutation relations: [
Ai(q), A

†
i′(q)

]
= δii′(1 − N i(q)), (3.11)[

N i(q), A
†
i′(q)

]
= 2δii′A

†
i′(q). (3.12)

The particle number N0, the quadrupole deformation D(q), the monopole-pairing
gap ∆0(q), and the quadrupole-pairing gap ∆2(q) are given by the expectation values
with respect to the mean-field state vector |φ(q)〉:

N0 = 〈φ(q)| N̂ |φ(q)〉 = 2
∑
i>0

v2
i (q), (3.13)

D(q) = 〈φ(q)|D̂|φ(q)〉 = 2
∑
i>0

diσiv
2
i (q), (3.14)

∆0(q) = G0 〈φ(q)| Â† |φ(q)〉 = G0

∑
i>0

ui(q)vi(q), (3.15)

∆2(q) = G2 〈φ(q)| B̂† |φ(q)〉 = G2

∑
i>0

diσiui(q)vi(q). (3.16)

Below, we often omit the q-dependence in expressions, for example, writing Ai(q)
as Ai. It should be kept in mind that all of these quantities are locally defined with
respect to the quasiparticle vacuum |φ(q)〉 and depend on q.

3.3. ASCC equations for separable interactions

The ASCC equations can be easily solved when the effective interactions in
the microscopic Hamiltonian are separable. We can always write such a separable
Hamiltonian in the following form:

Ĥ = ĥ0 − 1
2

∑
s

κsF̂
(+)
s F̂ (+)

s +
1
2

∑
s

κsF̂
(−)
s F̂ (−)

s , (3.17)

where

F̂ (±)
s ≡ (F̂s ± F̂ †

s )/2 = ±F̂ (±)†
s . (3.18)

The superscripts (±) indicate the Hermitian or anti-Hermitian nature of the bilinear
operator F̂ . The multi-O(4) model Hamiltonian under consideration contains three
kinds of residual interactions. The indices s =1, 2, and 3 on the operators F̂ and
the interaction strengths κs indicate the monopole-pairing, the quadrupole-pairing
and the quadrupole particle-hole interactions, respectively: F̂s=1 = A, F̂s=2 = B,
F̂s=3 = D̂, κ1 = 2G0, κ2 = 2G2, and κ3 = χ.
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For the separable Hamiltonian, it is possible to directly derive the ASCC equa-
tions from the time-dependent variational principle,

δ 〈φ(t)| i ∂

∂t
− ĥ(t) |φ(t)〉 = 0, (3.19)

for the self-consistent mean-field Hamiltonian defined by

ĥ(t) = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(t)| F̂ (+)

s |φ(t)〉 +
∑

s

κsF̂
(−)
s 〈φ(t)| F̂ (−)

s |φ(t)〉 . (3.20)

Here, the exchange terms are omitted as is usually done for the separable interac-
tions.61),63) The second and third terms on the right-hand side of ĥ(t) represent the
time-even and time-odd components, respectively. Note that the expectation values
〈φ(t)| F̂ (−)

s |φ(t)〉 are purely imaginary, indicating that the third term is odd under
time reversal. Substituting |φ(t)〉 = eipQ̂(q) |φ(q)〉 and expanding Eq. (3.19) up to
second order in p, we obtain the ASCC equations for the separable Hamiltonian,

δ 〈φ(q)| ĥM (q) |φ(q)〉 = 0, (3.21)

δ 〈φ(q)| [ĥM (q), Q̂(q)] −
∑

s

f
(−)
Q,s F̂ (−)

s − 1
i
B(q)P̂ (q) |φ(q)〉 = 0, (3.22)

δ 〈φ(q)|
[
ĥM (q),

1
i
B(q)P̂ (q)

]
−
∑

s

f
(+)
P,s (q)F̂ (+)

s − B(q)C(q)Q̂(q) −
∑

s

f
(+)
R,s (q)F̂ (+)

s

+
∑

s

[F̂ (−)
s , (ĥ(q) − λ(q)N̂)A]f (−)

Q,s − fN (q)N̂ |φ(q)〉 = 0,

(3.23)

where ĥM (q) denotes the self-consistent mean-field Hamiltonian in the moving frame,
defined by

ĥM (q) = ĥ(q) − λ(q)N̂ − ∂V

∂q
Q̂(q), (3.24)

with

ĥ(q) = ĥ0 −
∑

s

κsF̂
(+)
s 〈φ(q)| F̂ (+)

s |φ(q)〉 . (3.25)

The quantity (ĥ(q)−λ(q)N̂)A represents the A†
i and Ai parts of the operator in the

parentheses, and we have

f
(−)
Q,s (q) = −κs 〈φ(q)| [F̂ (−)

s , Q̂(q)] |φ(q)〉 , (3.26)

f
(+)
P,s (q) = κs 〈φ(q)| [F̂ (+)

s ,
1
i
B(q)P̂ (q)] |φ(q)〉 , (3.27)

f
(+)
R,s (q) = −1

2
κs 〈φ(q)| [[F̂ (+)

s , (ĥ(q) − λ(q)N̂)A], Q̂(q)] |φ(q)〉 , (3.28)

fN (q) = B(q)
∂λ

∂q
. (3.29)
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Note that all matrix elements are real, so that 〈φ(q)| F̂ (−)
s |φ(q)〉 = 0. In the above

equations, the quantities f
(−)
Q,s represent the effects of the time-odd components of

the mean field, which introduce important effects, discussed in the next section.
The above ASCC equations can be obtained also by inserting the expression

(3.17) into Eqs. (2.15) and (2.16). In this derivation, the exchange terms of the
residual interactions should be omitted.61),63) This implies that here we adopt the
Hartree-Bogoliubov (HB) approximation in place of the HFB approximation.

3.4. The moving-frame HB equation

The moving-frame HB equation (3.21) at a given q determines the static TDHB
state, |φ(q)〉. If we know the operator Q̂(q), we can solve this equation using the
gradient method. The quantities λ(q) and ∂V

∂q are regarded as Lagrange multipliers,
which are determined by the following two constraints. The first constraint is placed
on the particle number:

〈φ(q)| N̂ |φ(q)〉 = N0. (3.30)

This constraint specifies the location in particle number space. The second constraint
is

〈φ(q)| Q̂(q − δq) |φ(q)〉 = δq, (3.31)

which can be readily derived from the canonical variable conditions,

〈φ(q)| Q̂(q) |φ(q)〉 = 0 (3.32)

and

〈φ(q)| ∂Q̂

∂q
(q) |φ(q)〉 = −1. (3.33)

Equation (3.31) is the condition on the collective coordinate q that the “distance”
from |φ(q − δq)〉 to |φ(q)〉 be equal to δq. In numerical calculations, the quantity
δq corresponds to the mesh size of the discretized collective path. Provided that
Q̂(q − δq) and Q̂(q) are known, we can solve the moving-frame HB equation. Be-
cause the variation in Eq. (3.21) is taken with respect to arbitrary creations of two
quasiparticles,

δ |φ(q)〉 = a†ia
†
j |φ(q)〉 , (3.34)

the two-quasiparticle terms proportional to A†
i and Ai in the moving-frame Hamil-

tonian ĥM (q) should vanish.
We solve the moving-frame HB equation with the above two constraints by

means of an algorithm analogous to the gradient method.1) Details of this algorithm
are given in Appendix B.

3.5. The local harmonic equations

In order to obtain the collective path, we need to solve the local harmonic equa-
tions, (3.22) and (3.23), and find the operators Q̂(q) and P̂ (q) which determine the
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direction of the collective path in the TDHB space. In solving the local harmonic
equations, we note that the moving-frame Hamiltonian ĥM (q) is expressed in terms
of the quasiparticle bilinear operators A†

i , Ai, and N i in the following manner:

ĥM (q) = V (q) − λ(q)N0 +
∑
i>0

Ei(q)N i, (3.35)

F̂ (+)
s = 〈φ(q)| F̂ (+)

s |φ(q)〉 + F̂
(+)
A,s + F̂

(+)
B,s

= 〈φ(q)| F̂ (+)
s |φ(q)〉 +

∑
i>0

F
(+)
A,s (i)(A†

i + Ai) +
∑
i>0

F
(+)
B,s (i)N i, (3.36)

F̂ (−)
s =

∑
i>0

F
(−)
A,s (i)(A†

i − Ai). (3.37)

Here, we have the following:

F
(+)
A,1 (i) =

1
2
(u2

i − v2
i ), F

(+)
A,2 (i) =

1
2
diσi(u2

i − v2
i ), F

(+)
A,3 (i) = 2diσiuivi, (3.38)

F
(−)
A,1 (i) = −1

2
, F

(−)
A,2 (i) = −1

2
diσi, F

(−)
A,3 (i) = 0, (3.39)

F
(+)
B,1 (i) = −uivi, F

(+)
B,2 (i) = −diσiuivi, F

(+)
B,3 (i) = diσi(u2

i − v2
i ), (3.40)

Ei(q) = (u2
i − v2

i ) (ei − χdiσiD(q) − λ(q)) − 2(∆0(q) + diσi∆2(q))uivi. (3.41)

These quantities are determined by solving the moving-frame HB equation, (3.21).
For later convenience, we define the following quasiparticle bilinear operator:

R̂(+)
s ≡ [F̂ (+)

B,s , (ĥ(q) − λ(q)N̂)A] = 2
∑
i>0

R(+)
s (i)(A†

i − Ai), (3.42)

with

R(+)
s (i) =

{
2ui(q)vi(q)(ei − χdiσiD(q) − λ(q))

− (∆0(q) + diσi∆2(q))(u2
i (q) − v2

i (q))
}
F

(+)
B,s (i). (3.43)

The infinitesimal generators can be written as

Q̂(q) =
∑
i>0

Qi(A
†
i + Ai), (3.44)

P̂ (q) = i
∑
i>0

Pi(A
†
i − Ai). (3.45)

We can express the matrix elements Qi and Pi in terms of f
(−)
Q,s , f

(+)
P,s , f

(+)
R,s and fN

by substituting Eqs. (3.44) and (3.45) into Eqs. (3.22) and (3.23):

Qi =
2Ei

(2Ei)2 − ω2

∑
s

F
(−)
A,s (i)f (−)

Q,s +
1

(2Ei)2 − ω2

∑
s

(F (+)
A,s (i)f (+)

PR,s + NifN ), (3.46)

Pi =
2Ei

(2Ei)2 − ω2

∑
s

(F (+)
A,s (i)f (+)

PR,s + NifN ) +
ω2

(2Ei)2 − ω2

∑
s

F
(−)
A,s (i)f (−)

Q,s , (3.47)
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where

Ni = 2ui(q)vi(q), (3.48)

f
(+)
PR,s = f

(+)
P,s (q) + f

(+)
R,s (q), (3.49)

ω =
√

B(q)C(q). (3.50)

Substituting Eqs. (3.42), (3.44) and (3.45) into Eqs. (3.26), (3.27) and (3.28), we
also have the following relations:

f
(−)
Q,s = 2κs

∑
i>0

F
(−)
A,s (i)Qi, (3.51)

f
(+)
PR,s = 2κs

∑
i>0

{
F

(+)
A,s (i)Pi + R(+)

s (i)Qi

}
. (3.52)

Note that f
(−)
Q,3 = 0. From the canonical variable condition, the orthogonality of the

collective and number fluctuation modes is required:

〈φ(q)|[N̂, P̂ (q)]|φ(q)〉 = 2i
∑
i>0

NiPi = 0. (3.53)

Eliminating Qi and Pi from Eqs. (3.51), (3.52), and (3.53) with the use of Eqs. (3.46)
and (3.47), we finally obtain the dispersion equation

S(ω2) · f = 0, (3.54)

for the quantity f = f(q) = {f (−)
Q,1 , f

(−)
Q,2 , f

(+)
PR,1, f

(+)
PR,2, f

(+)
PR,3, fN}. Here S = {Sij} is

a 6 × 6 matrix whose elements are given by

S11 = 4G0S
(1)(F (−)

A,1 , F
(−)
A,1 ) − 1, S12 = 4G0S

(1)(F (−)
A,1 , F

(−)
A,2 ), (3.55a)

S13 = 4G0S
(2)(F (−)

A,1 , F
(+)
A,1 ), S14 = 4G0S

(2)(F (−)
A,1 , F

(+)
A,2 ), (3.55b)

S15 = 4G0S
(2)(F (−)

A,1 , F
(+)
A,3 ), S16 = 4G0S

(2)(F (−)
A,1 , N), (3.55c)

S21 = 4G2S
(1)(F (−)

A,2 , F
(−)
A,1 ), S22 = 4G2S

(1)(F (−)
A,2 , F

(−)
A,2 ) − 1, (3.56a)

S23 = 4G2S
(2)(F (−)

A,2 , F
(+)
A,1 ), S24 = 4G2S

(2)(F (−)
A,2 , F

(+)
A,2 ), (3.56b)

S25 = 4G2S
(2)(F (−)

A,2 , F
(+)
A,3 ), S26 = 4G2S

(2)(F (−)
A,2 , N), (3.56c)

S31 = 4G0{S(1)(R(+)
1 , F

(−)
A,1 ) + ω2S(2)(F (+)

A,1 , F
(−)
A,1 )}, (3.57a)

S32 = 4G0{S(1)(R(+)
1 , F

(−)
A,2 ) + ω2S(2)(F (+)

A,1 , F
(−)
A,2 )}, (3.57b)

S33 = 4G0{S(1)(F (+)
A,1 , F

(+)
A,1 ) + S(2)(R(+)

1 , F
(+)
A,1 )} − 1, (3.57c)

S34 = 4G0{S(1)(F (+)
A,1 , F

(+)
A,2 ) + S(2)(R(+)

1 , F
(+)
A,2 )}, (3.57d)

S35 = 4G0{S(1)(F (+)
A,1 , F

(+)
A,3 ) + S(2)(R(+)

1 , F
(+)
A,3 )}, (3.57e)

S36 = 4G0{S(1)(F (+)
A,1 , N) + S(2)(R(+)

1 , N)}, (3.57f)
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S41 = 4G2{S(1)(R(+)
2 , F

(−)
A,1 ) + ω2S(2)(F (+)

A,2 , F
(−)
A,1 )}, (3.58a)

S42 = 4G2{S(1)(R(+)
2 , F

(−)
A,2 ) + ω2S(2)(F (+)

A,2 , F
(−)
A,2 )}, (3.58b)

S43 = 4G2{S(1)(F (+)
A,2 , F

(+)
A,1 ) + S(2)(R(+)

2 , F
(+)
A,1 )}, (3.58c)

S44 = 4G2{S(1)(F (+)
A,2 , F

(+)
A,2 ) + S(2)(R(+)

2 , F
(+)
A,2 )} − 1, (3.58d)

S45 = 4G2{S(1)(F (+)
A,2 , F

(+)
A,3 ) + S(2)(R(+)

2 , F
(+)
A,3 )}, (3.58e)

S46 = 4G2{S(1)(F (+)
A,2 , N) + S(2)(R(+)

2 , N)}, (3.58f)

S51 = 2χ{S(1)(R(+)
3 , F

(−)
A,1 ) + ω2S(2)(F (+)

A,3 , F
(−)
A,1 )}, (3.59a)

S52 = 2χ{S(1)(R(+)
3 , F

(−)
A,2 ) + ω2S(2)(F (+)

A,3 , F
(−)
A,2 )}, (3.59b)

S53 = 2χ{S(1)(F (+)
A,3 , F

(+)
A,1 ) + S(2)(R(+)

3 , F
(+)
A,1 )}, (3.59c)

S54 = 2χ{S(1)(F (+)
A,3 , F

(+)
A,2 ) + S(2)(R(+)

3 , F
(+)
A,2 )}, (3.59d)

S55 = 2χ{S(1)(F (+)
A,3 , F

(+)
A,3 ) + S(2)(R(+)

3 , F
(+)
A,3 )} − 1, (3.59e)

S56 = 2χ{S(1)(F (+)
A,3 , N) + S(2)(R(+)

3 , N)}, (3.59f)

S61 = ω2S(2)(N, F
(−)
A,1 ), S62 = ω2S(2)(N, F

(−)
A,2 ), (3.60a)

S63 = S(1)(N, F
(+)
A,1 ), S64 = S(1)(N, F

(+)
A,2 ), (3.60b)

S65 = S(1)(N, F
(+)
A,3 ), S66 = S(1)(N, N). (3.60c)

Here, the quantities S(1) and S(2) are defined by

S(1)(X, Y ) =
∑
i>0

2Ei(q)
(2Ei(q))2 − ω2(q)

XiYi, (3.61)

S(2)(X, Y ) =
∑
i>0

1
(2Ei(q))2 − ω2(q)

XiYi. (3.62)

The unknown quantities in the dispersion equation (3.54) are f(q) and ω2(q). The
squared frequency ω2(q) can be determined by the condition that the matrix S(ω2(q))
has no inverse:

detS(ω2(q)) = 0. (3.63)

In the case that there are many solutions ω2(q) satisfying this equation, we choose
the smallest of these (including negative values) as the collective mode. Once the
value of ω2(q) and, consequently, the matrix S(q) is specified, the direction of the
vector f(q) is found. Then, its absolute value is fixed by the normalization condition
for the collective mode, i.e.,

〈φ(q)|[Q̂(q), P̂ (q)]|φ(q)〉 = 2i
∑
i>0

Qi(q)Pi(q) = i. (3.64)
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Note that we can use an arbitrary scale for the collective coordinate q. This means
that we can set B(q) = 1 on the collective path without loss of generality. We adopt
this choice. Then, ω2(q) is identically the curvature of the collective potential:

ω2(q) =
∂2V (q)

∂q2
. (3.65)

The choice of the sign of Q̂(q) and P̂ (q) is still arbitrary, however. This sign specifies
the “rear” and “front” of the one-dimensional collective path.

3.6. Numerical algorithm for solving the ASCC equations

The infinitesimal generators Q̂(q) and P̂ (q), which depend on the quasiparticle
vacuum |φ(q)〉, represent a solution of the local harmonic equations, while the quasi-
particle vacuum |φ(q)〉, which depends on Q̂(q), is a solution of the moving-frame HB
equation. Thus, the set of ASCC equations requires self-consistency and an iterative
solution. In fact, we need a double iteration for each value of q, because the gradient
method itself used to solve the moving-frame HB equation is an iterative procedure.
The numerical algorithm utilized in the present work is summarized as follows:
Step 0: HB state (starting point)

Solve the static HB equation and choose one of the solutions. Then, solve the
quasiparticle RPA equations and select the collective excitation mode that has
the lowest frequency, ω(q0). This provides the solution of the ASCC equations at
q = q0.

Step 1: Initial setting
Assume that we have solved the ASCC equations at a position q at which we have
the self-consistent generator Q̂(q) and the state |φ(q)〉.
Set Q̂(0)(q+δq) = Q̂(q) as the initial guess for Q̂(q+δq), and then start the follow-
ing iteration to find the self-consistent solution at q + δq. [Below, the superscript
(n) indicates the number of iterations.]

Step 2: Moving-frame HB equation
Using the operator Q̂(n−1)(q + δq) (n ≥ 1), solve the moving-frame HB equation
at q + δq,

δ
〈
φ(n)(q + δq)

∣∣∣ Ĥ − λ(n)N̂ − µ(n)Q̂(n−1)(q + δq)
∣∣∣φ(n)(q + δq)

〉
= 0. (3.66)

Here, the constraints Eqs. (3.30) and (3.31) determine the Lagrange multipliers,
λ(n) and µ(n). We use the gradient method described in Appendix B to solve Eq.
(3.66). This determines the moving-frame HB state,

∣∣φ(n)(q + δq)
〉
.

Step 3: Local harmonic equation
Using

∣∣φ(n)(q + δq)
〉

with the Lagrange multipliers λ(q+δq) = λ(n), solve the local
harmonic equations (3.22) and (3.23). This determines the infinitesimal generator
Q̂(n)(q + δq).
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Step 4: Self-consistency
Updating the infinitesimal generator Q̂(n)(q + δq), return to Step 2, and repeat
Steps 2 and 3 until all quantities at q + δq converge.

Step 5: Repetition
Change q to q + δq and return to Step 1.

Carrying out these iterations, Steps 1-5, we obtain the collective path starting
from the HB equilibrium point in one direction (q > q0). The collective path in the
opposite direction is obtained by changing the sign of δq and repeating the same
procedure, Steps 1-5. In this way, we determine the self-consistent collective path
passing through the HB equilibrium point.

We should give an additional remark concerning Step 3. When we solve the
local harmonic equations, we set f

(−)
Q,1 (q) = 0 in the iteration procedure to avoid

a numerical instability problem.70) We have confirmed that the solutions obtained
under this assumption satisfy the required self-consistency. Quite recently, we have
found that this prescription is valid generally. This recent progress in the ASCC
method, including the proof of this validity, will be reported in another paper.72)

The solution of the ASCC equations yields the classical collective Hamiltonian
(for a constant particle number N = N0):

H(q, p) =
1
2
p2 + V (q). (3.67)

We then obtain the quantum collective Hamiltonian by carrying out the canonical
quantization H(q, p) → H

(
q, 1

i
∂
∂q

)
. Note that, in this quantization step, there is no

ambiguity associated with the ordering of q and p, because the coordinate scale is
chosen such that the inverse mass function is unity, i.e., B(q) = 1.

§4. Numerical calculations and discussion

4.1. Details of the numerical calculation

We solve the ASCC equations following the algorithm described in the previous
section and determine the collective path embedded in the TDHB phase space. In
order to investigate the effects of the quadrupole-pairing interaction on the large-
amplitude collective dynamics, we use the same parameters as in Ref. 60), except
for the quadrupole-pairing strength, G2. We consider a system composed of three
shells, with the spherical single-particle energies e0

j1
= 0, e0

j2
= 1.0, e0

j3
= 3.5, the

pair degeneracies Ωj1 = 14, Ωj2 = 10, Ωj3 = 4, and the single-particle quadrupole
moments dj1 = 2, dj2 = dj3 = 1 for each shell. One kind of fermion is considered
in this model, and the number of particles N0 is set to 28. This value is half of
the total number of shell model states. The quadrupole particle-hole interaction
strength χ is fixed to 0.04, while three values, 0.20, 0.16 and 0.14, are employed
for the monopole pairing interaction strength G0. For each case, the effects of the
quadrupole-pairing interaction are studied for three values of its strength G2, 0.00,
0.02 and 0.04. This parameter range is adopted so that the calculated ratios of the
monopole and quadrupole pairing gaps are approximately equal to the value found
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in realistic analysis.55) The HB calculation yields a single spherical minimum for
the G0 = 0.20 case and two local minima, corresponding to the oblate and prolate
equilibrium shapes, for the G0 = 0.16 and 0.14 cases. For the latter cases, we present
below the results obtained by starting from the prolate equilibrium point (D > 0).
Of course, we obtain the identical collective path even if we start the calculation
from the oblate equilibrium point (D < 0). Note that the multi-O(4) Hamiltonian
possesses “parity” symmetry (invariance under the transformation σjm → −σjm,
that is, D̂ → −D̂ and B̂ → −B̂). Therefore, all the quantities are either even or odd
functions of the quadrupole deformation parameter D.

4.2. Collective path and collective potential

A nice property of the multi-O(4) model is that by changing the ratio G0/χ, we
can simulate the phase transition in a finite quantum system from a single-well to a
double-well potential. This is analogous to the nuclear shape phase transition and
shape coexistence phenomena. The collective potential V and the pairing gaps ∆0

and ∆2 are displayed in Figs. 1 and 2. In the ASCC method, these quantities are
calculated as functions of the collective coordinate q, but they are easily converted to
those as functions of D. (See the relation between q and D shown in the left panels of
Fig. 3.) We see that the collective potential changes from a single well to a double well
as the ratio G0/χ decreases, i.e., as the effect of the monopole-pairing interaction
is weakened. When oblate and prolate shapes coexist (for G0 = 0.14, 0.16), the
collective path calculated from one local minimum passes through the other local
minimum. In this case it is seen that ∆0(D) decreases while |∆2(D)| increases as D
increases. Both gaps vanish in the limits, D → Dmin = −42 and D → Dmax = 42.
This behavior is due to the smallness of the model space and does not exist in
realistic situations. The quadrupole-pairing gap |∆2(D)| is maximal at the prolate
and oblate HB equilibrium points. Because of the energy gain associated with the
quadrupole pairing, the oblate and prolate local minima in the collective potential
V (D) decrease as G2 increases.

Significant effects of the quadrupole-pairing interaction are obviously seen in
the solutions of the local harmonic equations. The squared frequencies ω2(q), rep-
resenting the curvature of the collective potential, are shown in the right column
of Fig. 3, while the sums

∑
i>0 |Qi(q)|2 and

∑
i>0 |Pi(q)|2 of the two quasiparticle

components, Qi(q) and Pi(q), are displayed in Fig. 4. They are again plotted as
functions of D. It is clearly seen that the absolute magnitudes of Qi(q) increase sig-
nificantly, while those of Pi(q) decrease with increasing G2. (To avoid complication,
their sums, rather than individual values, are presented in Fig. 4.) These changes
in the microscopic structure of Q̂(q) and P̂ (q) lead to the increase of the derivative
dq/dD with increasing G2 (Fig. 3). This results in a significant enhancement of the
collective mass M(D(q)) with respect to the coordinate of the quadrupole deforma-
tion parameter D. These interesting properties of the collective mass are the main
subject of this paper and are discussed in the next subsection.

We have also carried out constrained HB (CHB) calculations, choosing the
quadrupole operator D̂ as the constraint. The calculated values of V (D), ∆0(D) and
∆2(D) were almost indistinguishable from those obtained with the ASCC method
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Fig. 1. Collective potentials plotted as functions of the quadrupole deformation D. The upper,

middle and lower panels display the results for G0 = 0.14, 0.16 and 0.20, respectively. In each

panel, the results for G2 = 0.00, 0.02 and 0.04 are compared.
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Fig. 2. Monopole-pairing gaps ∆0 (left column) and quadrupole-pairing gaps ∆2 (right column),

plotted as functions of D. The upper, middle and lower rows display the results for G0 =

0.14, 0.16 and 0.20, respectively. In each panel, the results for G2 = 0.00, 0.02 and 0.04 are

compared.

displayed in Figs. 1 and 2. Thus, with regard to these static mean-field quantities, we
find no difference between the ASCC and the CHB calculations. It should be noted,
however, that this good agreement is due to the simplicity of the multi-O(4) model;
i.e., it contains only one degree of freedom, D̂, relevant to the large-amplitude collec-
tive motion. In reality, many degrees of freedom (a variety of particle-hole excitations
associated with shell structures, triaxial deformations, various multipolarities, low
and high frequency excitations, etc.) would be interwoven to generate the large-
amplitude collective motion. In fact, it has been shown that the self-consistently
determined collective coordinate operators for low-frequency quadrupole-type col-
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Fig. 3. Left column: Relation between the collective coordinate q and the quadrupole deformation

D(q) = 〈φ(q)| D̂ |φ(q)〉. The point q = 0 corresponds to the HB equilibrium, which is the

starting point of the numerical calculation. Right column: Squared frequencies ω2(q) of the

local harmonic equation, plotted as functions of D. Note that they are negative; i.e., ω(q) is

purely imaginary in the region where the curvature of the collective potential is negative. The

upper, middle and lower rows display the results for G0 = 0.14, 0.16 and 0.20, respectively. In

each panel, the results for G2 = 0.00, 0.02 and 0.04 are compared.

lective vibration differ significantly from the quadrupole operators (see, for instance,
Ref. 30)). Let us now consider the collective mass, where we can clearly see the
merits of the ASCC method.

4.3. Collective mass

As mentioned in §3.5, we set the scale of the collective coordinate q so as to make
the collective mass unity. In order to compare the collective mass obtained using the
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Fig. 4. The sums
P

i>0 |Qi(q)|2 and
P

i>0 |Pi(q)|2 of the two quasi-particle components, Qi(q) and

Pi(q), of the infinitesimal generators Q̂(q) and P̂ (q), plotted as functions of the quadrupole

deformation D. The upper, middle and lower rows display the results for G0 = 0.14, 0.16 and

0.20, respectively. In each panel, the results for G2 = 0.00, 0.02 and 0.04 are compared.

ASCC method with the conventional cranking mass, let us evaluate the collective
mass as a function of the quadrupole deformation D. This quantity, M(D(q)), is
readily obtained by transforming the collective kinetic energy as a function of the
velocity Ḋ:

1
2
B(q)p2 =

1
2
p2 =

1
2
q̇2 =

1
2
M(D(q))Ḋ2, (4.1)

M(D(q)) =
(

dq

dD

)2

=

(
4
∑
i>0

diσiuiviPi(q)

)−2

. (4.2)
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As is well known, the Inglis-Belyaev cranking mass is derived by means of adia-
batic perturbation theory1) and is given by

Mcr(D) = 2
∑

n

| 〈φn(D)| ∂

∂D
|φ0(D)〉 |2

En(D) − E0(D)
. (4.3)

Here, |φ0(D)〉 and E0(D) represent the ground state and its energy at the deforma-
tion D, while |φn(D)〉 and En(D) represent the (two-quasiparticle) excited states and
their energies. We can use this formula either treating the deformation D as a phe-
nomenological parameter or a self-consistently determined quantity. If the ground
states are calculated at every point of D by means of the CHB method, i.e., using

δ 〈φ0(D)| Ĥ − λ(D)N̂ − µ(D)D̂ |φ0(D)〉 = 0, (4.4)

with the self-consistency conditions for the particle number and the quadrupole
deformation,

〈φ0(D)| N̂ |φ0(D)〉 = N0, 〈φ0(D)| D̂ |φ0(D)〉 = D, (4.5)

then we obtain the following explicit expression for Mcr(D):

Mcr(D) = 2
∑
i>0

1
(2Ei(D))3

2ui(D)vi(D)
((

χ +
∂µ

∂D

)
diσi +

∂λ

∂D

)

+ (u2
i (D) − v2

i (D))
(

∂∆0

∂D
+ diσi

∂∆2

∂D

)2
. (4.6)

Hereafter, we call this the “CHB-cranking mass”. Note that here we have used a
slightly different definition of the cranking mass than in Ref. 60), in which the CHB
self-consistency is ignored.

In Fig. 5, the ASCC mass M(D(q)) is plotted as a function of D and com-
pared with the CHB-cranking mass Mcr(D) for various combinations of the pairing-
interaction strengths, G0 and G2. It is seen that these quantities diverge near
Dmin = −42 and Dmax = 42. This behavior indicates that, in the multi-O(4)
model under consideration, it becomes harder and harder to increase D as either
of these limits is approached. For this reason, we focus our attention on the re-
gion of intermediate values of D. This is the region important for the quantum
mechanical tunneling motion through the barrier (small G0/χ case) and for the vi-
brational motion about the spherical equilibrium (large G0/χ case). It is seen that
when the quadrupole-pairing interaction is absent (G2 = 0), the magnitudes of the
ASCC mass are almost the same as those of the CHB-cranking mass. They also
exhibit similar deformation dependence. When the quadrupole-pairing interaction
is switched on, however, a significant difference between the ASCC and the CHB-
cranking masses appears: The ASCC mass increases significantly as G2 increases,
while the CHB-cranking mass changes very little.

The origin of this different behavior of M(D(q)) and Mcr(D) can be understood
in the following way. The CHB-cranking mass is derived by ignoring the contribu-
tion of the residual interaction to the collective mass, and thus the effects of the
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Fig. 5. The ASCC collective mass M(D(q)) (left column) and the CHB-cranking mass Mcr(D)

(right column) as functions of the deformation D. The upper, middle and lower rows display the

results for G0 = 0.14, 0.16 and 0.20, respectively. In each panel, the results for G2 = 0.00, 0.02

and 0.04 are compared.

quadrupole-pairing interaction are taken into account only in the static quantities,
like the quadrupole-pairing gap ∆2(D). Contrastingly, the effects of the residual
interaction on the dynamics are taken into account in the ASCC method through
the time-odd components of the mean-field, which change sign under time rever-
sal, p → −p. The time-odd part of the mean-field Hamiltonian, ĥ(t), represents
the change in the self-consistent mean-field associated with the dynamical motion.
It is well known that this part is necessary to obtain the correct center of mass
for the translational motion.8) On the other hand, it is also known that neither
the monopole-pairing interaction nor the quadrupole particle-hole interaction con-
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tributes to the time-odd part.8),12),69) Thus, only the quadrupole-pairing interaction
contributes to the time-odd part in the case of the multi-O(4) model Hamiltonian
under consideration.

The significant difference between the ASCC mass and the CHB-cranking mass
displayed in Fig. 5 clearly indicates the importance of the quadrupole-pairing inter-
action on the collective dynamics. This is in striking contrast to its effect on static
properties. In that case, the important properties of the collective potential energy
curve V (D) are determined by the competition between the monopole-pairing and
quadrupole particle-hole correlations. There, ∆2(D) is much smaller than ∆0(D),
and therefore the quadrupole pairing plays only a minor role. However, it plays a
major role in determining the dynamical properties of collective motion.

4.4. Excitation spectra and transition matrix elements

We calculate the eigen-energies Ek and wave functions Ψk(q) for the quantized
large-amplitude collective motion by solving the collective Schrödinger equation,(

−1
2

∂2

∂q2
+ V (q)

)
Ψk(q) = EkΨk(q), (4.7)

with the orthonormalization ∫ qmax

qmin

Ψ∗
k (q)Ψl(q)dq = δkl, (4.8)

and the boundary conditions Ψk(qmin) = Ψk(qmax) = 0, where qmin and qmax are
the minimum and maximum values of q along the collective path (see Fig. 3). The
quadrupole transition matrix elements are evaluated as

〈Ψk| D̂ |Ψl〉 =
∫ qmax

qmin

Ψ∗
k (q)D(q)Ψl(q)dq, (4.9)

where the deformation D(q) is defined on the collective path by Eq. (3.14).
Figure 6 displays the results of the ASCC calculation for excitation spectra and

quadrupole transition matrix elements between low-lying states. For G0 = 0.20 we
obtain anharmonic vibrational spectra about the spherical equilibrium. By contrast,
the collective potential V (D) for G0 = 0.14 and 0.16 possesses two local minima,
corresponding to the oblate and prolate shapes, and the spherical point (D = 0)
becomes the top of the barrier. In the G0 = 0.14 case, this barrier is high. Con-
sequently, a ground state doublet similar to the well-known parity doublet in the
double well potential appears. In the present multi-O(4) model, the doublet corre-
sponds to the symmetric and anti-symmetric superpositions of the oblate and prolate
ground states, and its energy splitting provides a sensitive measure of the quantum
tunneling effect through the potential barrier. Contrastingly, in the G0 = 0.16 case,
the barrier is rather low, and therefore the spectrum exhibits a transient feature
toward the doublet pattern mentioned above. In the quantum spectra displayed in
Fig. 6, we can clearly identify the effects of the increase of the collective mass due
to the quadrupole pairing. First, the vibrational excitation energy decreases as G2
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increases. Second, the energy splitting of the doublet decreases with increasing G2,
indicating that tunneling becomes more difficult as the collective mass increases.
Thus, for the combination G0 = 0.14 and G2 = 0.04, we obtain a doublet of ex-
cited states in addition to the ground-state doublet. The wave functions of the
excited-state doublet as well as the ground-state doublet are displayed in Fig. 9.
This figure clearly indicates that the excited doublet corresponds to symmetric and
anti-symmetric linear combinations of vibrational excitations about the oblate and
prolate local minima. We also confirm that the amplitude in the barrier region
indeed decreases with increasing G2.

In Fig. 7, the results of the exact matrix diagonalization of the microscopic
multi-O(4) Hamiltonian are presented. It is found that for every combination of
the interaction strengths G0, G2 and χ, the excitation spectra and the transition
matrix elements obtained with the ASCC method agree to very good approximation
with the results of the exact calculation. It is a significant result that the ASCC
calculation can describe the gradual change of the quantum spectra associated with
the phase transition of the finite system from a spherical shape to oblate-prolate
shape coexistence.

We now carry out a thorough quantitative comparison concerning the energy
splitting of the ground-state doublet in the G0 = 0.14 case. The splittings obtained
in the ASCC method are 0.043, 0.012, and 5×10−4 for G2 = 0.00, 0.02 and 0.04,
respectively. The corresponding values obtained by the exact diagonalization are
0.091, 0.020 and 3×10−4. It should be noted here that the energy splitting under
discussion is a very small quantity associated with the barrier penetration for which
even a slight error in the collective mass can result in an error similar in size to
the magnitude of the energy splitting itself. Therefore, the obtained agreement
within a factor of 2 indicates that the collective mass evaluated using the ASCC
method is very reliable. It should also be emphasized that this tunneling motion is
large-amplitude collective motion associated with the rearrangement of microscopic
configurations of many particles and that the collective mass represents the inertia
of this motion of the many-body system as a whole. Thus, the accurate evaluation
of the collective mass is a highly non-trivial task.

Let us now investigate how the difference between the ASCC mass and the CHB-
cranking mass discussed in the previous subsection affects the excitation spectra and
the transition matrix elements. Adopting the Pauli quantization prescription, we
obtain the collective Schrödinger equation(
− 1

2Mcr(D)1/4

∂

∂D

1√
Mcr(D)

∂

∂D

1
Mcr(D)1/4

+ VCHB(D)

)
Ψ

(cr)
k (D) = E

(cr)
k Ψ

(cr)
k (D)

(4.10)

for the wave functions Ψ
(cr)
k (D) that incorporate the metric factor Mcr(D)1/4 such

that the orthonormalizations are given by71)

∫ Dmax

Dmin

Ψ
(cr)∗
k (D)Ψ (cr)

l (D)dD = δkl. (4.11)
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Fig. 7. Excitation spectra calculated with the exact diagonalization. (See the caption of Fig. 6.)



592 N. Hinohara, T. Nakatsukasa, M. Matsuo and K. Matsuyanagi

 0

 0.5

 1

 1.5

 2

 2.5

E
xc

ita
tio

n 
E

ne
rg

y

29.3

8.9

24.3

4.7

29.5

8.1

25.2

4.7

29.9

6.9

26.5

4.6

G2=0.00 G2=0.02 G2=0.04

G0=0.14 Cranking + CHB

 0

 1

 2

 3

 4

 5

E
xc

ita
tio

n 
E

ne
rg

y

20.4

16.6

20.7

1.2

21.1

16.0

20.7

1.5

22.1

15.2

20.7

1.8

G2=0.00 G2=0.02 G2=0.04

G0=0.16 Cranking + CHB

 0

 1

 2

 3

 4

 5

 6

E
xc

ita
tio

n 
E

ne
rg

y

13.0

16.6

13.1

16.6

13.3

16.6

G2=0.00 G2=0.02 G2=0.04

G0=0.20 Cranking + CHB

Fig. 8. Excitation spectra calculated with the CHB-cranking procedure. (See the caption of Fig. 6.)
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Fig. 9. Wave functions of eigenstates of the collective Schrödinger equation, Eq. (4.10), for

G0 = 0.14. The wave functions obtained with the ASCC (CHB-cranking) method are

plotted in the left (right) column. In order to allow comparison, they are both plotted

as functions of the parameter D. Specifically, those of the ASCC method are defined by

Ψk(D(q)) ≡ Ψk(q)
p

dq/dD = Ψk(q)M(D(q))1/4 and normalized as
R |Ψk(D)|2dD = 1. The

first, second, third and fourth rows display the wave functions for the ground state, the first,

second, and third excited states, respectively. In each panel, the results for G2 = 0.00, 0.02 and

0.04 are compared.
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We solve this Schrödinger equation under the boundary conditions Ψ
(cr)
k (Dmin) =

Ψ
(cr)
k (Dmax) = 0. The quadrupole transition matrix elements are evaluated by

〈
Ψ

(cr)
k

∣∣∣ D̂ ∣∣∣Ψ (cr)
l

〉
=
∫ Dmax

Dmin

Ψ
(cr)∗
k (D)DΨ

(cr)
l (D)dD. (4.12)

As mentioned in §4.2, the ASCC collective potential V (q) almost coincides with the
potential VCHB(D) calculated by means of the CHB method, and hence the difference
between the quantum spectra can be mainly attributed to the difference between the
collective masses. The results are displayed in Fig. 8. When the quadrupole pairing
is absent (G2 = 0), we find rather good agreement between the CHB-cranking results
and the exact solutions. However, the excitation spectra and transition matrix ele-
ments are almost unchanged when the quadrupole-pairing interaction is switched on
and G2 increases. This represents a significant difference between the ASCC method
and the CHB-cranking calculation. We can confirm this point also by considering
the wave functions displayed in Fig. 9. The amplitudes in the barrier region change
only little when G2 increases, in contrast to the ASCC wave functions. It is obvious
that this failure to take into account the effect of the quadrupole pairing originates
from the fact that the CHB-cranking procedure ignores the time-odd mean-field
contribution to the collective mass.

§5. Conclusions

The multi-O(4) model is a simple model to simulate phase transitions in finite
quantum systems from a spherical shape to oblate-prolate shape coexistence. We
have applied the ASCC method to this model and studied the collective mass of
the many-body tunneling motion through the potential barrier between the oblate
and prolate local minima. Comparing our results with those obtained from the
exact diagonalization, we have shown that the ASCC method succeeds in describing
the gradual change of the excitation spectra from anharmonic vibration about the
spherical equilibrium to the doublet pattern associated with the deformed double-well
potential possessing oblate-prolate symmetry. It was found that the collective mass
increases significantly due to the quadrupole-pairing contribution to the time-odd
component of the moving mean field. We have also shown that the CHB-cranking
procedure underestimates the collective mass, because the contribution from the
time-odd component is disregarded there.

Employing the approach developed in this paper, in a forthcoming paper72) we
will evaluate the contribution of the time-odd components to the collective mass
of the large amplitude collective motion associated with the oblate-prolate shape
coexistence in the 68Se and 72Kr regions.
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Appendix A
Exact Diagonalization of the Multi-O(4) Model Hamiltonian

It is possible to construct the following two sets of SU(2) generators for each
j-shell from the basic operators of the multi-O(4) model:

K+
j =

1
2
(Â†

j + B̂†
j ), L+

j =
1
2
(Â†

j − B̂†
j ), (A.1)

K−
j =

1
2
(Âj + B̂j), L−

j =
1
2
(Âj − B̂j), (A.2)

K0
j =

1
2
(N̂j + D̂j − Ωj), L0

j =
1
2
(N̂j − D̂j − Ωj). (A.3)

The operators {Kj+, Kj−, Kj0} and {Lj+, Lj−, Lj0} satisfy the commutation rela-
tions of the SU(2) algebra:

[K+
j , K−

j′ ] = 2K0
j δjj′ , [L+

j , L−
j′ ] = 2L0

jδjj′ , (A.4)

[K0
j , K±

j′ ] = ±K±
j δjj′ , [L0

j , L
±
j′ ] = ±L±

j δjj′ . (A.5)

All commutation relations between the K and L operators are zero. Thus, we can
construct the orthogonal basis vectors of the model space as

|nK , nL〉 ≡
∏
j

|nKj , nLj 〉 ≡
∏
j

(K+
j )nKj (L+

j )nLj |0〉, (A.6)

where (nKj , nLj ) are integers satisfying the relations 0 ≤ nKj , nLj ≤ Ωj/2 and∑
j(nKj + nLj ) = N0/2.

In terms of these SU(2) generators, the multi-O(4) Hamiltonian is expressed as

Ĥ =
∑

j

e0
j{2(K0

j + L0
j ) + Ωj} − 2χ

∑
ij

didj(K0
i − L0

i )(K
0
j − L0

j )

− 1
2

∑
ij

(G0 + G2didj)(K+
i K−

j + K+
i K−

j + L+
i L−

j + L−
i L+

j )

− 1
2

∑
ij

(G0 − G2didj)(K−
i L+

j + K+
i L−

j + L−
i K+

j + L+
i K−

j ). (A.7)

The operators K+
j , K−

j and K0
j act on the basis

∣∣nKj , nLj

〉
as

K0
j

∣∣nKj , nLj

〉
=
(

nKj −
Ωj

4

) ∣∣nKj , nLj

〉
, (A.8a)
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K+
j

∣∣nKj , nLj

〉
=

√
(nKj + 1)

(
Ωj

2
− nKj

) ∣∣nKj + 1, nLj

〉
, (A.8b)

K−
j

∣∣nKj , nLj

〉
=

√
nKj

(
Ωj

2
− nKj + 1

) ∣∣nKj − 1, nLj

〉
. (A.8c)

Similar equations hold for L+
j , L−

j , and L0
j . The matrix elements of the multi-

O(4) Hamiltonian, 〈nK
′, nL

′| Ĥ |nK , nL〉, can be calculated by using Eqs. (A.7)
and (A.8). Diagonalizing this matrix, we obtain the exact eigen-energies and eigen-
states. For the parameters given in the text, the dimension of this Hamiltonian
matrix is 1894. The quadrupole transition matrix elements between the eigen-states
|φα〉 and |φβ〉 are given by

〈φα| D̂ |φβ〉 =
∑

nK ;nL

2dj(nKj − nLj )C
α∗
nK ;nL

Cβ
nK ;nL

, (A.9)

where the quantities Cα
nK ;nL

are the expansion coefficients in the SU(2) basis:

|φα〉 =
∑

nK ;nL

Cα
nK ;nL

|nK , nL〉 . (A.10)

Appendix B
Gradient Method for the Moving-Frame HB Equation

In this appendix, we solve the variational equation of the form

δ 〈φ(q)| Ĥ − λN̂ − µQ̂ |φ(q)〉 = 0, (B.1)

using the gradient method,1) with the following constraint conditions for the number
operator N̂ and the one-body operators R̂:

〈φ(q)| N̂ |φ(q)〉 = N0, 〈φ(q)| R̂ |φ(q)〉 = R0. (B.2)

Here, R̂ is an arbitrary one-body operator which, in general, may be different from
Q̂.

Let
∣∣φ(k)(q)

〉
be the state vector at the iterative step k. Using the quasiparticle

bilinear operators A†
i (q) and Ai(q), which satisfy Ai(q)

∣∣φ(k)(q)
〉

= 0, we then gen-
erate the state vector at the (k + 1)-th step in the form of a unitary transform of∣∣φ(k)(q)

〉
as ∣∣∣φ(k+1)(q)

〉
= eẐ(q)

∣∣∣φ(k)(q)
〉

, (B.3)

with the anti-Hermitian operator

Ẑ(q) =
∑
i>0

Z20
i (q)(A†

i (q) − Ai(q)). (B.4)
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It should be noted that the normalization is preserved during the iteration. Then,
assuming that Ẑ(q) is small, we expand the difference between the energies of∣∣φ(k+1)(q)

〉
and

∣∣φ(k)(q)
〉

as follows:

∆E =
〈
φ(k+1)(q)

∣∣∣ Ĥ − λN̂ − µQ̂
∣∣∣φ(k+1)(q)

〉
−
〈
φ(k)(q)

∣∣∣ Ĥ − λN̂ − µQ̂
∣∣∣φ(k)(q)

〉
=
〈
φ(k)(q)

∣∣∣ [Ĥ − λN̂ − µQ̂, Ẑ(q)]
∣∣∣φ(k)(q)

〉
+ O(Ẑ2)

=
∑
i>0

(H20
i (q) − λN20

i (q) − µQ20
i (q))Z20

i (q) + O(Ẑ2). (B.5)

If Z20
i (q) is chosen as

Z20
i (q) = −∆T (H20

i (q) − λN20
i (q) − µQ20

i (q)), (B.6)

with a positive step size ∆T , ∆E is negative in each iteration. The constraint
conditions (B.2) can also be expanded up to first order in Ẑ(q), and we find〈

φ(k+1)(q)
∣∣∣ R̂ ∣∣∣φ(k+1)(q)

〉
=
〈
φ(k)(q)

∣∣∣ R̂ ∣∣∣φ(k)(q)
〉

+
〈
φ(k)(q)

∣∣∣ [R̂, Ẑ(q)]
∣∣∣φ(k)(q)

〉
+ O(Ẑ2), (B.7a)〈

φ(k+1)(q)
∣∣∣ N̂ ∣∣∣φ(k+1)(q)

〉
=
〈
φ(k)(q)

∣∣∣ N̂ ∣∣∣φ(k)(q)
〉

+
〈
φ(k)(q)

∣∣∣ [N̂ , Ẑ(q)]
∣∣∣φ(k)(q)

〉
+ O(Ẑ2). (B.7b)

Substituting Eq. (B.6) into Eq. (B.7), we obtain the following equation, which de-
termines the Lagrange multipliers λ and µ:



∑
i

R20
i N20

i

∑
i

R20
i Q20

i

∑
i

N20
i N20

i

∑
i

N20
i Q20

i







λ

µ


 =




R0 − R̄

2∆T
+
∑

i

R20
i H20

i

N0 − N̄

2∆T
+
∑

i

N20
i H20

i


 . (B.8)

Here N20
i , R20

i , Q20
i and H20

i are the coefficients of the two-quasiparticle creation and
annihilation parts of the operators N̂ , R̂, Q̂ and Ĥ, while the quantities R̄ and N̄
represent

〈
φ(k)(q)

∣∣ R̂ ∣∣φ(k)(q)
〉

and
〈
φ(k)(q)

∣∣ N̂ ∣∣φ(k)(q)
〉
.

When solving the moving-frame HFB equation (3.21) with the constraint con-
ditions (3.30) and (3.31), we use Q̂(q − δq) for R̂(q). This operator is defined at
q − δq in terms of the quasiparticle bilinear operators A†

i (q − δq) and Ai(q − δq),
which satisfy Ai(q− δq) |φ(q − δq)〉 = 0. Thus, at each iteration step, it is necessary
to rewrite Q̂(q − δq) in terms of A†

i (q), Ai(q) and N i(q), defined with respect to∣∣φ(k)(q)
〉

at q:

R̂(q) = Q̂(q − δq) =
∑
i>0

Q20
i (q − δq)(A†

i (q − δq) + Ai(q − δq))

= R00(q) +
∑
i>0

R11
i (q)N i(q) + R20

i (q)(A†
i (q) + Ai(q)). (B.9)
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The explicit expression for the coefficients R20
i (q), which we need to solve Eq. (B.8),

is

R20
i (q) = Q20

i (q − δq)
[
(ui(q − δq)2 − vi(q − δq)2)(u2

i (q) − v2
i (q))

+4ui(q − δq)vi(q − δq)ui(q)vi(q)] . (B.10)

The above procedure is repeated until convergence is realized. In fact, this is Step 2
in the iterative algorithm described in §3.6.
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