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By random phase approximation (RPA) calculation based on triaxially deformed Woods-
Saxon potential, we investigate how axial-symmetry breaking in the mean field affects the
properties of octupole vibrational excitations built on superdeformed states in 44Ti. We find
a remarkable dependence of their properties on signature quantum number with respect to
rotation about an axis perpendicular to the longest axis by the angle of π. Detailed numerical
analysis of the signature dependence is made by considering the magnitude of the triaxial
deformation γ as a parameter.

§1. Introduction

In the last two decades, more than two hundred superdeformed (SD) bands
have been found in various mass regions.1)–5) The SD shell structure is signifi-
cantly different from that of normal deformation; each major shell at the SD shape
consists of about equal numbers of positive- and negative-parity levels. This is a
favourable situation for the appearance of negative-parity collective modes. In fact,
various mean-field calculations6)–9) and random phase approximation (RPA) calcula-
tions10),11) based on the rotating mean field (cranked shell model) indicated that SD
nuclei are very soft against both the axial and nonaxial octupole deformations. Thus,
low-frequency soft octupole vibrations were predicted to appear near the SD yrast
lines,12),13) and identified in experiments for SD states in the Hg-Pb region,14),15)

and in 152Dy.16)

In recent years, the SD bands have been discovered also in the 40Ca region: the
rotational band built on the excited 0+ state at about 5.2 MeV in 40Ca was found to
be superdeformed.17),18) The rotational band built on the excited 0+ state at about
1.9 MeV in 44Ti may also be regarded as belonging to a family of the SD band.19) In
view of the fact that the low-angular-momentum portions of the SD bands in heavy
nuclei are unknown in almost all cases (except the fission isomers), the observation of
rotational bands starting from the 0+ states is a unique feature characterizing the SD
states in the 40Ca region. It was then confirmed that symmetry-unrestricted Skyrme-
Hartree-Fock (SHF) calculation indeed yields the SD local minima corresponding to
these experimental data.20) Thus, it has become clear nowadays that even the doubly
magic nucleus in the spherical shell model, like 40Ca, can easily take a strongly
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deformed shape if it is given excitation energy of only about 5 MeV. One of the
significances of this type of phenomenon is that it exhibits the ability of the nucleus
to take quite different microscopic structures with almost the same binding energy,
and these different structures can coexist while retaining their identities.

The investigation of low-frequency octupole vibrations built on the SD states
in the A = 30–50 region showed some new features that are absent in the study
of heavy SD nuclei. For the N = Z nuclei in the 40Ca region, it may be pos-
sible to observe in experiment such collective modes built on the known SD 0+

states. Moreover, because the proton and neutron shell structures are essentially
the same, we can expect that strong coherence takes place between the proton and
neutron excitations and brings about an enhanced collectivity of these modes. Thus,
Inakura et al.21) theoretically explored such a possibility by means of the mixed-
representation RPA22),23) based on the SHF mean field, and suggested the appear-
ance of low-frequency negative-parity collective modes possessing strongly enhanced
isoscalar octupole transition strengths. In this region of nuclear chart, the number of
particle-hole configurations is smaller than those in heavier nuclei. This might be an
unfavorable situation to generate vibrational collectivity by coherent superposition of
a large number of particle-hole excitations. On the other hand, it provides a unique
situation to make a detailed microscopic analysis of how collective modes emerge out
of a relatively small number of particle-hole configurations. Thus we can learn the
similarity and difference of octupole vibrations built on SD states in various mass
regions. The mixed-representation RPA calculation in Ref. 21) is fully self-consistent
in the sense that the same effective interaction is used in both the mean-field and
RPA calculations. On the other hand, it is not easy in this approach to identify mi-
croscopic particle-hole configurations generating individual RPA modes. Therefore,
with the use of deformed Woods-Saxon potential and the conventional matrix formu-
lation of the RPA, Yoshida et al.24) carried out a detailed analysis of the microscopic
structure of octupole excitation modes built on the SD states in 40Ca and other
nuclei. In that work, however, the single-particle Hamiltonian was solved in terms of
the two-dimensional mesh representation with cylindrical coordinate system. Thus,
the mean field was restricted to axially symmetric shapes.

In this paper, we extend the previous work24) so as to allow for the breaking of
axial symmetry in the mean field. For this purpose, we construct a new computer
code to solve the triaxially deformed Woods-Saxon potential in terms of the three-
dimensional Cartesian coordinate system. On the single-particle basis thus obtained,
we carry out RPA calculation diagonalizing the RPA matrix. Our major purpose is to
investigate the effects of the triaxial deformation of the mean field on the properties
of octupole vibrations built on SD states. As a typical example, we take up the case of
44Ti where experimental data is available for a candidate of the SD yrast state19) and
a sizable triaxial deformation is predicted in SHF calculations.20),21) The magnitude
of the calculated triaxial deformation parameter γ depends on the version of the
Skyrme interaction and takes the values in the range 7◦–18◦. In the present paper,
we consider γ as a parameter and make a detailed analysis of how axial-symmetry
breaking in the mean field affects the properties of octupole vibrational excitations
built on the SD state in 44Ti. We find a remarkable dependence of their properties
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on signature quantum number with respect to rotation about the intermediate axis
by the angle of π.

This paper is organized as follows. In §2, the properties of single-particle wave
functions in triaxially deformed potential are recapitulated. In §3, the RPA scheme
for octupole vibrational excitations on the triaxially deformed mean field is summa-
rized, with special attention on their symmetry properties with respect to reflections
about the (x, y)-, (y, z)-, and (z, x)-planes. In §4, results of numerical analysis of
octupole excitations built on the SD state in 44Ti are presented. In §5, concluding
remarks are given.

§2. Triaxially deformed mean field

2.1. Single-particle Hamiltonian

We write nucleon creation and annihilation operators in a single-particle state k
as ĉ†k and ĉk. With the use of the two-component single-particle wave function ϕk(�r)
consisting of spin-up and spin-down components with respect to the z-axis, nucleon
creation and annihilation operators at a spatial position �r are then represented as

ψ̂†(�r) =
∑

k

ϕ†
k(�r)ĉ

†
k =

∑
k

(
ϕ∗

k↑(�r), ϕ
∗
k↓(�r)

)
ĉ†k, (2.1)

ψ̂(�r) =
∑

k

ϕk(�r)ĉk =
∑

k

(
ϕk↑(�r)
ϕk↓(�r)

)
ĉk. (2.2)

We use a mean-field potential consisting of an axially asymmetric Woods-Saxon
potential VWS(�r) and a spin-orbit potential Vso(�r, �∇). In terms of the field operators
defined above, the single-particle Hamiltonian is then written as

ĥ =
∫
ψ̂†(�r)h(�r, �∇)ψ̂(�r)d3�r, (2.3)

h(�r, �∇) =
[
− �

2

2m
Δ + VWS(�r)

]
1 + Vso(�r, �∇), (2.4)

where 1 denotes the unit matrix in the 2 × 2 spin space. Explicit expressions of the
Woods-Saxon and spin-orbit potentials are

VWS(�r) = −V0 [1 + exp((r −R(θ, φ))/a)]−1 , (2.5)

Vso(�r, �∇) =
i�2q

2

[
∂VWS(�r)

∂�r
×�σ
]
·�∇, (2.6)

where a is the diffuseness parameter and

R(θ, φ) = R0(β, γ)
(

1 + β cos γ Y2,0(θ, φ)

+
1√
2
β sin γ

(
Y2,+2(θ, φ) + Y2,−2(θ, φ)

))
. (2.7)

The deformation parameters, β and γ, indicate the magnitude of quadrupole defor-
mation and its triaxiality, respectively. In this parametrization of nuclear surface,
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when β > 0, at γ = 0◦, the potential is symmetric about the z-axis, which is the
longest principal axis (prolate shape). With increasing value of γ, the potential
extends in the direction of the x-axis, and becomes at γ = 60◦ symmetric about
the y-axis, which is the shortest principal axis (oblate shape). Although an angle-
dependent diffuseness parameter a(θ, φ) is better for accurate calculation,25) we use
a constant a for simplicity.

The effective spherical radius R0(β, γ) is fixed under the condition that the vol-
ume enclosed by R(θ, φ) takes the constant value 4

3πr
3
0A, A being the mass number.

Its explicit expression is

R0(β, γ) = r0A
1/3

(
1 +

3
4π
β2 +

√
5

28π
√
π
β3 cos 3γ

)−1/3

. (2.8)

In the numerical calculation, we use the parameters shown in Ref. 28) for the N = Z
case, i.e., V0 = 51MeV, �

2q = −0.44r20, r0 = 1.27 fm, and a = 0.67 fm.

2.2. Symmetry properties of single-particle wave functions

The single-particle Hamiltonian h(�r, �∇), the parity transformation P, and the
rotation about the z-axis by the angle of π, Rz = eiπjz/~, commutes with each
other: i.e., [h(�r, �∇),P] = 0, [h(�r, �∇),Rz] = 0, and [P,Rz] = 0. Accordingly, we
can adopt single-particle wave functions ϕk(�r) that are simultaneous eigenvectors of
these operators:

h(�r, �∇)ϕk(�r) = εkϕk(�r), (2.9)
Pϕk(�r) = pkϕk(�r), (2.10)

Rzϕk(�r) = αkϕk(�r). (2.11)

The quantum number αk is called z-signature and takes values αk = ±i. Thus,
the single-particle wave functions ϕk(�r) are specified by parity pk and z-signature
as well as single-particle energy εk. In fact, the single-particle Hamiltonian h(�r, �∇)
commutes with Rx = eiπjx/~ and also with Ry = eiπjy/~, as well as Rz. Therefore,
we can adopt x-signature or y-signature in place of z-signature to specify single-
particle wave functions. It is, however, convenient to use the z-signature when we
adopt the z-axis as a quantization axis of spin. In this case, the spin-up and spin-
down components of the wave function in Eq. (2.2) satisfy the following symmetry
properties with respect to reflections about the (y, z)-, (z.x)-, and (x, y)-planes (see
Appendix A):26),27)

ϕkσ(−x, y, z) = −iαkσϕ
∗
kσ(x, y, z), (2.12)

ϕkσ(x,−y, z) = ϕ∗
kσ(x, y, z), (2.13)

ϕkσ(x, y,−z) = −ipkαkσϕkσ(x, y, z), (2.14)

where σ = +1 and −1 for spin-up ↑ and spin-down ↓ , respectively. The single-
particle Hamiltonian h(�r, �∇) is also invariant with respect to time reversal T = iσyK,
where K denotes operation of taking the complex conjugate of all c-numbers, and
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the phase convention of Bohr-Mottelson28) is adopted. Operating T on both sides of
the Schrödinger equation (2.9), we readily see that the time-reversal partner T ϕk(�r)
possesses the z-signature quantum number α∗

k = −αk. Thus, there is a one-to-one
correspondence between a time-reversal partner and a z-signature partner. Thanks
to this property, we need to diagonalize the single-particle Hamiltonian only for the
α = +i sector or the α = −i sector. Single-particle wave functions having opposite
z-signatures are then immediately obtained as time-reversal partners of these eigen-
functions.

In diagonalizing the single-particle Hamiltonian, we use, instead of the well-
known harmonic-oscillator basis, three-dimensional Cartesian coordinate mesh rep-
resentation with box boundary condition.26),27) As discussed in Refs. 26) and 27),
we need to explicitly consider only the octant region in space with x ≥ 0, y ≥ 0, and
z ≥ 0, owing to the reflection symmetries (2.12)–(2.14).

The major reason why we use the coordinate mesh representation is that we
intend to apply, in due course, the present approach to neutron-rich unstable nuclei
close to the drip line where the continuum plays an essential role and the coordinate
mesh representation is better suited for this aim. We also intend to replace, in the
future, the Woods-Saxon potential with the SHF potential. The computer program
constructed in this work will serve as a first step toward such self-consistent mean-
field approach.

In the numerical calculation, we take the box size extending about 2.5 times
of the radius R(θ, φ) in each direction and the space is discretized with the mesh
spacing 0.6 fm. Numerical reliability with respect to the box size and the mesh
spacing was carefully checked by Inakura et al.21) and shown that this choice gives
fairy accurate results. Specifically, we take 17, 17, and 25 lattice points in the x-, y-,
and z-direction, respectively, for the region of the triaxiality parameter 0◦ ≤ γ ≤ 4◦.
These numbers are 17, 15, and 25 (19, 15, and 25) for 6◦ ≤ γ ≤ 16◦ (18◦ ≤ γ ≤ 30◦).
For the nucleus 44Ti with N = Z, we use the same single-particle wave functions for
protons and neutrons ignoring the Coulomb potential.

§3. RPA for octupole vibrations in triaxially deformed nuclei

3.1. Eigenvalue equations

Introducing a residual interaction v̂, we solve the RPA eigenvalue equation for
the total Hamiltonian Ĥ = ĥ+ v̂ with

v̂ =
1
2

∑
k1,k2
k′1,k′2

vk′
1k′

2k1k2
ĉ†
k′
2
ĉ†
k′
1
ĉk1 ĉk2 , (3.1)

vk′
1k′

2k1k2
=
∑
σ1,σ2
σ′
1,σ′

2

∫∫
ϕ∗

k′
1σ′

1
(�r1)ϕ∗

k′
2σ′

2
(�r2)vσ′

1σ1σ′
2σ2

(�r1, �r2)ϕk1σ1(�r1)ϕk2σ2(�r2)d
3�r1d

3�r2. (3.2)

Specifically, we use a density-dependent contact interaction of the following form:29)

vσ′
1σ1σ′

2σ2
(�r1, �r2) =

{[
t0 +

1
6
t3ρ(�r1)

]
δσ1σ′

1
δσ2σ′

2
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+
[
t0x0 +

1
6
t3x3ρ(�r1)

]
δσ1σ′

2
δσ2σ′

1

}
δ3(�r1 − �r2). (3.3)

Here, ρ(�r) is the nucleon density. For the interaction parameters t0, t3, x0, and
x3, we use the same values as in Shlomo-Bertsch:29) t0 = −1100 MeV·fm3, t3 =
16000 MeV·fm6, x0 = 0.5, and x3 = 1.0.

We now introduce the particle-hole concept. The single-particle states above
the Fermi energy εF is called particle states and those below εF is called hole states.
The particle creation and annihilation operators (â†k, âk) and the hole creation and
annihilation operators (b̂†k, b̂k) are defined as

ĉ†k = (1 − θk)â
†
k + θk b̂k, (3.4)

ĉk = (1 − θk)âk + θk b̂
†
k, (3.5)

where θk is the occupation number defined as

θk =

{
1 for εk ≤ εF,

0 for εk > εF.
(3.6)

The creation operators of the RPA eigenmodes are written as

X̂†
n =

∑
p,h

(fn
phâ

†
pb̂

†
h − gn

phb̂hâp). (3.7)

From now on, we use the index p (h) to specify the particle (hole) states and keep
the index k for general cases. As usual, from the linearized equation of motion,

[Ĥ, X̂†
n] = �ωnX̂

†
n, (3.8)

we obtain eigenvalue equations in matrix form

∑
p′h′

(
Aphp′h′ Bphp′h′

−B∗
php′h′ −A∗

php′h′

)(
fn

p′h′

gn
p′h′

)
= �ωn

(
fn

ph

gn
ph

)
(3.9)

for each sector specified by parity p and z-signature α. The matrix elements Aphp′h′

and Bphp′h′ are given as

Aphp′h′ = (εp − εh)δpp′δhh′ + v̄ph′hp′ , Bphp′h′ = v̄pp′hh′ , (3.10)

where v̄k′
1k′

2k1k2
= vk′

1k′
2k1k2

when (k1, k2) are between a proton and a neutron (vice
versa) while v̄k′

1k′
2k1k2

= vk′
1k′

2k1k2
− vk′

2k′
1k1k2

taking both combinations (k1, k
′
1) and

(k2, k
′
2) when (k1, k2) are identical nucleons. In the numerical calculation, we take

into account all the particle-hole pairs with εp − εh ≤ 30 MeV.

3.2. Octupole transition amplitudes

For any one-body operator

Ô =
∑
k,k′

Ok′k ĉ
†
k′ ĉk with Ok′k =

∫
ϕ†

k′(�r)O(�r)ϕk(�r)d3�r, (3.11)
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Table I. Octupole operators classified according to z-component K and x-signature ξ.

ξ = +1 ξ = −1

K = 0
q

7
16π

˘
2z2 − 3(x2 + y2)

¯
z

K = 1
q

21
32π

˘
4z2 − (x2 + y2)

¯
x

q
21
32π

˘
4z2 − (x2 + y2)

¯
y

K = 2
q

105
4π

xyz
q

105
16π

(x2 − y2)z

K = 3
q

35
32π

(x2 − 3y2)x
q

35
32π

(3x2 − y2)y

transition amplitudes between the RPA ground state |0〉 and excited states |n〉 =
X̂†

n|0〉 are evaluated as

〈0|Ô|n〉 = 〈0|[Ô, X̂†
n]|0〉 =

∑
p,h

(Ohpf
n
ph +Ophg

n
ph). (3.12)

In this paper, we focus our attention on octupole transition strengths. It is then
convenient to classify the octupole operators according to z-component K of its
angular momentum and x-signature ξ representing symmetry property for rotation
π about the x-axis:

RxO
(K,ξ)(�r)R−1

x = ξO(K,ξ)(�r) for Rx = eiπjx/~. (3.13)

In terms of the spherical coordinates (r, θ, φ), they are given as

O(0,−)(�r) = r3Y3,0(θ, φ) for K = 0, (3.14)

O(K,+)(�r) =
i√
2
r3
[
Y3,−K(θ, φ) − (−1)KY3,+K(θ, φ)

]
for K 
= 0, (3.15)

O(K,−)(�r) =
1√
2
r3
[
Y3,−K(θ, φ) + (−1)KY3,+K(θ, φ)

]
for K 
= 0. (3.16)

In this classification, O(K,ξ)(�r) are real functions; their explicit expressions in terms of
the Cartesian coordinates are listed in Table I. We note that the octupole operators
with odd-K (even-K) values have z-signature α = −1 (+1), which follows from the
transformation property for rotation about the z-axis by the angle of π:

RzO
(K,ξ)(�r)R−1

z = (−1)KO(K,ξ)(�r). (3.17)

3.3. Symmetry for rotation about the x-axis by angle of π (x-signature)

The single-particle Hamiltonian h(�r, �∇) commutes with Rx and Rz individu-
ally but the commutator between Rx and Rz is nonzero, so that it is impossible to
construct a single-particle basis spanned by simultaneous eigenstates of x- and z-
signatures. In contrast, creation and annihilation operators of the RPA eigenmodes
X̂†

n and X̂n, carry definite x- and z-signatures simultaneously. We can examine this
fact in the following manner. First, we can prove that the A and B matrix elements
associated with z-signature partners are identical; Ap̄h̄p̄′h̄′ = Aphp′h′ and Bp̄h̄p̄′h̄′ =
Bphp′h′ (see Appendix B). It immediately follows that the RPA particle-hole ampli-
tudes of z-signature partners differ at most by sign, i.e., (fn

p̄h̄
, gn

p̄h̄
) = ±(fn

ph, g
n
ph).
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Next, let us evaluate transition matrix elements of the octupole operators with def-
inite x- and z-signatures Ô(K,ξ) between RPA excited states and the ground state
(recall that z-signature α = (−1)K). They are calculated as

〈0|Ô(K,ξ)|n〉 =
∑
p,h

(O(K,ξ)∗
ph fn

ph +O
(K,ξ)
ph gn

ph)

=
∑
p,h

′
(O(K,ξ)∗

ph fn
ph +O

(K,ξ)∗
p̄h̄

fn
p̄h̄ +O

(K,ξ)
ph gn

ph +Op̄h̄g
(K,ξ)gn

p̄h̄)

=
∑
p,h

′ [
O

(K,ξ)∗
ph (fn

ph − ξfn
p̄h̄) +O

(K,ξ)
ph (gn

ph − ξgn
p̄h̄)
]
. (3.18)

In the second equality above, the sum over the particle and hole states is divided
into two parts consisting of z-signature partners;

∑′
p,h denotes a summation over

such signature pairs. Then, in the third equality, the relation, O(K,ξ)

p̄h̄
= −ξO(K,ξ)

ph , is
utilized (see Appendix B). Assuming that the x-signature of the RPA ground state
|0〉 is +1, the above expression indicates that the RPA excited states |n〉 created by
X̂†

n possess definite ξ values. In other words, the RPA eigenmodes whose amplitudes
possess such properties as (fn

p̄h̄
, gn

p̄h̄
) = (fn

ph, g
n
ph) create excited states with ξ = −1,

while those with (fn
p̄h̄
, gn

p̄h̄
) = −(fn

ph, g
n
ph) create excited ξ = +1 states.

It should be noted here that, owing to the identity RxRyRz = 1 (see Appendix
B), essentially the same argument as above holds when we adopt the y-signature
associated with Ry (rotation about the y-axis by the angle of π) in place of the
x-signature.

By taking into account the relation O(K,ξ)
hp = −(−1)KξO

(K,ξ)
ph (see Appendix B)

and that the proton and neutron contributions are the same for nuclei with N = Z
under the present approximation, the transition amplitudes for the isoscalar octupole
operators with definite (K, ξ) are calculated as

〈0|Ô(K,ξ)|n〉 = 4
∑
p,h

′′
O

(K,ξ)
ph (−(−1)Kξfn

ph + gn
ph) ≡

∑
p,h

′′
M

(K,ξ)
ph , (3.19)

where
∑′′

p,h denotes a summation over z-signature partners of protons (or neutrons).
We call the quantities S3K ≡ |〈0|Ô(K,ξ)|n〉|2 “isoscalar octupole transition

strengths” often omitting the adjective “isoscalar”. Note that these are quantities
defined in the intrinsic coordinate frame and we cannot directly compare these quan-
tities with experimental data. For this, it is necessary to construct wave functions
in the laboratory frame by means of the Bohr-Mottelson approach30) or the angular
momentum projection method.31) This subject is left for a future work, however.

3.4. Elimination of spurious components

Owing to the rotational symmetry breaking associated with the deformed mean
field, dipole excitation modes can mix with the octupole excitation modes. As is well
known, in the self-consistent RPA scheme where the same microscopic Hamiltonian
is used in constructing the mean field and RPA excitation modes, the lowest isoscalar



Triaxiality Dependence of Octupole Excitations 1177

modes corresponding to the center of mass motions appear at zero energy and they
are separated from other excitation modes. In our present nonself-consistent calcu-
lation, such components associated with center of mass motion may mix in the RPA
solutions representing octupole vibrations of interest. It is therefore necessary to
adopt some recipe to eliminate such spurious coupling effects. For this purpose, we
adopt the recipe that is widely used (see, e.g., Ref. 32)). First, we multiply a com-
mon factor λ to the interaction matrix elements vk′

1k′
2k1k2

and determine its value so
that the lowest eigenvalue of the RPA matrix becomes zero. There are three center
of mass modes representing displacements in the x, y, and z directions. It is easily
seen that they carry quantum numbers (K, ξ) = (1,+1), (1,−1), and (0,−1), re-
spectively. Therefore, we determine λ separately for the (α, ξ) = (−1,+1), (−1,−1),
and (+1,−1) sectors. Note that the z-signature α = (−1)K is conserved under the
K-mixing owing to the triaxial deformation and that there is no spurious mode in
the (α, ξ) = (+1,+1) sector. We can easily identify these spurious modes among the
solutions of the RPA eigenvalue problem by evaluating isoscalar dipole transition
amplitudes, since they have extremely large values.

If the separation of the spurious modes is perfectly carried out, the transition
amplitudes of the isoscalar dipole operators D̂(K,ξ), which are proportional to x, y,
and z individually, should vanish for the octupole excited states of interest:

〈0|D̂(K,ξ)|n〉 = 0. (3.20)

In practice, it is difficult to meet this condition owing to the small but nonnegligible
mixture of the spurious component. Thus, in the next step, we remove such a mixture
from the octupole excited states obtained in the RPA calculation “by hand”. Namely,
we subtract the dipole component corresponding to the center of mass excitation,
D̂(K,ξ)|0〉, from every RPA excited state |n〉 in each (α, ξ) sector (there is a connection
between (K, ξ) and (α, ξ) as mentioned above):

|n〉 −→ N (|n〉 − χD̂|0〉) with χ =
〈0|D̂|n〉
〈0|D̂2|0〉

, (3.21)

where N = (1 − |χ|2〈0|D̂2|0〉)−1/2. It is easily seen that this is equivalent to the
replacement of the RPA forward and backward amplitudes, (fn

ph, g
n
ph), in the following

manner:
For the α = −1 sector,

fn
ph + gn

ph −→ fn
ph + gn

ph −
∑

p′,h′ xp′h′(fn
p′h′ + gn

p′h′)∑
p′,h′ |xp′h′ |2 x∗ph, (ξ = +1) (3.22)

fn
ph − gn

ph −→ fn
ph − gn

ph −
∑

p′,h′ yp′h′(fn
p′h′ − gn

p′h′)∑
p′,h′ |yp′h′ |2 y∗ph. (ξ = −1) (3.23)

For the α = +1 sector,

fn
ph + gn

ph −→ fn
ph + gn

ph −
∑

p′,h′ zp′h′(fn
p′h′ + gn

p′h′)∑
p′,h′ |zp′h′ |2 z∗ph, (ξ = −1) (3.24)

fn
ph − gn

ph −→ fn
ph − gn

ph. (ξ = +1) (3.25)
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Here xph, yph, and zph represent 〈0|x̂|ph〉, 〈0|ŷ|ph〉, and 〈0|ẑ|ph〉, respectively. After
the above replacements, we renormalize them such that new amplitudes satisfy the
normalization condition

∑
p,h(|fn

ph|2 − |gn
ph|2) = 1.

§4. Numerical analysis and discussion

4.1. Dependence of single-particle energies on β and γ

Figure 1 shows the single-particle energies as functions of the deformation para-
meter β. We can clearly see that the shell gap at N = Z = 20 at the superdeformed
shape with β 
 0.6–0.7 is responsible for the superdeformed excited state in 40Ca.
For 44Ti with N = Z = 22, the superdeformed minimum obtained in the SHF
calculation20),21) corresponds to the relatively small shell gap at β 
 0.5.

In Fig. 2, single-particle energies are plotted as functions of the triaxiality pa-
rameter γ fixing β at 0.5. It is seen that the shell gap at N = Z = 22 slightly
increases with increasing γ indicating that the triaxial deformation is favoured but
the effect is not very strong. This property of the single-particle diagram suggests
the triaxial minimum of the mean field is rather soft with respect to the γ degree of

Fig. 1. Single-particle energies ε in the N = Z nucleus 44Ti for the Woods-Saxon plus spin-orbit

potentials of Eq. (2.4) plotted as functions of the deformation parameter β. Positive and neg-

ative parity levels are indecated by solid and dotted lines, respectively. For convenience, they

are labelled in the region of large β by asymptotic quantum numbers indicating the largest

components at β � 0.5 and connected adiabatically through the level crossing region. These

single-particle energies are used for both protons and neutron.
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Fig. 2. Dependence of single-particle energies ε on the triaxiality parameter γ. The β is fixed at

0.5. Positive and negative parity levels are indicated by solid and dotted lines, respectively.

For convenience, they are labelled with asymptotic quantum numbers indicating the largest

components at the prolate limit (γ = 0◦) and connected adiabatically for variation of γ.

freedom. In such a situation, large-amplitude vibrational motions in this direction
may take place, and it would be necessary to consider γ as a dynamical variable.
This challenging subject is beyond the scope of the present paper, however. Below,
we investigate the properties of octupole excitation modes built on the SD state in
44Ti considering γ as a parameter. We discuss the α = ±1 sectors separately.

4.2. Interplay of K = 1 and 3 components in the α = −1 sector

In Fig. 3, we show the excitation energies and transition strengths S31 (K = 1)
of low-lying RPA octupole excitation modes with negative z-signature (α = −1)
built on a superdeformed state in 44Ti as functions of the triaxiality parameter γ. In
the prolate limit (γ = 0◦), the z-component of angular momentum K (= 1 or 3) is a
good quantum number and the x-signature pairs (ξ = ±1) are degenerate in energy.
In this figure, the first and second excited states have K = 3. Their S33 values
are small indicating their noncollective character. In contrast, the third excited
state has K = 1 and fairly large value of S31, indicating its collective character.
With increasing γ, the mixing between the K = 1 and K = 3 modes takes place,
the doublets split in energy, and transition strengths become different between the
x-signature partners. Let us call these properties “x-signature splitting” and “x-
signature dependence”. In Fig. 3, we see that the first and third ξ = +1 modes
have larger S31 values than their signature partners ξ = −1. In particular, we see a
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Fig. 3. Dependence on the triaxiality parameter γ of the RPA excitation energies (upper panel)

and octupole transition strengths S31 (K = 1) (lower panel), calculated for octupole excitation

modes with negative z-signature (α = −1) built on a superdeformed state in 44Ti. The β is

fixed at 0.5. Modes with positive x-signature (ξ = +1) are indicated by solid lines, while those

with negative x-signature (ξ = −1) by dotted lines. Only the lowest three x-signature pairs

are presented. Octupole transition strengths S33 (K = 3) are not shown because they are very

small.

remarkable increase in the K = 1 strength, S31, of the first ξ = +1 mode starting
from zero at γ = 0◦. Let us examine the microscopic origin of this trend in more
detail.

In Figs. 5 and 6, various quantities characterizing the lowest octupole modes
with negative z-signature (α = −1) at γ = 4◦ and γ = 16◦ are shown, respectively.
These include the RPA forward and backward amplitudes, fph and gph, unperturbed
particle-hole matrix elements of the octupole operator with K = 1, O(K=1,ξ)

ph , and

individual contributions to the RPA octupole transition amplitude, M (K=1,ξ)
ph . Note

that, although signs of fph, gph, and O(K=1,ξ)
ph depend on the chosen relative signs of

single-particle wave functions, those of M (K=1,ξ)
ph are uniquely determined, because

they are products of the former quantities. Thus, the relative signs of M (K=1,ξ)
ph be-

tween different particle-hole configurations serve as a good indicator of the coherence
among them, and we can learn from their properties about the collectivity of the
RPA mode under consideration. Therefore, in this figure, values of M (K=1,ξ)

ph are
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Fig. 4. Particle-hole configurations playing major roles in building up the lowest octupole vibrations

with negative z-signature (α = −1) (for both ξ = ±1). They are indicated by transition arrows

with labels A, B, C, D, E, F, and G. The single-particle energies are plotted as functions of γ for

a fixed value of β = 0.5. For convenience, they are labelled with asymptotic quantum numbers

indicating the largest components at the prolate limit (γ = 0◦) and connected adiabatically for

variation of γ. The arrows are drawn at arbitrary positions in γ. Positive and negative parity

levels are indicated by solid and dotted lines, respectively. Note that only levels playing major

roles in building up the lowest α = −1 mode are explicitly drawn here; see Fig. 2 for a more

complete single-particle diagram.

presented with their signs, while absolute values are shown for the other quanties.
The γ = 4◦ case is chosen to examine the effect of incipient triaxial deformation
on the octupole mode of interest and the γ = 16◦ case to represent typical triaxial
deformation obtained in the SHF calculations.20),21)

According to the bottom panel of Fig. 5, the particle-hole configurations,
[200]1/2 → [321]1/2 and [321]3/2 → [202]3/2, labelled B and C, respectively (il-
lustrated in Fig. 4), give the major contributions to the strength S31 of the lowest
mode at γ = 4◦ for both modes with x-signature ξ = ±1. It should be noted that
Fig. 5 applies to both protons and neutrons: in the N = Z nucleus under consid-
eration, proton and neutron excitations act coherently and markedly enhance the
transition strengths. Thus, the proton and neutron contributions are summed up in
the transition amplitude M (K=1,ξ)

ph (see their definition (3.19)).
We can notice some different properties between signature partners already at

such a small triaxiality. The difference significantly develops at γ = 16◦ shown
in Fig. 6. In fact, the octupole transition amplitude M (K=1,ξ)

ph associated with the
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Fig. 5. Properties of the lowest octupole modes with negative z-signature (α = −1) at the triaxiality

parameter γ = 4◦. The result of calculation for the positive x-signature (ξ = +1) mode is

displayed on the left-hand side, while that for the negative x-signature (ξ = −1) on the right-

hand side. From the top to the bottom panels, RPA forward and backward amplitudes, fph

and gph, unperturbed particle-hole matrix elements of the octupole operator with K = 1,

O
(K=1,ξ)
ph , and individual contributions to the RPA octupole transition amplitude, M

(K=1,ξ)
ph ,

are displayed at positions of the abscissa axis representing unperturbed excitation energies,

εp − εh, of individual particle-hole configurations composing the lowest RPA mode. Labels A,

B, C, D, E, and F indicate some important configurations displayed in Fig. 4. Note that absolute

values are shown except for M
(K=1,ξ)
ph . Note also that different scales are used for fph and gph.

configuration B, markedly increases for the positive x-signature mode (ξ = +1) but
decreases for the negative x-signature mode (ξ = −1). Furthermore, higher-lying
configurations, [330]1/2 → [431]3/2, [321]3/2 → [422]5/2, [211]3/2 → [312]5/2, and
[211]1/2 → [303]7/2, respectively labelled D, E, F, and G (see Fig. 4), contribute
appreciably only for the ξ = +1 mode. Note that they all contribute in the phase
indicating that the collective character of the ξ = +1 mode is developed remarkably.
In contrast, these contributions are much smaller for the ξ = −1 mode. This is the
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Fig. 6. Same as Fig. 5 but at the triaxiality parameter γ = 16◦. Note that different scales are used

for gph and M
(K=1,ξ)
ph . The particle-hole excitation energy of configuration B is approximately

the same with that of C.

microscopic origin of the striking difference of the octupole transition strength S31

between the lowest signature partners exhibited in Fig. 3.

4.3. Interplay of K = 0 and 2 components in the α = +1 sector

In Fig. 7, we present the RPA excitation energies, octupole transition strengths
with K = 0 and 2 (S30 and S32) calculated for low-lying octupole excitation modes
with positive z-signature (α = +1) built on the SD state in 44Ti as functions of
triaxiality parameter γ. The lowest pair of excitation modes with ξ = ±1 has K = 2
in the prolate limit (γ = 0◦) and corresponds to the K = 2 doublet discussed in
Ref. 21). As pointed out in that paper, appearance of this type of doublet pattern
in excitation spectra may serve as a good indicator of triaxial deformation in the
mean field. This signature-doublet possesses a large octupole strength S32 indicating
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Fig. 7. Dependence on the triaxiality parameter γ of the RPA excitation energies (top panel),

octupole transition strengths S30 (K = 0) (middle panel), and S32 (K = 2) (bottom panel),

calculated for octupole excitation modes with positive z-signature (α = +1) built on a superde-

formed state in 44Ti. The β is fixed at 0.5. Modes with negative x-signature (ξ = −1) are

indecated by solid lines, while those with positive x-signature (ξ = +1) by dotted lines. Only

the lowest five ξ = −1 modes are presented. Note that their signature partners with ξ = +1

exist only for the first and fourth modes which have K = 2 in the prolate limit.

their collective character. The main components of this doublet are the particle-hole
excitations of protons and neutrons from the [200]1/2 level to the [312]5/2 level
as illustrated with label H in Fig. 8, but coherent contributions of a large number
of high-lying particle-hole excitations also play an indispensable role in generating
collectivity of these lowest excitation modes.

The fourth pair of excitation modes, which exhibits a doublet pattern with
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Fig. 8. Same as Fig. 4 but for the octupole vibrations with (α, ξ) = (+1,−1). Major particle-hole

configurations are indicated by transition arrows with labels H, I, and J. Note that only levels

playing major roles in building up the lowest (α, ξ) = (+1,−1) mode are explicitly drawn here;

see Fig. 2 for a more complete single-particle diagram.

ξ = ±1 near the prolate limit, also has K = 2 there, but its S32 strength is very
small indicating its noncollective character.

The second, third, and fifth excitation modes with ξ = −1 have K = 0 in
the prolate limit, so that they have no x-signature partners. The K = 0 octupole
strength S30 of the fifth mode is extremely large, indicating a strong collective char-
acter of this mode. On the other hand, the S30 strengths of the second and third
modes are moderate. When the axial symmetry is broken, K-mixing takes place in
the single-particle wave functions. Furthermore, the RPA modes that have different
K quantum numbers (0 or 2) in the prolate limit start to interact with each other.
Accordingly, x-signature splitting and K-mixing in the RPA modes develop with
increasing γ. Thus, the ξ = −1 branch of the lowest excitation mode acquires an
appreciable amount of the K = 0 octupole strength S30 in the region of γ 
 5◦–
15◦. Correspondingly, its S32 strength decreases in this region. In contrast, the S32

strength of its ξ = +1 partner stays almost constant because, as mentioned above,
there is no ξ = +1 mode of K = 0 to mix with.

It is interesting to observe that a level crossing between the fourth and fifth
modes slowly takes place in the region of γ 
 10◦. More precisely, because of the no
crossing rule between the modes having the same quantum numbers, the two modes
repel each other and exchange their characters when going through this region. This
point is clearly seen in the plot of their S30 values. We note that this kind of interplay
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Fig. 9. Properties of the lowest octupole modes with (α, ξ) = (+1,−1). The results of calculation at

the triaxiality parameter γ = 4◦, 10◦, and 20◦ are presented on the left, middle, and right panels,

respectively. From the top to the bottom panels, RPA forward and backward amplitudes, fph

and gph, unperturbed particle-hole matrix elements of the octupole operators with K = 0 and

K = 2, O
(K=0,−)
ph and O

(K=2,−)
ph , and individual contributions to the RPA octupole transition

amplitudes, M
(K=0,−)
ph and M

(K=2,−)
ph , are displayed at positions of the abscissa axis representing

unperturbed excitation energies, εp − εh, of individual particle-hole configurations composing

the lowest RPA mode. Labels H and I indicate some important configurations displayed in

Fig. 8. Note that absolute values are shown except for M
(K=0,ξ)
ph and M

(K=2,ξ)
ph . Note aslso that

different scales are used for fph and gph.

among a few ξ = −1 modes was not seen in the previous calculation.21) The main
cause of this difference is that, owing to slightly different single-particle energies, the
lowest K = 0 mode and the other K = 0 modes are approximately separated in
the latter calculation. This suggests that such detailed properties associated with
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Fig. 10. Same as Fig. 9 but for the fourth excitation mode with (α, ξ) = (+1,−1).

interference among a few excitation modes are quite sensitive to the detailed shell
structure of the mean field used in the RPA calculation.

We can investigate the microscopic origins of the γ dependence in the properties
of excitation modes, exhibited in Fig. 7, by examining in detail the calculated RPA
forward and backward amplitudes, fph and gph, unperturbed particle-hole matrix
elements O(K,ξ)

ph of the octupole operators, and individual contributions M (K,ξ)
ph to

the RPA octupole transition strengths. These quantities are displayed in Figs. 9 and
10 for the lowest and the fourth ξ = −1 modes, respectively. We again note that
these figures apply to both protons and neutrons and their contributions are summed
up in the transition amplitude M (K,ξ)

ph . From Fig. 9, we learn that the increase in
the S30 strength seen in Fig. 7 around γ 
 10◦ is associated with the mixture of
the relatively high-lying particle-hole configuration, [330]1/2 → [440]1/2 labelled I,
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into this low-lying mode. This high-lying configuration corresponds to the excitation
from the f7/2 shell to the g9/2 shell in the spherical limit and possesses an extremely

large octupole matrix element O(0,−)
ph . Therefore, its contribution to the transition

amplitude M (0,−)
ph is large in spite of the fact that the RPA amplitudes, fph and gph,

of this configuration are less than 0.1. In this manner, the low-lying collective RPA
modes are generated by coherent superpositions of not only low-lying configurations
but also many particle-hole configurations lying in the higher energy region.

In a similar manner, we can understand the reason why the S32 strength of
the fourth mode increases in the region around γ = 20◦ by looking at Fig. 10. We
see that the contribution to the transition amplitude M (2,−)

ph from the high-lying
configuration, [202]5/2 → [312]5/2, labelled J (see Fig. 8) markedly increases there.
Note that, although these asymptotic quantum numbers are used for convenience
to label the single-particle states, the z-component of angular momentum like 5/2
is no longer a good quantum number under the triaxial deformation. In fact, the
[202]5/2 level contains an appreciable amount of the [200]1/2 component so that the
particle-hole configuration J possesses rather large K = 2 octupole matrix elements
O

(2,−)
ph .

Finally, we point out another interesting trend seen in Fig. 7. The S30 strength
of the lowest excitation modes is maximum in the region around γ 
 10◦ where
the level crossing between the fourth and fifth excitation modes takes place, one of
which carries an extremely large transition strength. Obviously, the mixing among
these three modes is enhanced in this region. A similar trend is seen also near
γ = 30◦ where the third and fourth excitation modes cross. Although we have not yet
understood the deeper meaning of this result of calculation, it certainly indicates that
the interplay of high-lying and low-lying particle-hole excitations plays an important
role in generating collectivity of the low-lying octupole modes of excitation of interest.

§5. Concluding remarks

By means of the RPA calculation based on the triaxially deformed Woods-Saxon
potential, we have investigated how axial-symmetry breaking in the mean field af-
fects properties of the octupole vibrational excitations built on SD states in 44Ti.
By considering the magnitude of triaxial deformation γ as a parameter, detailed
numerical analysis has been carried out with special attention to their dependence
on signature quantum number with respect to rotation about an axis perpendicular
to the longest axis by the angle of π. We have found a marked dependence of their
properties on the signature quantum number.
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Appendix A
Symmetry Properties of Single-Particle Wave Functions

A.1. Reflection symmetries

The symmetry properties (2.12)–(2.14) are known26),27) but we here summarize
their proof because the ideas used here are further developed in the succeeding
sections.

The relation (2.14) for reflection about the (x, y)-plane is obtained through the
following manipulation:

ϕk(x, y,−z) = Peiπ�z/~ϕk(x, y, z) (A.1)
= e−i π

2
σzPRzϕk(x, y, z) (A.2)

= −ipkαkσzϕk(x, y, z), (A.3)

where the z-component of orbital angular momentum operator, �z, is replaced with
jz − ~

2σz.
The relation (2.13) for reflection about the (z, x)-plane is obtained through the

following consideration. The eigenvalue equations (2.9)–(2.11) are invariant against
the transformation I = KPeiπ�y/~. As the eigenvalue for I is ±1 and the two equa-
tions, Iϕk(x, y, z) = ϕk(x, y, z) and I{iϕk(x, y, z)} = −{iϕk(x, y, z)} are apparently
equivalent, we can choose the phase of our single-particle wave function satisfying
the former relation without loss of generality. Since Iϕk(x, y, z) = ϕ∗

k(x,−y, z),
Eq. (2.13) follows immediately.

With this phase convention, Eq. (2.9) for reflection about the (y, z)-plane is
derived in the following manner:

ϕk(−x, y, z) = Peiπ�y/~eiπ�z/~ϕk(x, y, z) (A.4)
= e−i π

2
σzKIRzϕk(x, y, z) (A.5)

= −iαkσzϕ
∗
k(x, y, z). (A.6)

A.2. Axially symmetric limit

In the prolate limit with γ = 0◦, the single-particle Hamiltonian h(�r, �∇) is
symmetric about the z-axis, so that the single-particle wave functions ϕk(�r) can be
written

ϕk(�r) =

(
fk(r, θ)ei(m− 1

2
)φ

gk(r, θ)ei(m+ 1
2
)φ

)
, (A.7)

wherem� is the angular momentum about the z-axis, and fk(r, θ) and gk(r, θ) possess
the following symmetry properties for reflection about the (x, y)-plane: fk(r, π−θ) =
−ipkαkfk(r, θ) and gk(r, π − θ) = ipkαkgk(r, θ).
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Appendix B
Symmetries of the A, B, and O Matrix Elements

As we adopt the phase convention that the single-particle wave functions ϕk(�r)
satisfy Iϕk(x, y, z) = ϕk(x, y, z), complex conjugation of these wave functions is
equivalent to reflection about the (z, x)-plane (K = Peiπ�y/~), and time reversal is
equivalent to symplex transformation about the (z, x)-plane (T = PRy). Also, there
is a simple relation between the z-signature partner ϕk̄(�r) and time-reversal partner
T ϕk(�r):

ϕk̄(�r) = −iαkT ϕk(�r). (B.1)

Using the above properties, we can prove that the RPA matrix elements possess
the symmetries Ap̄h̄p̄′h̄′ = Aphp′h′ and Bp̄h̄p̄′h̄′ = Bphp′h′ through the following man-
ner. These symmetries immediately follow from the corresponding symmetries of the
matrix elements of the residual interaction vk̄′

1k̄′
2k̄1k̄2

, which are examined through
the following manipulation:

vk̄′
1k̄′

2k̄1k̄2
=
∫ [

t0 +
1
6
t3ρ(�r)

]{[
T ϕk′

1
(�r)
]†[T ϕk1(�r)

]}{[
T ϕk′

2
(�r)
]†[T ϕk2(�r)

]}
d3�r

+
∫ [

t0x0 +
1
6
t3x3ρ(�r)

]{[
T ϕk′

1
(�r)
]†[T ϕk2(�r)

]}{[
T ϕk′

2
(�r)
]†[T ϕk1(�r)

]}
d3�r

=
∫ [

t0 +
1
6
t3ρ(x,−y, z)

]

×
[
ϕ†

k′
1
(x,−y, z)ϕk1(x,−y, z)

] [
ϕ†

k′
2
(x,−y, z)ϕk2(x,−y, z)

]
d3�r

+
∫ [

t0x0 +
1
6
t3x3ρ(x,−y, z)

]

×
[
ϕ†

k′
1
(x,−y, z)ϕk2(x,−y, z)

] [
ϕ†

k′
2
(x,−y, z)ϕk1(x,−y, z)

]
d3�r

= vk′
1k′

2k1k2
. (B.2)

In the first equality above, the relation ϕk̄(�r) = −iαkT ϕk(�r) is used. Note that
α∗

k′
1
αk1α

∗
k′
2
αk2 = +1, because these are matrix elements between particle-hole pairs

that carry a definite z-signature. In the second equality, the symmetry of the density,
ρ(x,−y, z) = ρ(x, y, z), and the relation, T = PRy, are used as

[T ϕk′(�r)]†[T ϕk(�r)] = [PRyϕk′(x, y, z)]†[PRyϕk(x, y, z)]

= ϕ†
k′(x,−y, z)ϕk(x,−y, z). (B.3)

In a similar fashion, we can prove the relations,

O
(K,ξ)
hp = −(−1)KξO

(K,ξ)
ph and O

(K,ξ)

p̄h̄
= −ξO(K,ξ)

ph , (B.4)

between particle-hole matrix elements of the Hermitian octupole operators O(K,ξ)(�r)
through the following steps:

O
(K,ξ)
hp = O

(K,ξ)∗
ph
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=
∫

[Kϕp(�r)]†O(K,ξ)(�r)[Kϕh(�r)]d3�r

=
∫

[Pe−iπ�x/~e−iπ�z/~ϕp(�r)]†O(K,ξ)(�r)[Pe−iπ�x/~e−iπ�z/~ϕh(�r)]d3�r

=
∫
ϕ†

p(�r)e
iπ�z/~eiπ�x/~P−1O(K,ξ)(�r)Pe−iπ�x/~e−iπ�z/~ϕh(�r)d3�r

= −
∫
ϕ†

p(�r)e
iπ�z/~eiπ�x/~O(K,ξ)(�r)e−iπ�x/~e−iπ�z/~ϕh(�r)d3�r

= −ξ
∫
ϕ†

p(�r)e
iπ�z/~O(K,ξ)(�r)e−iπ�z/~ϕh(�r)d3�r

= −(−1)Kξ

∫
ϕ†

p(�r)O
(K,ξ)(�r)ϕh(�r)d3�r

= −(−1)KξO
(K,ξ)
ph , (B.5)

O
(K,ξ)

p̄h̄
=
∫
ϕ†

p̄(�r)O
(K,ξ)(�r)ϕh̄(�r)d3�r

= (−1)K

∫
[T ϕp(�r)]†O(K,ξ)(�r)[T ϕh(�r)]d3�r

= (−1)K

∫
[PR−1

x R−1
z ϕp(�r)]†O(K,ξ)(�r)[PR−1

x R−1
z ϕh(�r)]d3�r

= (−1)K

∫
ϕ†

p(�r)RzRxP−1O(K,ξ)(�r)PR−1
x R−1

z ϕh(�r)d3�r

= −(−1)K

∫
ϕ†

p(�r)RzRxO
(K,ξ)(�r)R−1

x R−1
z ϕh(�r)d3�r

= −(−1)Kξ

∫
ϕ†

p(�r)RzO
(K,ξ)(�r)R−1

z ϕh(�r)d3�r

= −ξ
∫
ϕ†

p(�r)O
(K,ξ)(�r)ϕh(�r)d3�r

= −ξO(K,ξ)
ph . (B.6)

In the above manipulation, use is made of the relations, T = PRy, ϕk̄(�r)
= −iαkT ϕk(�r), α∗

pαh = (−1)K , PO(K,ξ)(�r)P−1 = −O(K,ξ)(�r), RzO
(K,ξ)(�r)R−1

z =
(−1)KO(K,ξ)(�r) and RxO

(K,ξ)(�r)R−1
x = ξO(K,ξ)(�r), together with identities,

eiπ�x/~eiπ�y/~eiπ�z/~ = 1 and RxRyRz = 1. (B.7)
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