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We derive a semiclassical trace formula for the level density of the three-dimensional
spheroidal cavity. To overcome the divergences and discontinuities occurring at bifurcation
points and in the spherical limit, the trace integrals over the action-angle variables are per-
formed using an improved stationary phase method. The resulting semiclassical level density
oscillations and shell energies are in good agreement with quantum-mechanical results. We
find that the births of three-dimensional orbits through the bifurcations of planar orbits
in the equatorial plane lead to considerable enhancement of shell effect for superdeformed
shapes.

§1. Introduction

The periodic orbit theory (POT)1)–10) is a nice tool for studying the corre-
spondence between classical and quantum mechanics and, in particular, the inter-
play of deterministic chaos and quantum-mechanical behavior. But also for sys-
tems with integrable or mixed classical non-linear dynamics, the POT leads to a
deeper understanding of the origin of shell structure in finite fermion systems such
as nuclei,8), 11)–13) metallic clusters,14)–16) and mesoscopic semiconductors.17)–21) Bi-
furcations of periodic orbits may play significant roles, e.g., in connection with the
superdeformations of atomic nuclei,8), 9), 12),22)–24) and were recently shown to af-
fect the quantum oscillations observed in the magneto-conductance of mesoscopic
devices.19), 20) This phenomenon is observed for some control parameters (shapes,
magnetic field etc.) of the potential well, for which the orbits bifurcate and new
type of periodic orbits emerge from the original ones. Examples can be found, e.g.,
in elliptic billiard and spheroidal cavity.8), 9),12),23)–28) In elliptic billiard, short dia-
metric orbits with repetitions bifurcate at certain values of deformation parameter,
and new orbits with hyperbolic caustics (butterfly-shaped orbit etc.) emerge from
them. In spheroidal cavity, periodic orbits in the equatorial plane bifurcate, and new
three-dimensional orbits emerge.

The semiclassical trace formulae connect the quantum-mechanical density of
states with a sum over the periodic orbits of the classical system.1)–4) In these for-
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mulae, divergences arise at critical points where bifurcations of periodic orbits occur
or where symmetry breaking (or restoring) transitions take places. At these points,
the standard stationary phase method (SSPM),∗) used in the semiclassical evalua-
tion of the trace integrals, breaks down. Various ways of avoiding these divergences
have been studied,3), 5), 29) some of them employing uniform approximations.29)–37)

Here we employ an improved stationary-phase method (ISPM) for the evaluation of
the trace integrals in the phase-space representation, which we have derived for the
elliptic billiard28) and very recently for the spheroidal cavity.24)

The singularities of the SSPM near the bifurcation points are due to the peculiar-
ities of its asymptotic expansions. In the ISPM,24), 28) the catastrophe integrals38),39)

are evaluated more exactly within the finite integration limits in the phase-space trace
formula,3), 5), 9), 24),28),40) and one can overcome the singularity problem due to bifur-
cations, which occur when the stationary points lie near the ends of the integration
region in the action-angle variables. We can also take into account the station-
ary points outside the classically accessible region (“ghost orbits”).5) This method
is particularly useful for integrable systems where integration limits are easily ob-
tained. This theory has been developed in Ref. 28) for the case of the bifurcations
through which periodic orbit families with maximal degeneracy emerge from the or-
bits with smaller degeneracy. The essential difference between our method presented
in this paper and that with the uniform approximation of Refs. 32) and 35) is that
we improve the calculation of the angle part of the phase-space trace integral for
the orbits with smaller degeneracies. Taking the elliptic billiard as an example, we
have applied the ISPM to the integration over the angle variable for short diametric
orbits, and derived the improved trace formula which is continuous through all bi-
furcation points including the circular limit and the separatrix. We have then shown
that significant enhancements of the shell effect in level densities and shell structure
energies occur at deformations near the bifurcation points. Away from the bifurca-
tion points, our result reduces to the extended Gutzwiller trace formula,4), 8)–10) and
for the leading-order families of periodic orbits, it is identical to that of Berry and
Tabor.5)

The major purpose of this paper is to extend our semiclassical ISPM to the three-
dimensional (3D) spheroidal cavity,24) which may be taken as a simple (highly ideal-
ized) model for a heavy deformed nucleus8), 11) or a deformed metallic cluster,14), 15)

and to specify the role of periodic orbit bifurcations in the shell structure responsi-
ble for superdeformations. Although the spheroidal cavity is integrable, it exhibits
all the difficulties mentioned above (i.e., symmetry breaking and bifurcations) and
therefore gives rise to an exemplary case study of a non-trivial 3D system. We apply
the ISPM for the bifurcating orbits and succeed in reproducing the superdeformed
shell structure by the POT, hereby observing a considerable enhancement of the
shell effect near the bifurcation points.

∗) In this paper SSPM denotes the standard stationary phase method and its extension to

continuous symmetries.3)–5), 7)
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§2. Classical mechanics for the spheroidal cavity

The semiclassical trace formulas for the oscillating part of the level density for
the spheroidal cavity are determined by the characteristic properties of the classical
periodic families.8), 9),22)–27) This section is an outlook of the definitions and solutions
of the classical mechanics for the spheroidal cavity in line of Refs. 8),9),23) and 27).
They will be used for the semiclassical derivations of the trace formulas improved at
the bifurcation points. We shall pay special attention to the 3D periodic orbits which
emerge through bifurcations and play important roles as the semiclassical origin of
superdeformed shell structure.8), 23),27)

2.1. General periodic-orbit formalism

We characterize the spheroid by its ratio of semi-axes η = b/a keeping its volume
fixed, and consider the prolate case with η > 1, where the major axis coincides with
the symmetry axis. We first transform the Cartesian coordinates (x, y, z) into the
usual cylindrical coordinates (ρ, z, ϕ), where ρ =

√
x2 + y2, which are expressed in

terms of the spheroidal coordinates (u, v, ϕ)

ρ = ζ cos u sinh v, z = ζ sin u cosh v, ζ =
√
b2 − a2 (2.1)

with

−π
2
≤ u ≤ π

2
, 0 ≤ v <∞, 0 ≤ ϕ ≤ 2π. (2.2)

The values of ±ζ define the positions of the foci of the spheroid lying on the z-axis.
Taking into account the volume conservation condition a2b = R3, one has b = Rη2/3

and a = Rη−1/3. As is well known, the Hamilton-Jacobi equations separate in the
coordinates (u, v, ϕ) for the spheroidal cavity.

In the Hamilton-Jacobi formalism, classical dynamics is determined by the par-
tial actions. In the spheroidal coordinates these are given by

Iu =
pζ

π

∫ uc

−uc
du

√
σ1 − sin2 u− σ2

cos2 u
, (2.3a)

Iv =
pζ

π

∫ vb

vc

dv

√
cosh2 v − σ1 −

σ2

sinh2 v
, (2.3b)

Iϕ = |lz| = pζ
√
σ2, (2.3c)

where lz is the projection of the angular momentum onto the symmetry axis, and
p =
√

2mε, m is the particle mass. In Eqs. (2.3) we introduced new “action” variables
σ1 and σ2 related to the turning points −uc, uc and vc, vb along the trajectory in
the (u, v) coordinates; u = uc and v = vc are the (hyperbolic and elliptic) caustic
surfaces,

cosh vc =

{
1

2
(1 + σ1) +

[
1

4
(1− σ1)2 + σ2

]1/2
}1/2

, (2.4a)
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sinuc =

{
1

2
(1 + σ1)−

[
1

4
(1− σ1)2 + σ2

]1/2
}1/2

, (2.4b)

and v = vb is the spheroid boundary, given by cosh vb = η/
√
η2 − 1. The condition

that the kinetic energy must be positive determine the limits for the variables σ1

and σ2,

σ−1 = σ2 ≤ σ1 ≤
η2

η2 − 1
− σ2

(
η2 − 1

)
= σ+

1 ,

σ−2 = 0 ≤ σ2 ≤
1

η2 − 1
= σ+

2 . (2.5)

These inequalities together with 2π intervals for the corresponding angle variables
determine the tori of the classically accessible motion with the boundaries σ±1 (σ2)
and σ±2 .

According to Eqs. (2.3), the particle energy ε is a function of only the action
variables Iu, Iv and Iϕ, ε = H (Iu, Iv, Iϕ) due to integrability of the system un-
der consideration. These relations define the partial frequencies ωu, ωv and ωϕ
through ωj = ∂H/∂Ij . The periodicity conditions for the classical trajectories are
significantly simplified in terms of the partial frequencies ωj . Introducing the new
variables κ and θ,

κ =
sinuc

cosh vc
, θ = arcsin

(
cosh vc
cosh vb

)
, (2.6)

along with the energy ε instead of the partial actions Iu, Iv and Iϕ (or σ1 and σ2),
they read

ωu
ωv
≡ 1

2

[
1− F(θ, κ)

F(κ)

]
=
nu
nv
, (2.7a)

ωϕ
ωu
≡ 2

π

[(
1−

(κ
κ̄

)2
)(

1− κ̄2
)]1/2{

Π

((κ
κ̄

)2
, κ

)
− F(κ)

+
[
Π
(
κ̄2, κ

)
−Π

(
θ, κ̄2, κ

)] / [
1− F(θ, κ)

F(κ)

]}
=
nϕ
nu
. (2.7b)

Here, nu, nv and nϕ are co-prime integers, nu = 1, 2, · · · ; nv ≥ 2nu; nv ≥ 2nϕ, nϕ =

1, 2, · · · , and κ̄ =
√
η2 − 1/(η sin θ). F and Π are elliptic integrals of 1st and 3rd

kinds (see Appendix A for their definitions). The periodicity condition (2.7) re-
lates κ(σ1, σ2) and θ(σ1, σ2) for a given periodic orbit β to the integers nu, nv
and nϕ, which together with the number of repetitions M define this orbit; i.e.,
β = M(nv, nϕ, nu).

2.2. Three-dimensional periodic orbits

The 3D periodic orbits (3DPO) M(nv, nϕ, nu) form two-parameter (K = 2)
families for a given energy ε since the number K of free continuous parameters
specifying an orbit with fixed energy and the same action is two.8), 9) The condition
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Fig. 1. The triangle of the classically accessible region determined by Eq. (2.5) is indicated by white

lines in the (σ1, σ2) plane at bifurcation deformations (a) η = 1.618 . . . and (b) η =
√

3. The red

and blue dots with circles indicate the 3DPO stationary points inside (really existing 3DPO) and

outside (“ghost” 3DPO) of this triangle region, respectively. Several examples of the stationary

points are indicated: on the σ2 = 0 side, the short 2DPO (elliptic triangle, square, and hyperbolic

“butterfly”); on the σ2 = σ1 side, the short EQPO (triangle, square, star, and diameter (black

crossed circle)). The long diameter (separatrix) is located at (σ1 = 1, σ2 = 0). The color and

the contour curves indicate (in unit of pζ/π) the curvature K11 defined by Eq. (3.14).

for 3DPO is the existence of real roots (κ, θ) of Eq. (2.7). They appear at the
deformation η = ηbif given by

ηbif =
sin(πnϕ/nv)

sin(πnu/nv)
, (nu = 1, 2, · · · , nv ≥ 2nϕ + 1, nϕ = 2, 3, · · ·) (2.8)

where κ = 0 and θ = π(1 − 2nu/nv)/2, and exist for larger deformation η > ηbif .
These roots determine the caustics (the spheroid v = vc and the hyperboloids
u = ±uc) of the periodic orbit M(nv, nϕ, nu) through Eq. (2.6). These caustics
are confocal to the boundary of the spheroid v = vb.

Figure 1 shows the stationary points corresponding to the 3DPO for two bifurca-
tion points ηbif given by (2.8). The physical tori region (2.5) in the variables σi is the
triangle. At ηbif = 1.618 . . . (Fig. 1a), the stationary point for the 3DPO (5, 2, 1) co-
incides with that for the star-shaped (5, 2) orbit in the equatorial plane (discussed be-
low) lying on the boundary with σ2 = σ1, and moves toward inside of the physical tori

Fig. 2. Short 3D periodic orbits (5,2,1) and

(6,2,1) bifurcated from the equatorial plane

orbits (5,2) and 2(3,1), respectively. Their

projections on the equatorial plane are also

represented by thick-dashed lines.

region for larger deformations. At ηbif =√
3 (Fig. 1b), the stationary point for

the 3DPO (6, 2, 1) lies at the bound-
ary side and coincides with that for tri-
angular orbits in the equatorial plane.
At these bifurcation deformations, the
lengths of the 3DPO (5, 2, 1) and (6, 2, 1)
coincide with those of the star (5, 2)
and the doubly repeated triangle 2(3, 1),
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Fig. 3. Some short meridian-plane orbits in the prolate spheroidal cavity: From the left to the

right; the isolated long diameter (2, 1, 1), the elliptic triangular (3, 1, 1), the elliptic rhomboidal

(4, 1, 1), the hyperbolic “butterfly” (4, 2, 1).

respectively. Figure 2 illustrates some
short 3DPO, and their projections onto
the equatorial plane which remind us of
the parent equatorial orbits.

2.3. Orbits in the meridian plane

Equation (2.7) have partial solutions for κ(σ1, σ2) and θ(σ1, σ2) which correspond
to the separate families of orbits, i.e. two-dimensional periodic orbits (2DPO), in the
meridian planes (containing the symmetry axis z) and in the equatorial plane. First,
we consider the special solutions of Eq. (2.7) corresponding to the two-parametric
(K = 2) 2DPO families in the meridian plane.8), 9) For these orbits, σ2 = 0 and σ1 is
in the regions

0 < σ1 < 1, 1 < σ1 <
η2

η2 − 1
, (2.9)

for the hyperbolic 2DPO (with hyperbolic caustics u = ±uc) and the elliptic 2DPO
(with elliptic caustics v = vc), respectively. The periodicity condition (2.7b) becomes
the identity ωϕ/ωu ≡ 1 (nϕ = 1, nu = 1), and θ is fixed by

θ = θh = arcsin

(√
η2 − 1

η

)
, θ = θe = arcsin

(√
η2 − 1

κη

)
, (2.10)

for the hyperbolic and elliptic 2DPO, respectively. For κ, we only have the condition
Eq. (2.7a). This κ determines σ1 and thus Iu and Iv (Iϕ = 0 since σ2 = 0) through

κ = κh =
√
σ1, κ = κe =

1√
σ1
, (2.11)

for the hyperbolic and elliptic orbits, respectively.
Some examples of the hyperbolic and elliptic orbits lying along the triangular

boundary side σ2 = 0 are indicated in Fig. 1; see also their geometrical illustrations
in Fig. 3. The hyperbolic and elliptic tori parts are separated by the separatrix point
(σ1 = 1, σ2 = 0) related to the long diameter (see below). Another end point of the
hyperbolic tori coincides with the stationary point (σ1 = σ2 = 0) for the diametric



Symmetry Breaking and Bifurcations in the Periodic Orbit Theory: II 7

Fig. 4. Some short equatorial-plane orbits: From the left to the right, the short diameter (2, 1), the

triangular (3, 1), the rhomboidal (4, 1), and the star-shaped (5, 2).

orbit in the equatorial plane. We can think of these hyperbolic and elliptic orbits
as being periodic in the plane ϕ = const and we call them “meridian-plane periodic
orbits”.

For the elliptic case, the solution κ of Eq. (2.7) with θ = θe(κ) exists for any
nu = 1, 2, · · · and nv ≥ 2nu + 1, (nϕ = nu) at any deformation η > 1. Examples are
the triangles (nv = 3, nϕ = 1, nu = 1), the rhomboids (4, 1, 1) and the star-shaped
orbits (5, 2, 2) as one-parameter families in the meridian plane. The root κ found
from Eq. (2.7) gives the elliptic caustics with uc = π/2 in Eq. (2.6) and the semi-axes
ac = ζ

√
1− κ2/κ and bc = ζ/κ.

For the hyperbolic case, the solutions κ can be found for nu = 1, 2, 3, · · · and
even nv (nv ≥ 2(nu + 1)). In Fig. 1 the “butterfly” orbit (4, 2, 1) is indicated as an
example. The families of these orbits appear for η > ηbif with

ηbif =

[
sin

(
πnu
nv

)]−1

. (2.12)

This is the deformation where the diametric orbits M(2, 1) with M ≥ 2 in the equa-
torial plane bifurcate and the hyperbolic orbits emerge from them. Their hyperbolic
caustics are expressed in terms of the root κ of Eq. (2.7) and Eq. (2.6) with vc = 0.
The parameters ac and bc of these caustics are given by ac = ζ

√
1− κ2 and bc = ζκ.

2.4. Orbits in the equatorial plane

In the equatorial plane with z = 0, the separate families of regular polygons
and diameters are the same as in a circular billiard3) of radius a. The restriction
z = 0 decreases the number K to K = 1. This single parameter corresponds to
the angle of rotation of the polygons and the diameters about the symmetry axis z.
Figure 4 illustrates the most important (shortest) equatorial-plane periodic orbits
(EQPO); the diameters M(nv = 2, nϕ = 1), triangles M(3, 1), squares M(4, 1) and
star-shaped orbits M(5, 2). They satisfy, from inequalities (2.5),

σ1 = σ2, 0 ≤ σ2 ≤
1

η2 − 1
. (2.13)

Therefore their stationary points lie along the σ2 = σ1 side in the triangle, as indi-
cated in Fig. 1.

The caustic parameters uc and vc for these families are defined by uc = 0 and
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vc = arcsinh[a cos(πnϕ/nv)/ζ]. The solutions of Eq. (2.7) for these orbits are κ = 0

and θ = arcsin
√

1− sin2(πnϕ/nv)/η2.

2.5. Diametric orbits along the symmetry axis

In the spheroidal cavity, there is also a diametric orbit along the z-axis (see
Fig. 3). It is isolated (K = 0), since we have two additional restrictions x = 0 and
y = 0 decreasing K by one unit more than in the previous case. The solution of
Eq. (2.7) for this orbit is κ = 1 and θ = arcsin(

√
η2 − 1/η). Its stationary point

coincides with the separatrix values (σ1 = 1, σ2 = 0) corresponding formally to the
caustic parameters (uc = π/2, vc = 0); see the circle point with the vertical diameter
in Fig. 1. (In Fig. 1b, it is very close to the stationary point for the elliptic orbits
(3,1,1) in the meridian plane, which lies slightly on the right along the σ2 = 0 side.)

2.6. Bifurcations

At the deformations ηbif given by Eq. (2.8), the EQPO M(nv, nϕ) bifurcate
and the 3DPO or the hyperbolic 2DPO M(nv, nϕ, nu) emerge. We encounter the
breaking-of-symmetry problem at these bifurcation points since the degeneracy (sym-
metry) parameter K changes there, for instance, from K = 1 of the EQPO to K = 2
of the 3DPO through them. Before the bifurcations (η < ηbif), the stationary points
σi of the 3DPO and the hyperbolic 2DPO are situated outside of the triangular tori
region (2.5), and give rise to complex (κ, θ) and complex caustics. Such formal orbits
are called “complex” or “ghost” orbits.5) They cross the σ1 = σ2 boundary through
the stationary point of the EQPO at bifurcations (η = ηbif) and then moves into
the triangular tori region for larger η. In Fig. 1 are also indicated the stationary
points for the 3DPO lying outside the physical tori region ((6,2,1) in Fig. 1a, (7,2,1)
and (8,2,1) in Fig. 1b). The equatorial diameters M(2, 1) correspond to the limiting
case, σ1 = σ2 = 0. They bifurcate into themselves (K = 1) and the hyperbolic 2DPO
(2M,M, 1) in the meridian plane (K = 2) at the deformations given by Eq. (2.12).

The spherical limit is a special bifurcation point. Namely, the planar regular
polygons (K = 3) and diameters (K = 2) bifurcate into the meridian 2DPO (K = 2),
EQPO (K = 1) and the isolated long diameter (K = 0) for deformations η > 1.
Another special point is the separatrix (σ1 = 1, σ2 = 0) related to the long diameter.
Near this point the complicated 3DPO, elliptic and hyperbolic 2DPO having large
values of (nu, nv) and nu/nv close to 1/2 appear. Similar bifurcations of the 3DPO,
EQPO and elliptic 2DPO appear near other boundary values of σi in the triangular
tori on its “creeping” side σ1 = σ+

1 (σ2) where some kinds of 3D “creeping” orbits
having large values of nv but with finite and generally different nu and nϕ appear.
This is in analogy with the “creeping” singularities discussed for the elliptic orbits in

the elliptic billiard28) near the maximum value of σ1, σ
(cr)
1 = cosh2 vb = η2/(η2− 1),

according to Eq. (A.6) at the right vertex in the “meridian-plane orbit” side σ2 = 0.
The 3DPO with large number of the corners nv and finite nu = nϕ approach the
“creeping” elliptic orbits in the meridian plane. Another vertex corresponds to the
creeping EQPO having large values of nv and nϕ but for nv/nϕ → 1/2.

The bifurcation point related to an appearance of “creeping” orbits cannot be
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reached for any finite deformation. However, even for finite deformations like su-
perdeformed shapes, the solutions for σ1 and σ2 (related to the roots κ and θ of
the periodic-orbit conditions (2.7)) can be close to the “creeping” values of σ1 and
σ2 (related to their boundary values of (2.5)). In such cases we have to take into
account such bifurcations in the trace formulas for the level density. The bifurcations
of the 3D and 2D diameter-like orbits with nv/nu close to 1/2 near the separatrix are
rather long, however, so that they are not important for the shell effects discussed
below.

§3. Trace formulas for the prolate spheroid

3.1. Phase-space trace formula in action-angle variables

The level density g(ε) is obtained from the Green function G(r, r′; ε) by taking
the imaginary part of its trace:

g(ε) =
∑

n

δ (ε − εn) = − 1

π
Im

∫
dr′′

∫
dr′G(r′, r′′; ε) δ(r′′ − r′), (3.1)

where εn is the single-particle energy. Following Ref. 28), we apply now the
Gutzwiller’s trajectory expansion for the Green function G(r, r′, ε).1), 2), 10) After
simple transformations,28) we obtain the phase-space trace formula in the action-
angle variables (I ,Θ),

gscl(ε) =
1

(2π~)3
Re
∑

α

∫
dΘ′′

∫
dI ′δ

(
ε −H

(
I ′,Θ′

))

× exp

[
i

~
(
Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′

)
·Θ′′

)
− iπ

2
να

]
, (3.2)

where the sum is taken over all classical trajectories α, I = {Iu, Iv, Iϕ} are the
actions for the spheroidal cavity, Θ = {Θu, Θv, Θϕ} the conjugate angles, and να
phases related with the Maslov indices.39), 41)–43) The phase-space trace formula (3.2)
is especially useful for integrable systems since the Hamiltonian H does not depend
on the angle variables Θ in this case, i.e., H = H(I). The action

Sα
(
I ′, I ′′, tα

)
= −

∫ I ′′

I ′
dI ·Θ(I) (3.3)

is related to the standard definition

Sα
(
Θ′,Θ′′, ε

)
=

∫ Θ′′

Θ′
dΘ · I(Θ) (3.4)

by the Legendre transformation

Sα(Θ′,Θ′′, ε) + I ′′ · (Θ′ −Θ′′) = Sα(I ′, I ′′, tα) +Θ′′ · (I ′′ − I ′), (3.5)

tα being the time for classical motion along the trajectory α. The phase να will be
specified below.
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3.2. Stationary phase method and classical degeneracy

It should be emphasized that even for integrable systems the trace integral (3.2)
is more general than the Poisson-sum trace formula which is the starting point of
Refs. 5),32),35) for the semiclassical derivations of the level density. These two trace
formulas become identical when the phase of the exponent does not depend on the
angle variables Θ. In this case, the integral over angles in (3.2) gives simply (2π)n

where n is the dimension of the system (n = 3 for the spheroidal cavity), and the
stationary condition for all angle variables are identities in the 2π interval. This is
true for the most degenerate classical orbits like the elliptic and hyperbolic 2DPO
in the meridian plane and the 3DPO with K = n − 1 = 2. On the other hand,
for orbits with smaller degeneracy like the EQPO (K = 1) and the isolated long
diameter (K = 0), the exponent phase strongly depends on angles and possesses a
definite stationary point. Therefore, we have to integrate over such angles by the
ISPM in the same way as for the bifurcations of the isolated diameters in the elliptic
billiard.28)

3.3. Stationary phase conditions

Due to the energy conserving δ-function, we can exactly take the integral over
I ′v in Eq. (3.2) and result in

gscl(ε) =
1

(2π~)3
Re
∑

α

∫
dΘ′′u

∫
dΘ′′v

∫
dΘ′′ϕ

∫
dI ′u

∫
dI ′ϕ

1

|ω′v|

× exp

[
i

~
(
Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′

)
·Θ′′

)
− iπ

2
να

]
. (3.6)

The integration limits for Iu and Iϕ are determined by their relations to the variables
(σ1, σ2) and by the boundaries given by Eq. (2.5). One of the trajectory α0 in the
sum (3.6) is the special one which corresponds to the smooth level density gTF of the
Thomas-Fermi model.10) For all other trajectories, we first write down the stationary
phase condition for the action variables I ′u and I ′ϕ :

(
∂Sα(I ′, I ′′, tα)

∂I ′u

)∗
− Θ′′u ≡ Θ′u −Θ′′u = 2πMu, (3.7a)

(
∂Sα(I ′, I ′′, tα)

∂I ′ϕ

)∗
− Θ′′ϕ ≡ Θ′ϕ −Θ′′ϕ = 2πMϕ, (3.7b)

where M = (Mu,Mv,Mϕ) = M(nu, nv, nϕ) and M are integer numbers which indi-
cate the numbers of revolution along the primitive periodic orbit β. The superscript
asterisk means that we take the quantities at the stationary point I ′u = I∗u and
I ′ϕ = I∗ϕ. We next use the Legendre transformation (3.5). Then, the stationary
phase conditions with respect to angles (Θu, Θv, Θϕ) are given by

(
∂Sα(Θ′,Θ′′, ε)

∂Θ′′
+
∂Sα(Θ′,Θ′′, ε)

∂Θ′

)∗
≡ I ′′ − I ′ = 0. (3.8)
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In the following derivations we have to decide whether the stationary phase
conditions (all or partially) given by Eqs. (3.7) and (3.8) are identities or equations
for the specific stationary points. For this purpose we have to calculate separately the
contributions from the most degenerate 3DPO, the 2DPO families in the meridian
plane (K = 2) and those from orbits with smaller degeneracy like EQPO (K = 1) and
the isolated long diameter (K = 0). The latter two kinds of orbit are different from
the former two kinds in the above mentioned decision concerning the integration
over angles Θ.

3.4. Three-dimensional orbits and meridian-plane orbits

The most degenerate 3DPO and the meridian-plane (elliptic and hyperbolic)
2DPO having the same values of action occupy some 3D finite areas between the
corresponding caustic surfaces specified above. In this case the stationary phase con-
ditions (3.8) for the integration over all angle variables Θu, Θv and Θϕ are identities.
The integrand does not depend on the angle variables and the result of the inte-
gration is (2π)3. Since Eq. (3.8) is identically satisfied (the action does not depend
on the angles like the Hamiltonian H(I)) we have the conservation of the action
variables, I ′u = I ′′u = Iu and I ′ϕ = I ′′ϕ = Iϕ, along the classical trajectory α. The

integrals over all Θ in Eq. (3.2) yield (2π)3 and we are left with the Poisson-sum
trace formula,5), 10)

gscl(ε) =
1

~3
Re
∑

M

∫
dI δ (ε−H(I)) exp

[
2πi

~
M · I − iπ

2
νM

]

=
1

~3
Re
∑

M

∫
dIu

∫
dIϕ

1

|ωv|
exp

[
2πi

~
M · I − iπ

2
νM

]
. (3.9)

It is convenient to transform the integration variables (Iu, Iϕ) to (σ1, σ2) defined by
Eq. (2.3),

gscl(ε) =
1

~3
Re
∑

M

pζ

∫ σ+
2

σ−2

dσ2

2
√
σ2

∫ σ+
1

σ−1

dσ1
∂Iu
∂σ1

1

|ωv|
exp

[
2πi

~
M · I − iπ

2
νM

]
.

(3.10)

The integration limits are much simplified when written in terms of σ±i (i = 1, 2) and
form the triangular region shown in Figs. 1. We then integrate over σi expanding
the exponent phase about the stationary point σi = σ∗i ,

2π (M · I) ≡ Sα
(
I , I ′′, tα

)
+
(
I ′′ − I

)
·Θ′′

= Sβ(ε) +
1

2

∑

i,j

Jβij(σi − σ∗i )(σj − σ∗j ) + · · · , (3.11)

where Sβ(ε) is the action along the periodic orbit β,

Sβ(ε) = 2πM
[
nuI

∗
u + nvIv

(
ε, I∗u, I

∗
ϕ

)
+ nϕI

∗
ϕ

]
, (3.12)
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and Iv(ε, Iu, Iϕ) the solution of the energy conservation equation ε = H(Iu, Iv, Iϕ)

with respect to Iv . Here the single prime index is omitted for simplicity. The Jβij is
the Jacobian stability factor with respect to σi along the energy surface,

Jβij =

(
∂2Sα
∂σi∂σj

)

σi=σ∗i

= 2πMnvK
β
ij , (3.13)

and Kβ
ij is the (2× 2) curvature matrix of the energy surface taken at the stationary

point σi = σ∗i (at the periodic orbit β),

Kβ
ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σi∂σj

. (3.14)

See Appendix A for the explicit expressions of these curvatures. As we shall see
below, the off-diagonal curvature K12 is non-zero for variables σi.

Then we use the ISPM, where we keep exact finite limits for integration over σi,
and we finally obtain

δg
(2)

{3D
2D}

(ε) =
1

ε0
Re
∑

β

A
(2)
β exp

(
ikLβ − i

π

2
νβ

)
, (3.15)

where ε0 = ~2/2mR2 (R3 = a2b due to the volume conservation condition). The
sum runs over all two-parameter families of the 3DPO or the meridian-plane (elliptic

and hyperbolic) 2DPO, A
(2)
β is the amplitude for a 3DPO or a 2DPO,∗)

A
(2)

{3D
2D}

=
1

4 π

Lβζ

(MnvR)2
√
σ∗2 |detKβ|

[
∂Iu
∂σ1

]

σi=σ
∗
i

erf
(
Z−1 ,Z+

1

)
erf
(
Z−2 ,Z+

2

)
.

(3.16)

Here, Lβ represents “length” of the periodic orbit β

Lβ =
2πMnvp

mωv

= 2Mnvb sin θ

[
E(θ, κ)− F(θ, κ)

F (κ)
E (κ) + cot θ

√
1− κ2 sin2 θ

]
, (3.17)

where θ and κ are defined by the roots of periodic-orbit equations (2.7) (Sβ = pLβ for
cavities). This “length” taken at the stationary points σ∗i (the real positive roots
of Eq. (2.7) through Eqs. (2.4) and (2.6)) inside the finite integration range (2.5)
represents the true length of the corresponding periodic orbit β. For other stationary
points, the “length” is nothing else than the function (3.17) continued analytically
outside the tori determined by (2.5). We introduced it formally instead of ωv by the
equation ωv = 2πpMnv/mLβ for convenience. In Eq. (3.16) we introduced also the

∗) The expression (3.16) is valid also for the 2DPO (σ∗2 = 0), since the product σ2K22 is finite

for any σ2 (see Appendix A).
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generalized error function erf (Z−,Z+) of the two complex arguments Z− and Z+,

erf
(
z−, z+

)
=

2√
π

∫ z+

z−
dz e−z

2
= erf(z+)− erf(z−), (3.18)

with erf(z) being the simple error function.46) The arguments of these error functions
are given by

Zβ±1 =

√
−iπMnvK

β
11/~

(
σ±1 (σ∗2)− σ∗1

)
, (3.19a)

Zβ±2 =

√
−iπMnv(detKβ/K

β
11)/~

(
σ±2 − σ∗2

)
, (3.19b)

in terms of the finite limits σ±i given by (2.5), and taken at the stationary point

σ2 = σ∗2 . We note that, for the 3DPO M(3t, t, 1) with t = 2, 3, ..., the curvature Kβ
11

is zero at any deformation. For such orbits, one should use

Zβ±1 =

√
−iπMnv(detKβ/Kβ

22)/~
(
σ±1 (σ∗2)− σ∗1

)
, (3.20a)

Zβ±2 =

√
−iπMnvK

β
22/~

[
σ±2 − σ∗2 +

Kβ
12

Kβ
22

(
σ±1 (σ∗2)− σ∗1

)
]
, (3.20b)

in place of (3.19). The latter limits (3.20) are derived by transforming the integration
variable σ2 to σ2 − (K12/K22)(σ1 − σ∗1).

Let us consider the stationary points σ∗i far from the bifurcation points. This
means that they are located far from the integration limits. Accordingly, one can
transform the generalized error functions to the complex Fresnel functions with the
real limits and then extend the upper limit to ∞ and the lower one to −∞. In this
way we obtain asymptotically the Berry-Tabor result of the standard POT,5) which
is identical to the extended Gutzwiller’s result9) for the most degenerate (3D and
meridian-plane) orbit families,

A
(2)

{3D
2D}

(ε) =
1

π

Lβζ

(MnvR)2
√
σ∗2 | detKβ |

[
∂Iu
∂σ1

]

σi=σ
∗
i

. (3.21)

The constant part of the phase νβ in Eq. (3.15), which is independent of η and
ε, can be found by making use of the above asymptotic expression and applying the
Maslov-Fedoryuk theory.39), 41)–43) This theory relates the Maslov index µβ with the
number of turning and caustic points for the orbit family β. For the 3DPO, the total
asymptotic phase νβ is given by

ν3D = µ3D −
1

2
ε3D + 2(Mnu − 1), µ3D = M(3nv + 2nu). (3.22)

Here µβ denotes the Maslov index, the numbers of caustic and turning points tra-
versed by the orbit. εβ represents the difference of the numbers of positive and
negative eigenvalues of curvature Kβ .∗) For the hyperbolic and elliptic meridian

∗) Since the dimension of Kβ is 2, εβ is written as εβ = sign(Kβ
1 ) + sign(Kβ

2 ), where Kβ
i is the

i-th eigenvalue of Kβ. It is also calculated by εβ = sign(Kβ
11) + sign(detKβ/Kβ

11) for Kβ
11 6= 0, and

εβ = sign(Kβ
22) + sign(detKβ/Kβ

22) for Kβ
22 6= 0. Here, sign(x) = ±1 for x>< 0 and 0 for x = 0.
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2DPO, one obtains

ν2DH = µ2DH −
1

2
ε2DH + 2 (Mnu − 1) , µ2DH = 2M (nv + nu) (3.23)

and

ν2DE = µ2DE −
1

2
ε2DE + 2 (Mnu − 1) , µ2DE = 3Mnv (3.24)

respectively. Note that the total phase includes the argument of the complex ampli-
tude (3.16), and depends on both deformation and energy.

Near the bifurcation deformations, the stationary points σ∗i are close to the
boundary of the finite area (2.5). In such cases the asymptotics of the error functions
are not good approximations, and we have to carry out the integration over σi in the
calculation of the error functions in Eq. (3.16) exactly within the finite limits. One
should also note that the contributions from “ghost” periodic orbits are important
near the bifurcation points. It makes the trace formula continuous as function of η
at all bifurcations.

When the stationary phase points σ∗i are close to other boundaries of the tori, one
has also to take the integrals with the finite limits; for instance, near the triangular
side σ1 = σ+

1 (σ2) where we have the “creeping” points for the 3DPO inside the tori
(2.5) and the meridian elliptic 2DPO near the end point (σ1 = σ+

1 , σ2 = 0) with a
large number of the vertices nv → ∞. Another sample of such special bifurcation
point is the separatrix (σ1 = 1, σ2 = 0) where 3DPO and hyperbolic 2DPO have a
finite limit nu/nv → 1/2 for nv → ∞ and nu → ∞. In this case the curvature K11

becomes infinite and the amplitude (3.16) approaches zero. Thus, to improve the
trace formula near the bifurcations, we have to evaluate the generalized error integral
erf(Zβ−i ,Zβ+

i ) (or corresponding complex Fresnel functions46)) in Eq. (3.16) within

the finite limits Zβ±i given by Eqs. (3.19) or (3.20).
For the spheroidal cavity we have another bifurcation at the spherical limit

where the “azimuthal” Jacobian Jβ22 and Jβ12 (3.13) (σ2 ∝ I2
ϕ) vanishes.9) This is

the reason for the divergence of the standard POT result (3.21) in the spherical
limit. Our improved trace formula (3.16) is finite in the spherical limit, because

the “azimuthal” generalized error function erf(Zβ−2 ,Zβ+
2 ) is proportional to

√
Jβ22

in this limit and thus this “azimuthal” Jacobian is exactly canceled by that coming
from the denominator of Eq. (3.16). Thus, as shown in Ref. 9), the elliptic 2DPO
term (K=2) in the level density approach the spherical Balian-Bloch result for the
most degenerate planar orbits with larger degeneracy (K = 3),

δg
(3)
sph(ε) =

√
kR

ε0

∑

t≥1, q>2t

sin

(
2πt

q

)√
sin(2πt/q)

qπ

× sin

[
2kRq sin

(
πt

q

)
− 3π

2
q − (t− 1)π − π

4

]
, (3.25)

where t = Mnu and q = Mnv . Note that Eq. (3.25) can be derived directly from
the phase-space trace formula (3.2) or from the Poisson-sum trace formula, both
rewritten in terms of the spherical action-angle variables.
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3.5. Equatorial-plane orbits

We cannot apply the Poisson-sum trace formula (3.9) for equatorial-plane orbits,
because, although the stationary-phase conditions for Θ′′ϕ and Θ′′v in Eq. (3.8) are
identities, it is not the case for the angle variable Θ′′u. We thus apply the ISPM for
the integration over Θ′′u.

Coming back to Eq. (3.6) we transform the phase-space trace formula to new
“parallel” (Θ′′v ; I ′v) and “perpendicular” (Θ′′u, Θ

′′
ϕ; I ′u, I

′
ϕ) variables as explained in Ap-

pendix B for more general (integrable and non-integrable) systems. We then make
the integration over the (I ′u, I

′
ϕ) variables in terms of the ISPM by transforming them

into the σi variables. Next, we consider the integration over the angle variable Θ′′u
by the ISPM, as there is the isolated stationary point Θ∗u = 0 or integer multiple of
2π. We expand the exponent phase in a power series of Θ′′u about Θ∗u = 0,

Sα
(
I , I ′′, tα

)
+
(
I ′′ − I

)
·Θ′′

= pLEQ +
1

2

∑

ij

JEQ
ij (σi − σ∗i )(σj − σ∗j ) +

1

2
JEQ
⊥

(
Θ′′u
)2

+ · · · , (3.26)

where the stationary point σ∗1 = σ∗2 ≡ σ∗ is given by

σ∗ =

(
I∗ϕ
pζ

)2

=
a2 cos2 φ

ζ2
=

cos2 φ

η2 − 1
, I∗ϕ = p a cosφ. (3.27)

LEQ is the length of the equatorial polygon with nv vertices and M rotations, and
is given by

LEQ = 2MnvR sinφ, φ = πnϕ/nv . (3.28)

In this way one finally obtains the amplitudes A
(1)
EQ for EQPO,

δg
(1)
EQ(ε) =

1

ε0
Re
∑

EQ

A
(1)
EQ exp

{
i
(
kLEQ −

π

2
νEQ

)}
, (3.29)

A
(1)
EQ =

√
sin3 φ

πMnvkRηF
EQ
z

erf
(
Z−1 ,Z+

1

)
erf
(
Z−2 ,Z+

2

)
erf
(
Z−3 ,Z+

3

)
, (3.30)

see Appendix B for a detailed derivation. Here, Z±i are the limits given by Eqs. (3.19)
or (3.20) for i = 1, 2, and Z−3 = 0,Z+

3 = Z+
⊥ from Eq. (B.19). The latter is related

to the finite limits 0 ≤ Θu ≤ π/2 for the angle Θu in the trace integration in
Eq. (3.6), taking into account explicitly the factor 4 due to the time-reversal and
spatial symmetries.

For the total asymptotic phase νEQ, one finds

νEQ = µEQ +
1

2
, µEQ = 3Mnv, (3.31)

where µEQ is the Maslov index. We calculated this phase using the Maslov-Fedoryuk
theory43) at a point asymptotically far from the bifurcations. Note that the total
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Table I. Bifurcation points of some short periodic orbits.

periodic orbit ηbif periodic orbit ηbif

(4,2,1)
√

2 (6,3,1) 2

(5,2,1) 1.618... (7,3,1) 2.247...

(6,2,1)
√

3 (8,3,1) 2.414...

(7,2,1) 1.802... (9,3,1) 2.532...

(8,2,1) 1.848...

phase is defined as the sum of the asymptotic phase νEQ and the argument of the
amplitude AEQ, Eq. (3.30), so that it depend on kR and η through the complex
arguments of the product of the error functions. In the derivations of Eq. (3.30) we
have taken into account the off-diagonal curvature as in the previous subsection, but
much smaller corrections due to the mixed derivatives of the action Sα with respect
to Θ′′u and σi are neglected, taking σi = σ∗i in Eq. (3.26).

The bifurcation points are associated with zeros of the stability factor F
EQ
z and

given by

ηbif =
sinφ

sin (nφ/M)
, n = 1, 2, · · · ,M. (3.32)

The bifurcation points most important for the superdeformed shell structure are
listed in Table I.

When the stationary points are located inside the finite integration region far
from the ends, we transform the error functions in Eq. (3.30) into the Fresnel ones
and extend their arguments to ±∞, except for the case when the lower limit is
exactly zero. According to the definitions of the limit, Eqs. (3.19) and (B.19), for
Z±i , we have asymptotically Z+

i → +∞ (i = 1, 2, 3), Z−1 = Z−3 → 0, Z−2 → 0 for
diameters and Z−2 → −∞ for the other EQPO. Finally, we arrive at the standard

Balian-Bloch formula3) for the amplitude A
(1)
EQ,

A
(1)
EQ =

fEQ√
πkRη

√
sin3 φ

MnvF
EQ
z

(3.33)

where fEQ = 1 for the diameters and 2 for the other EQPO (erf(Z−2 ,Z+
2 )→ fEQ in

this limit).
As seen from Eq. (3.33), there is a divergence at the bifurcation points where

FEQ
z → 0. We emphasize that our ISPM trace formula (3.29) has no such divergences.

Indeed, the stability factor FEQ
z responsible for this divergence is canceled by FEQ

z

from the upper limit Z+
3 , Eq. (B.19), of the last error function in Eq. (3.30), Z+

3 ∝√
FEQ
z , and we obtain the finite result at the bifurcation point:

A
(1)
EQ =

η1/3 sinφ
√
η2 − sin2 φ√

2i(η2− 1)Mnv
erf
(
Z−1 ,Z+

1

)
erf
(
Z−2 ,Z+

2

)
. (3.34)

It is very important to note that there is a local enhancement of the amplitude
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(3.34) by a factor of order
√
kR ∗) near the bifurcation point. This enhancement is

associated with a change of the degeneracy parameter K by one unit locally near the
bifurcation point and results from exactly carrying out one integration more than
in the SSPM case. In general, any change of the degeneracy parameter K by ∆K is
accompanied by the amplitude enhancement by (kR)∆K/2 because of the ∆K extra
exact integrations. These enhancement mechanism of the amplitude obtained in
the ISPM is quite general and is independent of the specific choice of the potential
shapes.

We mention that a more general trace formula which can be applied also to
non-integrable but axially symmetric systems can be derived from the phase-space
trace formula (see Appendix B).

The contribution of the equatorial diameters in Eq. (3.29) for deformations far
from bifurcation points reduces to the Balian-Bloch result for the spherical diameters
(K = 2),

δg
(2)
sph(ε) = − 1

ε0

∑

M

1

2πM
sin(4MkR). (3.35)

The amplitude for the planar polygons in the equatorial plane vanish in the spherical
limit (see Appendix B). Note that the contributions of the planar polygons in the

spherical cavity, Eq. (3.25), are obtained as the limit of A
(2)
2D, Eq. (3.16), for elliptic

orbits in the meridian plane.9)

3.6. Long diametric orbits and separatrics

As mentioned in §2, the curvatures Kβ
ij become infinite near the separatrix

(σ1 = 1, σ2 = 0), see Appendix C. This separatrix corresponds to the isolated
long diameters (K = 0) along the symmetry axis. Thus, for the derivation of their
contributions to the trace formula, the expansion up to the second order in action-
angle variables considered above fails like for the turning and caustic points in the
usual phase space coordinates. However, we can apply the Maslov-Fedoryuk the-
ory39), 41)–43) in a similar way as the calculation of the Maslov indices associated
with the turning and caustic points but with the use of the action-angle variables in
place of the usual phase space variables. This is similar to the derivation of the long
diametric term in the elliptic billiard.28)

Starting from the phase space trace formula (3.6) we note that the spheroidal
separatrix problem differs from the one for the elliptic billiard28) by the integrals
over the two azimuthal variables Θ′′ϕ and I ′ϕ which are additional to the integrals
over Θ′′u and I ′u. We expand the phase of exponent in Eq. (3.6) with respect to the
action I ′ϕ and angle Θ′′ϕ about the stationary points I∗ϕ = 0 and an arbitrary Θ∗ϕ (for
instance, Θ∗ϕ = 0), and take into account the third order terms, in a similar way as
for the variables Θ′′u and I ′u (see Appendix C). Note that we consider here small
deviations from the long diameters, and Θ∗ϕ determines the azimuthal angle of the
final point r′′ of this trajectory near the symmetry axis.

∗) The parameter of our semiclassical expansion is in practice
√
kLβ

(
∝
√
kR
)

. It is actually

large for 3D orbits (Lβ ∼ 10R) associated with superdeformed shell structures in nuclei.
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After the procedure explained in Appendix C, we obtain

δg
(0)
LD(ε) =

πb

2ε0R
Re
∑

M

1

kR
eikLLD−iπ2 νLD

2∏

j=1

e
2i
3

[
(w
‖
j )3/2+(w⊥j )3/2

]
(
w
‖
jw
⊥
j

)1/4

√
|c‖2,jc⊥2,j |

×[Ai(−w‖j ) + iGi(−w‖j )]
×[Ai(−w⊥j ,Z−⊥ ,Z+

⊥) + iGi(−w⊥j ,Z−⊥ ,Z+
⊥)] (3.36)

(see Appendix C for notations used here).
For finite deformations and sufficiently large kR, i.e. for large pζ ∝ kR

√
η2 − 1,

near the separatrix σ1 → 1, σ2 → 0, the incomplete Airy functions in this equation
can be approximated by the complete ones. Thus, Eq. (3.36) reduces to the standard
Gutzwiller’s result for the isolated diameters,3), 9)

δg
(0)
LD(ε) =

2b

πε0kR2

∑

M

1

|FLD
xy |

cos
[
kLLD(M)− π

2
νLD

]
, (3.37)

with the length LLD(M) = 4Mb = 4Mη2/3R and the stability factor FLD
xy for long

diameters given by Eq. (C.20).
For the calculation of the asymptotic phase νLD we use this asymptotic expres-

sion and calculate the Maslov indices µLD by the Maslov-Fedoryuk theory,43)

νLD = µLD + 2, µLD = 4M. (3.38)

The additional phases, dependent on deformation and energy, come from the argu-
ments of the complex exponents and Airy functions of the complex amplitude.

In the spherical limit, both the upper and lower limits of the incomplete Airy
functions in Eq. (3.36) approach zero and the angle integration has the finite limit
π/2 (see Appendix C). With this, the other factors ensure that the amplitude for
long diameters becomes zero; namely, the long diametric contribution to the level
density vanishes in the spherical limit.

§4. Level density, shell energy and averaging

4.1. Total level density

The total semiclassical level density improved at the bifurcations can be written
as a sum over all periodic orbit families in the spheroidal cavity considered in the
previous section,

δgscl(ε) = δg
(2)
3D(ε) + δg

(2)
2D(ε) + δg

(1)
EQ(ε) + δg

(0)
LD(ε) =

∑

β

δg
(β)
scl (ε), (4.1)

where the first two terms represent the contributions from the most degenerate (K =
2) families of periodic orbits, the 3DPO and the meridian-plane 2DPO, given by
Eq. (3.15), the third term the EQPO given by Eq. (3.29), and the fourth term the
long diameters given by Eq. (3.36).
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4.2. Semiclassical shell energy

The shell energy δE can be expressed in terms of the oscillating part δg
(β)
scl (ε) of

the semiclassical level density (4.1) as4), 9), 10)

δE =
∑

β

(
~
tβ

)2

δg
(β)
scl (εF), N =

∫ εF

0

dε g(ε). (4.2)

Here, tβ denotes the period for a particle moving with the Fermi energy εF along the
periodic orbit β,

tβ = MTβ =
2πM

Ωβ
, (4.3)

Tβ being the primitive period (M = 1), M the number of repetitions, and Ωβ the
frequency. The Fermi energy εF is determined by the second equation of (4.2) where
N is the particle number.

In the derivation of Eq. (4.2) we used an expansion of the amplitudesAβ(ε) about
the Fermi energy ε = εF. Although Aβ(ε) are oscillating functions of the energy ε (or
kR), we can apply such an expansion, because Aβ are much more smooth compared
to the oscillations coming from the exponent function of kLβ . The latter oscillations
are responsible for the shell structure, while the oscillations of Aβ merely lead to
slight modulations with much smaller frequencies.

Thus, the trace formula for δE differs from that for δg only by a factor (~/tβ)2 =
(~2kF/mLβ)2 near the Fermi surface, i.e. longer orbits are additionally suppressed
by a factor 1/L2

β. The semiclassical shell energy is therefore determined by short
periodic orbits.

4.3. Average level density

For the purpose of presentation of the level density improved at the bifurcations
we need to consider only an average level density, thus also avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The average level density is obtained by folding the level density with a Gaussian
of width Γ :

gΓ (ε) =
1√
πΓ

∫ ∞

−∞
dε′ g(ε′) e−( ε−ε

′
Γ

)2
. (4.4)

The choice of the Gaussian form of the averaging function is immaterial and guided
only by mathematical simplicity.

Applying now the averaging procedure defined above to the semiclassical level
density (4.1), one obtains3), 9)

δgΓ,scl(ε) =
∑

β

δg
(β)
scl (ε) e−(

ΓMTβ
2~ )2

=
∑

β

δg
(β)
scl (ε) e−(

γLβ
2R

)2
. (4.5)

The latter equation is written specifically for cavity problems in terms of the orbit
length Lβ (in units of a typical length scale R) and a dimensionless parameter γ,

Γ = 2γ
√
εε0 , (4.6)
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where γ is a dimensionless quantity for averaging with respect to kR. Thus, the
averaging yields an exponential decrease of the amplitudes with increasing Lβ and
γ. In Ref. 9), the γ is chosen to be 0.6. In this case, all longer orbits are strongly
damped and only the short periodic orbits contribute to the oscillating part of the
level density. For the study of the bifurcation phenomena in the superdeformed
region, we need a significantly smaller value of γ.

Finally, we can say that the higher the degeneracy of an orbit, the larger the
volume occupied by the orbit family in the phase space, and the shorter its length,
the more important is its contribution to the average density of states.

§5. Quantum Spheroidal Cavity

5.1. Oscillating level density

We calculated the quantum spectrum by the spherical wave decomposition
method50) in which wave functions are decomposed into the spherical waves as

ψm(r) =
∑

l

′
Cl jl(kr) Ylm(Ω). (5.1)

Here, m denotes the magnetic quantum number, and
∑′ means that l is summed

over even(odd) numbers for positive(negative) parity states. jl and Ylm are the
usual spherical Bessel function and spherical harmonics, respectively. The expansion
coefficients Cl’s are determined so that the wave function (5.1) satisfies the Dirichlet
boundary condition

ψm(r = R(Ω)) = 0 (5.2)

or equivalently,
∫
dΩY ∗lm(Ω)ψm(r = R(Ω)) = 0, ∀l. (5.3)

By inserting (5.1) into (5.3), one obtains the matrix equation

∑

l′

′
Bll′(k)Cl′ = 0, Bll′(k) =

∫
dΩY ∗lm(Ω)jl′(kR(Ω))Yl′m(Ω). (5.4)

Truncating the summation l by sufficiently large number lc, one can obtain the energy
eigenvalue εn = ~2k2

n/2m by searching the roots

detB(kn) = 0. (5.5)

Figure 5 shows the energy level diagram for the prolate spheroidal cavity as functions
of axis ratio η > 1. In Fig. 6, we plot shell structure energy

δE(N, η) =

N∑

n=1

εn(η)− Ẽ(N, η) (5.6)
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Fig. 5. Single-particle spectrum for the spheroidal cavity as a function of axis ratio η. Solid and

dashed curves represent the positive and negative parity levels, respectively.

as functions of η and particle number N . As well as the strong shell effect at
the spherical shape (η = 1), one clearly see a remarkable shell structure at the
superdeformed shape (η ∼ 2).

Next, we calculated the coarse-grained level density by the usual Strutinsky
smoothing procedure by taking wave number k as smoothing variable:

gγ(k) =
1

γ

∫ ∞

0
dk′RfM

(
kR− k′R

γ

)
g(k′). (5.7)

As a smoothing function fM(x), we took a Gaussian with M -th order curvature
corrections

fM (x) =
1√
π
e−x

2
L

1/2
M/2(x2), (5.8)

where Lαn(z) represents a Laguerre polynomial. Eq. (4.4) corresponds to the case
of M = 0. In the following, we took the order of curvature corrections M = 6 and
smoothing width γ̃ = 2.5 with which we can nicely satisfy the plateau condition.44)

The coarse-graining is also performed by the same smoothing function but with
smaller γ. We define the oscillating part of the level density by subtracting the
smooth part as

δgγ(k) = gγ(k)− gγ̃(k). (5.9)
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Fig. 6. Shell structure energy δE as a function of η and N 1/3, where N is the neutron (proton)

number taking the spin-degeneracy factor two into account. Energies are counted in units of

~2/2mR2 (∼ 30A−2/3MeV).

The left-hand side of Fig. 7 shows δgγ(k) with γ = 0.3, as functions of η and kR.
One will note that a remarkable shell structure emerges at η ∼ 2, corresponding to
the superdeformed shape.

Let us consider the mechanism of this strong shell effect. If a single orbit makes
a dominant contribution to the periodic-orbit sum

δgscl(ε) =
∑

β

aβ(k) cos(kLβ − πνβ/2), aβ(k) = Aβ/ε0, (5.10)

the major oscillating pattern in δg should be determined by the phase factor of the
dominant term. In that case, the positions of valley curves for δg in the (η, kR)
plane are given by

kLβ − πνβ/2 = (2n+ 1)π, (n = 0, 1, 2, · · ·). (5.11)

The right-hand side of Fig. 7 shows the stationary action curves (5.11) for several pe-
riodic orbits. Green solid curves represent the triangular orbit in the meridian plane.
Other longer meridian orbits also make the same behavior but with smaller distances.
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Red dashed curves represent the star-shaped orbit with five vertices in the equatorial
plane. It causes bifurcates at η = 1.618 . . . and the 3D orbit (5,2,1) appear (red solid
curves). The sequence (n,2,1) (n = 5, 6, 7, · · ·) make the same behavior shifting the
bifurcation points a little bit to larger η. Comparing with the plot of quantum δg,
one notices a clear correspondence between the superdeformed shell structure and
the bifurcation of above star-shaped orbits. One will also note the correspondence
between the bifurcations of the equatorial-plane orbits (n,3) (n = 7, 8, 9, · · ·) with
the hyperdeformed shell structure emerging at η ' 2.5. The significant shell energy
gain at the superdeformed shape obtained in Fig. 6 is considered as a result of this
strong shell effect in the level density.

5.2. Fourier analysis of level density

Fourier analysis is a useful tool to investigate quantum-classical correspondence
in the level density.3) Due to the simple form of action integral Sβ = ~kLβ, one can
easily Fourier transform the semiclassical level density gscl(k) with respect to k. Let
us define the Fourier transform F (L) by

F (L) =

∫
dke−ikLg(k). (5.12)

In actual numerical calculations, we multiply the integrand by a Gaussian truncation
function as

F∆(L) =
∆√
2π

∫
dke−

1
2

(k∆)2
e−ikLg(k). (5.13)

Inserting the semiclassical level density (5.10), the Fourier transform is expressed as

F scl
∆ (L) = F̄∆(L) +

1

2

∑

β

e−iπνβ/2aβ

(
i
∂

∂L

)
exp

[
−1

2

(
L− Lβ
∆

)2
]
. (5.14)

This is a function which has peaks at the lengths of classical periodic orbits L = Lβ .
On the other hand, we can calculate F (L) by inserting the quantum mechanical level
density g(k) =

∑
n δ(k − kn) as

F qm
∆ (L) =

∆√
2π

∑

n

e−
1
2

(kn∆)2
e−iknL. (5.15)

It should present successive peaks at orbit lengths L = Lβ . Thus we can extract
information on classical periodic orbits from the quantum spectrum. In the left-hand
side of Fig. 8, we plot the Fourier transform (5.15) as a function of L and η. In the
right-hand side of Fig. 8, lengths of classical periodic orbits Lβ(η) are shown. Red
curves represent the orbits M(nv, 2, 1) (nv = 4, 5, 6, · · ·). We found strong Fourier
peaks at η ' 2 corresponding to the periodic orbits (5,2,1), (6,2,1) and (7,2,1) just
after the bifurcation points. We also found Fourier peaks at η ' 2.5 corresponding
to the periodic orbits (7,3,1) and (8,3,1) etc. Thus, we can conclude that those
periodic orbit bifurcations play essential roles in the emergence of superdeformed
and hyperdeformed shell structures.
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Fig. 9. Shell structure energies plotted as functions of N 1/3. Solid curves represent the exact shell

structure energies. Dashed and dotted curves represent those calculated by using the coarse-

grained level density gγ(k) with the smoothing width γ = 0.3 and 0.6, respectively.

5.3. Coarse-grained shell structure energy

In order to prove that the shell structure at the superdeformed shape is due to
the bifurcated orbits, we calculated the ‘coarse-grained’ shell energy defined by

δẼγ(N) =

∫ k̃F(γ)

ε(k)gγ(k)dk−
∫ k̃F(γ̃)

ε(k)gγ̃(k)dk, (5.16)

where the smoothed Fermi wave number k̃F in each term is determined so that they
satisfy the particle number condition

∫ k̃F(γ)

gγ(k)dk =

∫ k̃F(γ̃)

gγ̃(k)dk = N. (5.17)

By coarse-graining with width γ, a shell structure of resolution∆kR = γ is extracted.
Classical orbits relevant for such a structure are those with lengths

L < Lmax =
2πR

γ
. (5.18)

Taking γ = 0.6, contributions from periodic orbits with L>∼ 10R are smeared out.
Around the superdeformed shape, bifurcated orbits have lengths L ∼ 10R and those
contributions are significantly weakened by smoothing with γ = 0.6, and the major
oscillating pattern of δE should disappear if those bifurcated orbits are responsible
for the superdeformed shell effect. In Fig. 9, the coarse-grained shell energies (5.16)
calculated for η = 1, 2, 3, with γ = 0.3 and 0.6, are compared with the exact shell
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Fig. 10. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2),

calculated at kR = 25 by the ISPM, are plotted as functions of the deformation parameter η

by thick and thin solid curves, respectively. They are compared with the SSPM amplitudes

(dashed curves). (b) The same as (a) but for the 3DPO (6,2,1) and the EQPO 2(3,1).
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Fig. 11. (a) ISPM3 amplitudes for the 3DPO (5,2,1), calculated at kR = 25, are shown as function
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exact integration in the Poisson-sum trace formula are plotted with thin-solid and thick-dotted

curves, respectively. (b) The same as (a) but for the 3DPO (6,2,1).

structure energies. In the upper panel, one observes that the spherical shell struc-
ture survives after smoothing with γ = 0.6, indicating that the major structure is
determined by orbits whose lengths are sufficiently shorter than 10R. On the other
hand, in the middle panel, one notices that the major oscillating pattern of the su-
perdeformed shell structure is considerably broken after smoothing with γ = 0.6.
The same argument is valid also for η = 3. This strongly supports the significance
of bifurcated orbits for the superdeformed and hyperdeformed shell structures.

§6. Enhancement of semiclassical amplitudes near the bifurcation points

In this section, we present some results of the semiclassical ISPM calculation,
which clearly show enhancement phenomena of the semiclassical amplitudes |A3D|
and |AEQ| near the bifurcation points.

Figure 10a shows the modulus of the complex amplitude A3D (Eq. (3.16)) for
the 3DPO (5, 2, 1) and AEQ (Eq. (3.30)) for the EQPO (5, 2) as functions of the
deformation parameter η. They are compared with those of the SSPM. The SSPM
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amplitude for the EQPO (5, 2) is divergent at the bifurcation deformation ηbif =
1.618 . . . , while the ISPM amplitude is finite and continuous through this bifurcation
point with a rather sharp maximum at this point. This is due to a local change
of the symmetry parameter K from 1 to 2 at the bifurcation, and the associated
enhancement of the amplitude is of the order

√
kR. As seen from Fig. 10a, the

ISPM amplitude for the (5, 2, 1) is continuous through the bifurcation point and
exhibit a remarkable enhancement a little on the right of it. It approaches the
SSPM amplitude given by Eq. (3.21) away from the bifurcation point. The ISPM
enhancement for the 3DPO is also of the order

√
kR, because of the same change

of the degeneracy parameter K from 1 to 2 as in the case of the bifurcating EQPO.
The same is true for the 3DPO (6,2,1) and the EQPO 2(3,1) as shown in Fig. 10b.

In Fig. 11, we consider corrections from the 3rd-order terms in the expansion of
the action about the stationary point. Here we incorporate the 3rd-order terms in
the σ1 variable (ISPM3) which are expected to be important for the 3DPO (6,2,1)
whose curvature K11 is identically zero (see Appendix D). We also show results
of exact integration in the Poisson-sum trace formula (3.10) (marked POISSON).
One sees that the results of the ISPM3 for the (5, 2, 1) and (6, 2, 1) orbits are in good
agreement with those of the ISPM in the most important regions near the bifurcations
and on the right-hand sides of them. It is gratifying to see that the ISPM and the
ISPM3 amplitudes |A3D| for (5, 2, 1) and (6, 2, 1) are also in good agreement with the
results of exact integration in the Poisson-sum trace formula. With the 3rd-order
corrections, excessive ghost orbit contributions in the ISPM (bumps in the ISPM
amplitudes in the left-hand side of the bifurcation point) are removed and better
agreement with the result of exact integration is obtained. Except for that, the
corrections due to the 3rd-order terms are rather small, and good convergence is
achieved up to the second-order terms.

The amplitudes |Aβ| are slightly oscillating functions of kR. Since the period of
this oscillation is much larger than that of the shell energy oscillation, one can use
the expansion about the Fermi energy εF (or kFR) in the derivations of both the
semiclassical ISPM shell energy δEscl and the oscillating level density δgscl (3.15).
Figure 12 shows the semiclassical amplitudes A3D for the 3DPO (5,2,1) and AEQ for
the EQPO (5, 2) as functions of kR at η = 1.618 . . . (top panel) and η = 2 (bottom
panel). In this figure, the semiclassical amplitudes A3D for the 3DPO (6,2,1) and
AEQ for the EQPO 2(3,1) are also plotted as functions of kR at the bifurcation point
η =
√

3 (middle panel). We see that for η = 2 the amplitudes |A3D| for the 3DPO
(5, 2, 1) and (6, 2, 1) become much larger than the amplitude |AEQ| for the EQPO.

§7. Comparison between quantum and semiclassical calculations

In this section we present results of calculation of level densities and shell en-
ergies with the use of the quantum Strutinsky method and the semiclassical ISPM,
and make comparisons between the quantum and semiclassical calculations. In the
quantum calculations, the averaging parameter γ = 0.3 is used.

Figure 13 shows oscillating level densities δg for relatively small deformations;
QM and ISPM denote the δg obtained by the quantum Strutinsky method and the
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Fig. 12. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2)

are plotted by bold and thin solid curves, respectively, as functions of kR at the bifurcation

point η = 1.618 . . . . (b) The same as (a) but for the 3DPO (6,2,1) and the EQPO 2(3,1) at the

bifurcation point η = 1.732 . . . . (c) Semiclassical amplitudes |A3D| for (5,2,1), (6,2,1) and |AEQ|
for (5,2) are plotted by thin-solid, thick-solid and dotted curves, respectively, as functions of kR

at η = 2.0.

semiclassical ISPM, respectively. For η = 1.2 we obtain a good convergence of the
periodic orbit sum (4.1) by taking into account the short elliptic 2DPO with nv ≤ 12,
nu = 1, the short EQPO with the maximum vertex number pmax = M(nv)max = 14,
and the maximum winding number tmax = Mnϕ = 1 (M = 1, nϕ = 1). The
ISPM result is in good agreement with the quantum result. For the bifurcation
point η =

√
2 of the butterfly orbit (4, 2, 1) and η = 1.5 slightly on the right of

it, the convergence of the periodic-orbit sum is attained by taking into account the
contributions from the bifurcating orbits, (4, 2, 1) and the twice-repeated diameter
2(2, 1) with tmax = 2, in addition to the 2DPO and the EQPO considered in the
η = 1.2 case.

Figure 14 presents the oscillating level densities for the bifurcation deformations;
η = 1.618 . . . for the EQPO (5, 2), η =

√
3 for the EQPO 2(3, 1), and η = 2 for the

triply repeated equatorial diameters 3(2, 1). It is interesting to compare this figure
with Fig. 15 where some results of simplified semiclassical calculations are shown.
In the top panel of Fig. 15, the SSPM is used instead of the ISPM. We see that the
SSPM is a good approximation for η = 1.2. In the middle and bottom panels, only
bifurcating orbits are taken into account in the periodic-orbit sum: only the 3DPO
(5, 2, 1), the EQPO (5, 2) and the butterfly (4, 2, 1) are accounted for in the middle
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panel, while only the 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1),(8, 2, 1) in the bottom panel.
By comparing with the corresponding ISPM results shown in Fig. 15, we see that,
for η = 1.618 . . . and 2, the major patterns of the oscillation are determined by these
short 3DPO.

Figures 16 and 17 show the shell energies which respectively correspond to the
oscillating level densities shown in Figs. 13 and 14. Again, we see good agreement
between the results of the semiclassical ISPM and the quantum calculations. For
η = 1.2, a good convergence is attained by including only the shortest elliptic 2DPO
and EQPO, in the same way as for the level density δg, see Ref. 9). For η =

√
2

and 1.5, properties of the ISPM shell energies are similar to those considered for
the elliptic billiard in Ref. 28). Now, let us more closely examine the bifurcation
effects in the superdeformed region by comparing Fig. 17 with Fig. 18. In the top
panel of Fig. 18, we show the ISPM result for η = 1.618 . . . in which only the
bifurcating 3DPO (5, 2, 1), the short EQPO (5, 2) and the hyperbolic 2DPO (4, 2, 1)
are taken into account. In the middle panel of this figure, we show the ISPM shell
energies at η = 1.732 . . . , calculated by taking into account only the 3DPO (5, 2, 1),
the bifurcating 3DPO (6, 2, 1) and the EQPO 2(3, 1). These comparisons clearly
indicate that a few dominant periodic orbits determine the property of quantum shell
structure at those bifurcation deformations. The bottom panel in this figure shows
the dominating contributions of only a few shortest 3DPO at η = 2.0. Evidently, the
short 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1) and (8, 2, 1) determine the major oscillating
pattern of the shell energy. Thus, we can say that they are responsible for the
formation of the shell structure at large deformations around the superdeformed
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Fig. 14. The same as Fig. 13 but for larger deformations.
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Fig. 15. Comparison of the oscillating level densities calculated by quantum mechanics (solid

curves) and those obtained by some specific semiclassical calculations (dotted curves); (a) the

top panel shows a comparison with the SSPM result for η = 1.2, (b) the middle panel shows

the ISPM result in which only the bifurcating 3DPO (5, 2, 1), the EQPO (5, 2), and the 2DPO

butterfly (4, 2, 1) are taken into account for the POT sum in Eq. (3.15) for η = 1.618 . . . , (c)

the bottom panel shows the ISPM result in which only the four shortest 3DPO are taken into

account for η = 2.0.
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Fig. 16. Semiclassical ISPM and quantum shell energies (in unit of ε0) are plotted by dotted and

solid curves, respectively, as functions of N1/3.
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Fig. 17. The same as Fig. 16 but for larger deformations.

shape. These results of calculation are in good agreement with those obtained in
Ref. 23) from the analysis of the length spectra (Fourier transforms of the quantum
level densities).
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Fig. 18. Comparison of quantum shell energies (solid curves) with those obtained with specific

semiclassical calculations (dotted curves): (a) the top panel shows the ISPM result for η =

1.618..., where only the bifurcating orbits (5,2,1), (5,2) and (4,2,1) are taken into account,

(b) the middle panel shows for η = 1.732... the contributions of only the three orbits; the

3DPO (5, 2, 1) and (6, 2, 1), and the EQPO 2(3, 1), (c) the bottom panel shows for η = 2.0 the

contributions of only the four shortest 3DPO to the ISPM sum.

§8. Conclusion

We have obtained an analytical trace formula for the 3D spheroidal cavity model,
which is continuous through all critical deformations where bifurcations of periodic
orbits occur. We find an enhancement of the amplitudes |Aβ| at deformations η ∼
1.6–2.0 due to bifurcations of 3D orbits from the short 2D orbits in the equatorial
plane. The reason of this enhancement is quite general and independent of the
specific potential shapes. We believe that this is an important mechanism which
contributes to the stability of superdeformed systems, also in the formation of the
second minimum related to the isometric states in nuclear fission. Our semiclassical
analysis may therefore lead to a deeper understanding of shell structure effects in
superdeformed fermionic systems – not only in nuclei or metal clusters but also,
e.g., in deformed semiconductor quantum dots whose conductance and magnetic
susceptibilities are significantly modified by shell effects.

Acknowledgements

A.G.M. gratefully acknowledges the financial support provided under the COE
Professorship Program by the Ministry of Education, Science, Sports and Culture of
Japan (Monbu-sho), giving him the opportunity to work at the RCNP, and thanks
Prof. H. Toki for his warm hospitality and fruitful discussions. We acknowledge valu-



34 A.G. Magner, K. Arita, S.N. Fedotkin, K. Matsuyanagi

able discussions with Prof. M. Brack. Two of us (A.G.M. and S.N.F.) thank also
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Appendix A
Curvatures

A.1. Three-dimensional orbits

The action is written as

S = 2πM (nvIv + nuIu + nϕIϕ) , (A.1)

where Iu, Iv and Iϕ are the partial actions. In a dimensionless form,

Iu =
pζ

π
Ĩu, Iv =

pζ

π
Ĩv, Iϕ =

pζ

π
Ĩϕ, (A.2)

where

Ĩu = 2

∫ z−

0

dz

1− z2

√
(z2 − z2

−)(z2 − z2
+), (A.3a)

Ĩv =

∫ zb

z+

dz

z2 − 1

√
(z2 − z2

−)(z2 − z2
+), (A.3b)

Ĩϕ = π
√
σ2. (A.3c)

z± are related to the σi variables by

z2
+ + z2

− = σ1 + 1, z2
+z

2
− = σ1 − σ2. (A.4)

In terms of the elliptic integrals, (A.3) can be expressed as

Ĩu =
2

z+

[
(z2
− − 1)F(k)− σ2Π(z2

−, k) + z2
+E(k)

]
, (A.5a)

Ĩv =
1

z+

{
(z2

+ − z2
−) [F(ϕ, k)−Π(ϕ, n, k)]− z2

+E(ϕ, k)
}

+ zb sinϕ, (A.5b)
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with

k =
z−
z+
, n =

1− z2
−

1− z2
+

, ϕ = arcsin

√
z2
b − z2

+

z2
b − z2

−
,

zb = cosh vb =
η√
η2 − 1

. (A.6)

Here, we used the standard definitions of the elliptic integrals of the first and the
third kind∗)

F(ϕ, k) =

∫ ϕ

0

dx√
1− k2 sin2 x

, (A.7a)

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 x dx, (A.7b)

Π(ϕ, n, k) =

∫ ϕ

0

dx

(1− n sin2 x)
√

1− k2 sin2 x
. (A.7c)

and omit argument ϕ = π/2 for complete elliptic integrals. The action (A.1) is
written as

S = 2pζM
(
nv Ĩv + nuĨu + nϕ Ĩϕ

)
. (A.8)

The curvatures Kij of the energy surface ε = H(σ1, σ2, ε) are defined as

Kij =
pζ

π
K̃ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σiσj∂,

(A.9)

and the frequency ratios in Eq. (A.9) are given by

ωu
ωv
≡ −

(
∂Iv
∂Iu

)

Iϕ

= −∂Ĩv/∂σ1

∂Ĩu/∂σ1

, (A.10)

ωϕ
ωv
≡ −

(
∂Iv
∂Iϕ

)

Iu

= −2
√
σ2

π

[
∂Ĩv
∂σ2

+
ωu
ωv

∂Ĩu
∂σ2

]
. (A.11)

We used here the properties of Jacobians for the transformations from the variables
(Iu, Iϕ) to (σ1, σ2). For the first derivatives of the actions (A.3) with respect to σ1

and σ2, one obtains

∂Ĩu
∂σ1

=
1

z+
F(k) ,

∂Ĩv
∂σ1

= − 1

2z+
F(ϕ, k) , (A.12a)

∗) The definitions of elliptic integrals (A.7) are related with those in Ref. 46) as F(θ, κ) ≡ F(θ|α)

and Π(θ, n, κ) = Π(n, θ|α) (κ = sinα).
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∂Ĩu
∂σ2

= − 1

z+
Π(z2

−, k) ,
∂Ĩv
∂σ2

= CF F(ϕ, k) + CΠ Π(ϕ, n, k) , (A.12b)

with

CF =
z2

+ − 1

2z+σ2
= − 1

2z+(z2
− − 1)

,

CΠ = −z
2
+ − z2

−
2z+σ2

=
z2

+ − z2
−

2z+(z2
+ − 1)(z2

− − 1)
. (A.13)

For the second derivatives of these actions, one obtains

∂2Ĩu
∂σ2

1

=
1

2z3
+

{
1

k2

[
Π(k2, k)− F(k)

](∂z2
−

∂σ1
− k2∂z

2
+

∂σ1

)
− ∂z2

+

∂σ1
F(k)

}
, (A.14a)

∂2Ĩv
∂σ2

1

= − 1

4z3
+

{
1

k2

[
Π(ϕ, k2, k)− F(ϕ, k)

](∂z2
−

∂σ1
− k2∂z

2
+

∂σ1

)

−∂z
2
+

∂σ1
F(ϕ, k) +

2z2
+

∆ϕ

∂ϕ

∂σ1

}
, (A.14b)

∂2Ĩu
∂σ2

2

=
1

2z5
+k

2
1

[
Π(z2

−, k) + 2z2
+

∂Π(z2
−, k)

∂n
+

1 + k2

k

∂Π(z2
−, k)

∂k

]
, (A.14c)

∂2Ĩv
∂σ2

2

=
∂CF

∂σ2
F(ϕ, k) + CF

(
1

∆ϕ

∂ϕ

∂σ2
+
∂F(ϕ, k)

∂k

∂k

∂σ2

)
+
∂CΠ

∂σ2
Π(ϕ, n, k)

+CΠ

(
∂Π(ϕ, n, k)

∂ϕ

∂ϕ

∂σ2
+
∂Π(ϕ, n, k)

∂n

∂n

∂σ2
+
∂Π(ϕ, n, k)

∂k

∂k

∂σ2

)
,

(A.14d)

and

∂2Ĩu
∂σ1∂σ2

= − 1

2z5
+k

2
1

[
F(k) +

1 + k2

k

∂F(k)

∂k

]
, (A.14e)

∂2Ĩv
∂σ1∂σ2

=
1

4z5
+k

2
1

[
F (ϕ, k)− (σ1 + 1− 2z2

b ) tanθ

∆ϕz
2
b∆

2
θk1

+
1 + k2

k

∂F(ϕ, k)

∂k

]
.

(A.14f)

Here,

∆x =
√

1− k2 sin2 x, k1 =
√

1− k2, θ = arcsin

(
z+

zb

)
, (A.15)

and

∂z2
±

∂σ1
=

1

2

[
1± σ1 − 1√

(σ1 − 1)2 + 4σ2

]
=

1

2

[
1± z2

+ + z2
− − 2

z2
+ − z2

−

]
, (A.16)
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∂ϕ

∂σ1
=

1

2

∂z2
−

∂σ1
(z2
b − z2

+)− ∂z2
+

∂σ1
(z2
b − z2

−)

(z2
b − z2

−)
√

(z2
b − z2

+)(z2
+ − z2

−)
, (A.17)

∂k2

∂σ2
= −1 + k2

z4
+k

2
1

, (A.18)

∂CF

∂σ2
=

z2
− − 2z2

+ − 1

4z3
+(1− z2

−)2(z2
+ − z2

−)
,

∂CΠ

∂σ2
= −σ2(3z2

+ + z2
−)− 2z2

+(z2
+ − z2

−)2

4z3
+σ

2
2(z2

+ − z2
−)

, (A.19)

∂ϕ

∂σ2
=

(
2z2
b − (σ1 + 1)

)
tan θ

2z2
b z

4
+k

3
1∆

2
θ

, (A.20)

∂n

∂σ2
=

σ1 − 1

(1− z2
+)2(z2

+ − z2
−)
, (A.21)

∂z2
±

∂σ2
= ± 1

z2
+ − z2

−
. (A.22)

Derivatives of elliptic integrals are given by

∂F(ϕ, k)

∂k
=

1

k

[
Π(ϕ, k2, k)− F(ϕ, k)

]
, (A.23)

∂Π(ϕ, n, k)

∂ϕ
=

1

(1− n sin2 ϕ)∆ϕ
, (A.24)

∂Π(ϕ, n, k)

∂n
=

1

n
[Π21(ϕ, n, k)− Π(ϕ, n, k)] , (A.25)

∂Π(ϕ, n, k)

∂k
=

1

k
[Π13(ϕ, n, k)− Π(ϕ, n, k)] , (A.26)

with

Πij(ϕ, n, k) =

∫ ϕ

0

dx

(1− n sin2 x)i(1− k2 sin2 x)j/2
. (A.27)
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A.2. Meridian-plane orbits

For the meridian-plane orbits for which Iϕ = 0 (σ2 = 0), the actions Iu and Iv
defined by Eq. (2.3) can be simplified. In the dimensionless form (A.2) one obtains
for the elliptic orbits

Ĩu = 2
√
σ E

(
1√
σ

)
, (A.28a)

Ĩv =
√
σ

[
E

(
θe,

1√
σ

)
− E

(
1√
σ

)]
+

√
η2 − σ(η2− 1)

η
√
η2 − 1

(A.28b)

Here we used the identity47)

Π(ϕ, k2, k) =

[
E(ϕ, k)− k2 sinϕ cosϕ/

√
1− k2 sin2 ϕ

]
/(1− k2) . (A.29)

In this subsection, we omit the suffix “1” for the variable σ1 for shortness. For the
hyperbolic orbits,

Ĩu = 2
[
E(
√
σ)− (1− σ) F(

√
σ)
]
, (A.30a)

Ĩv = (1− σ)
[
F(
√
σ)− F(θh,

√
σ)
]

+ E(θh,
√
σ)

−E(
√
σ) +

√
η2 − σ(η2− 1)

η
√
η2 − 1

(A.30b)

Equations (A.28) and (A.30) may be regarded as parametric equations in terms of
the parameter σ for the energy surface of the meridian-plane orbits, ε(Ĩu, Ĩv, Ĩϕ = 0),
for its elliptic and hyperbolic parts, respectively.

The curvature K11 of the energy curve for the meridian-plane orbits can be
obtained by differentiating Eqs. (A.28) and (A.30) implicitly through the parameter
σ. In this way one obtains Eq. (3.13) with the dimensionless derivatives for the
elliptic orbits

∂Ĩu
∂σ

=
1√
σ

F

(
1√
σ

)
, (A.31a)

∂2Ĩu
∂σ2

= − 1

2
√
σ3

Π

(
1

σ
,

1√
σ

)
, (A.31b)

∂Ĩv
∂σ

= − 1

2
√
σ

[
F

(
1√
σ

)
− F

(
θe,

1√
σ

)]
, (A.31c)

∂2Ĩv
∂σ2

=
1

4
√
σ3

[
Π

(
1

σ
,

1√
σ

)
− Π

(
θe,

1

σ
,

1√
σ

)
+

η
√
η2 − 1√

1− (1− σ−1)η2

]
. (A.31d)
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For the hyperbolic orbits,

∂Ĩu
∂σ

= F(
√
σ), (A.32a)

∂2Ĩu
∂σ2

=
1

2σ

[
Π(σ,

√
σ)− F(

√
σ)
]
, (A.32b)

∂Ĩv
∂σ

=
1

2

[
F(θh,

√
σ)− F(

√
σ)
]
, (A.32c)

∂2Ĩv
∂σ2

=
1

4σ

[
Π(θh, σ,

√
σ)−Π(σ,

√
σ)z + F(

√
σ)− F(θh,

√
σ)
]
. (A.32d)

Thus, for elliptic orbits

K̃11 =
1

4
√
σ3

[
F(θe, κ)

F(κ)
Π(κ2, κ)−Π(θe, κ

2, κ) +

√
η2 − σ(η2 − 1)

η
√
η2 − 1

]
, (A.33)

and for hyperbolic orbits

K̃11 = − 1

4σ

[
F(θh, κ)

F(κ)
Π(κ2, κ)−Π(θh, κ

2, κ)

]
. (A.34)

A.3. Equatorial-plane orbits

For the equatorial limit σ2 = σ1 ≡ σ one obtains from (A.4)

z2
− = 0, z2

+ = σ + 1 . (A.35)

We thus obtain in this limit (k→ 0)

∂Ĩu
∂σ1

=
π

2
√
σ + 1

,
∂Ĩv
∂σ1

= − ϕEQ

2
√
σ + 1

,

∂z2
±

∂σ1
=

{
σ/(σ + 1)

1/(σ + 1)

}
. (A.36)

and

∂2Ĩu
∂σ2

1

=
π(1− 2σ)

8(σ + 1)5/2
,

∂2Ĩv
∂σ2

1

=
1

8(σ + 1)5/2

{
(2σ − 1)ϕEQ +

1

2
sin (2ϕEQ)

−2
√
σ + 1

[
z2
b (1− σ)− (σ + 1)

]

z2
b

√
z2
b − (σ + 1)

}
,

ϕEQ = arcsin

√
z2
b − (σ + 1)

zb
(A.37)
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Substituting (A.36) and (A.37) into (A.9) one finally obtains the equatorial limit

K̃EQ
11 =

z2
b (2σ − 1) + (σ + 1)

8z2
b (σ + 1)2

√
z2
b − (σ + 1)

. (A.38a)

In the same way, one obtains

K̃
EQ
22 =

z2
b (2− σ) + σ(σ + 1)

8z2
bσ(σ + 1)2

√
z2
b − (σ + 1)

, (A.38b)

K̃EQ
12 =

3z2
b − (σ + 1)

8z2
b (σ + 1)2

√
z2
b − (σ + 1)

, (A.38c)

The determinant of the curvature matrix for EQPO becomes

det K̃EQ = − 1

32z2
bσ(σ + 1)2

(A.39)

which is negative for any orbit and for any deformation η > 1. It shows that
bifurcations of EQPO’s occur only through the zeros of stability factor FEQ

z .

Appendix B
Derivation of trace formula for the equatorial-plane orbits

We start with the phase-space trace formula9), 28), 31),40)

δgscl(ε) = Re
∑

α

∫
dq′′dp′

(2π~)3
δ
(
ε −H

(
q′,p′

)) ∣∣J
(
p′′⊥,p

′
⊥
)∣∣1/2

× exp

{
i

~
[
Sα
(
p′,p′′, tα

)
+
(
p′′ − p′

)
· q′′
]
− iπ

2
να

}
, (B.1)

where the sum runs over all trajectories α, q = qα(t, q′′,p′) determined by the fixed
initial momentum p′ and the final coordinate q′′, H (q,p) is the classical Hamil-
tonian, να the phase related to the Maslov index, number of caustics and turning
points.39), 41)–43) The Sα (p′,p′′, tα) is the action in the mixed phase-space represen-
tation,

Sα
(
p′,p′′, tα

)
= −

∫ p′′

p′
dp · q (p) , (B.2)

related to the standard definition of the action Sα (q′, q′′, ε),

Sα
(
q′, q′′, ε

)
=

∫ q′′

q′
dq · p (q) (B.3)

by the Legendre transformations (the integration by parts),

Sα
(
p′,p′′, tα

)
= Sα

(
q′, q′′, ε

)
+
(
p′ − p′′

)
q′′, (B.4)
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tα being the time for motion of the particle along the trajectory α. The J (p′′⊥,p
′
⊥) in

Eq. (B.1) is the Jacobian for the transformation from p′′⊥ to p′⊥. Here, we introduced
the local system of the phase-space coordinates q =

{
q‖, q⊥

}
and p =

{
p‖,p⊥

}

splitting the vectors into the parallel and perpendicular components with respect to
the trajectory α.

For the equatorial-plane periodic orbits (EQPO) one of the perpendicular com-
ponents q⊥ and p⊥ can be taken along the symmetry axis z, say z and pz, keeping for
other perpendicular components the same suffix, q⊥ and p⊥. After the transforma-
tion to this local phase-space coordinate system and integration over the “parallel”
momentum p‖ = p =

√
2mε by using the δ-function in Eq. (B.1), one obtains for the

contribution from the EQPO (K = 1)

δg
(1)
EQ(ε) =

1

(2π~)3
Re
∑

α

∫ dq′′‖
|q̇′′‖ |

∫
dq′′⊥dp

′
⊥

∫
dz′′dp′z

∣∣J
(
p′′,p′

)∣∣1/2

× exp

{
i

~
[
Sα
(
p′,p′′, tα

)
+
(
p′′ − p′

)
· q′′
]
− iπ

2
να

}
, (B.5)

where q̇‖ = ∂H/∂p‖ = p/m is the velocity. In the spheroidal action-angle variables,
q‖ = Θv, p‖ = Iv, q̇‖ = ωv, q⊥ = Θϕ = ϕ, p⊥ = Iϕ, z = Θu, pz = Iu, and we have

δg
(1)
EQ(ε) =

1

(2π~)3
Re
∑

α

∫
dΘ′′v
|ωv |

∫
dΘ′′ϕ dI

′
ϕ

∫
dΘ′′u dI

′
u

∣∣J
(
I ′′ϕI
′′
u , I
′
ϕI
′
u

)∣∣1/2

× exp

{
i

~
[
Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′

)
·Θ′′

]
− iπ

2
να

}
, (B.6)

We now perform the integrations using the expansion of the action Sα about the
stationary points

Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′

)
·Θ′′

= Sβ(ε) +
1

2

∑

ij

Jij(σi − σ∗i )(σj − σ∗j ) +
1

2
J⊥ (z − z∗)2 + · · · (B.7)

Here we omit the corrections associated with mixed derivatives of type ∂2S/∂Θ∂I
for simplicity. J⊥ is the Jacobian corresponding to the second variation of the action
Sα with respect to the angle variable Θu,

J
EQ
⊥ =

(
∂2Sα

∂Θ′u
2 + 2

∂2Sα
∂Θ′u∂Θ′′u

+
∂2Sα

∂Θ′u
2

)

EQ

=

(
− ∂I

′
u

∂Θ′u
− 2

∂I ′u
∂Θ′′u

+
∂I ′′u
∂Θ′′u

)

EQ

.

(B.8)

This quantity can be expressed in terms of the curvatures KEQ and the Gutzwiller’s
stability factor FEQ

z ,

FEQ
z = −

[(
− ∂I

′
u

∂Θ′u
− 2

∂I ′u
∂Θ′′u

+
∂I ′′u
∂Θ′′u

)/ ∂I ′u
∂Θ′′u

]

EQ

= 4 sin2

[
1

2
Mnv arccos

(
1− 2η−2 sin2 φ

)]
, (B.9)
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as

J
EQ
⊥ = − FEQ

z

(Ju − J2
uϕ/Jϕ)EQ

= − FEQ
z

2πMnv(Ku −K2
uϕ/Kϕ)EQ

(B.10)

In these equations we used simple identical Jacobian transformations

(
∂I ′u
∂Θ′′u

)−1

I ′ϕ

=
∂(Θ′′u, I

′
ϕ)

∂(I ′u, I ′ϕ)
=
∂Θ′′u
∂I ′u

− ∂Θ′′u
∂I ′ϕ

∂I ′ϕ
∂I ′u

= Ju − Juϕ
Juϕ
Jϕ

The curvature KEQ
u is the quantity Ku defined in (B.13), evaluated at stationary

point σ1 = σ2 = σ∗ given by Eq. (3.27), and so on.
The integrand of (B.6) does not depend on the angles (Θv, Θϕ) and we obtain

simply (2π)2 for the integration over these angle variables. We transform integration
variables (Iu, Iϕ) into (σ1, σ2) to obtain simple integration limits, and integrate over
(σ1, σ2) by the ISPM. In this way we obtain

δg
(1)
EQ(ε) =

√
π

2~3
Re
∑

β

ei(kLβ−πνβ/2) 1

ωv

∣∣∣∣
∂(Iu, Iϕ)

∂(σ1, σ2)

∣∣∣∣

√
1

J⊥| detJEQ|

× erf(Z−⊥ ,Z+
⊥ ;Z−1 ,Z+

1 ;Z−2 ,Z+
2 ) (B.11)

where

erf
(
x−, x+; y−, y+; z−, z+

)
=

(
2√
π

)3 ∫ x+

x−
dx

∫ y+

y−
dy

∫ z+

z−
dz e−x

2−y2−z2
,

(B.12)

Note that the integration limits for the internal integrals over y and z in
erf (x−, x+; y−, y+; z−, z+) in general depend on the variable of the next integra-
tions, y± = y±(x) and z± = z±(x, y). Here we define curvatures in the (Iu, Iϕ)
variables as

Ju =
∂2Sα
∂I2

u

= 2πMnvKu, Jϕ =
∂2Sα
∂I2

ϕ

= 2πMnvKϕ,

Juϕ =
∂2Sα
∂Iu∂Iϕ

= 2πMnvKuϕ. (B.13)

Using (B.10) and relations

detJ ≡ J11J22 − J12
2 =

∣∣∣∣
∂(Iu, Iϕ)

∂(σ1, σ2)

∣∣∣∣
2

(JuJϕ − Juϕ2), (B.14)

Kϕ =
1

πpa sinφ
, ωv =

πp

ma sinφ
, (B.15)
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one finally obtains

δg
(1)
EQ(ε) =

1

ε0
Re
∑

EQ

AEQ exp
(
ikLEQ − i

π

2
νEQ

)
, (B.16)

AEQ =
1

2

√
sin3 φ

πMnvkRηFz
erf
(
Z−⊥ ,Z+

⊥ ;Z−1 ,Z+
1 ;Z−2 ,Z+

2

)
, (B.17)

where LEQ represents length of the EQPO. The “triple” error function in Eq. (B.17)
can be separated into the product of three standard error functions,

erf
(
Z−⊥ ,Z+

⊥ ;Z−1 ,Z+
1 ;Z−2 ,Z+

2

)
≈ erf

(
Z−⊥ ,Z+

⊥
)

erf
(
Z−1 ,Z+

1

)
erf
(
Z−2 ,Z+

2

)

(B.18)

by taking the limits at the stationary points for all deformations, except for a small
region near the spherical shape. In this way we obtain the simple results (3.30). The
arguments of the error functions are given by (3.19) or (3.20) for Z±i (i = 1, 2) and

Z±⊥ = ±π
2

√

− iJ
EQ
⊥

2~
= ±~(kζ)2

16

√
iFEQ
z

Mnvka sinφ σ∗(σ∗ + 1) detKEQ
. (B.19)

The spherical limit is easily obtained by using the spherical action-angle variables
{Θθ, Θr, Θϕ; Iθ, Ir, Iϕ}. In these variables

AEQ =
1

2

√
sin3 φ

πMnrkRηFz
erf
(
Z−⊥ ,Z+

⊥ ;Z−θ ,Z+
θ ;Z−ϕ ,Z+

ϕ

)
, (B.20)

where nr ≡ nv for the equatorial-plane orbits with (nv, nϕ), the invariant stability

factor Fθ ≡ FEQ
z given by (B.9),

Z±⊥ =

√√√√ −iπFEQ
θ

16Mnr~KEQ
θ

(z± − z∗), Z±{θϕ}
=

√
−iπMnrK

EQ

{θϕ}
/~
(
I±{θϕ}

− I∗{θϕ}
)
.

(B.21)

The quantities KEQ
θ and KEQ

ϕ

KEQ

{θϕ}
=


 ∂2Ir
∂I2

{θϕ}




EQ

, (B.22)

are the curvatures of the energy surface ε = H(Iθ, Ir, Iϕ) in the spherical coordinate
system. In that system the maximum value of Iϕ is equal to the absolute value of the
classical angular momentum Iθ , I

±
ϕ = ±Iθ , I+

θ being the maximum value of |Iθ|, and

I−θ = 0. We note that for the diametric orbits the stationary points I∗θ and I∗ϕ are
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exactly zero and there are also specific integration limits in Eq. (B.20). In this case
the internal integral over Iϕ within a small region can be evaluated approximately
as 2Iθ, and one obtains for the “triple” error function

erf
(
Z−⊥ ,Z+

⊥ ;Z−θ ,Z+
θ ;Z−ϕ ,Z+

ϕ

)
→
√

−4iFz

Mπ2nr~KEQ
θ

=

√
−4iFzkR

2πM
. (B.23)

We used here the fact that, in the spherical limit Fz → 0, the integral over Zθ can
be approximated by the upper limit Z+

θ given by Eq. (B.21). We omitted also the

strong oscillating value of
∫
dz2e−z

2
at the upper limit since it vanishes after any

small averaging over kR and equals 1 in this approximation. We also accounted
for the fact that KEQ

θ → 1/(πpR) for the diameters; see Eq. (B.22) (φ = π/2
for the diameters). Finally, the stability factor Fz is canceled and one obtains the
Balian-Bloch result (3.33) for the contribution of the diametric orbits in the spherical
cavity.3)

For all other EQPO one has the stationary points I∗ϕ = I∗θ 6= 0 and Iϕ is identical
to its maximum value Iθ in the spherical limit. This is the reason why there is no next
order (1/

√
kR) corrections to the Balian-Bloch trace formula for the contribution of

the planar orbits with nr ≥ 3. The latter comes from the spherical limit of the
elliptic orbits in the meridian plane (3.16), see Ref. 9).

Appendix C
Separatrix

Like for the case of the turning points,39), 41)–43) we first expand the exponent
phase in Eq. (3.6) with respect to I ′u :

Sα
(
I ′, I ′′, tα

)
−
(
I ′′ − I ′

)
·Θ′′ = c

‖
0 + c

‖
1x+ c

‖
2x

2 + c
‖
3x

3 + . . .

≡ τ‖0 + τ
‖
1 z +

1

3
z3. (C.1)

Here

x =
1

~
(
I ′u − I ′u

∗)
, (C.2)

c
‖
0 =

1

~
[
S∗α
(
I ′, I ′′, ε

)
−
(
I ′ − I ′′

)∗ ·Θ′′∗
]

=
1

~
S∗α
(
Θ′,Θ′′, ε

)
, (C.3)

c
‖
1 =

(
∂Sα
∂I ′u
−Θ′′u

)∗
= Θ′u − Θ′′u → 0, σ1 → 1, (C.4)

c
‖
2 =

~
2

(
∂2Sα

∂I ′u
2

)∗
= 2pζM~K̃α

u →∞, σ1 → 1, (C.5)



46 A.G. Magner, K. Arita, S.N. Fedotkin, K. Matsuyanagi

c
‖
3 =

~3

6

(
∂3Sα

∂I ′u
3

)∗
=

2π3~2M

3(pζ2)2

(
∂K̃α

u

∂Ĩu

)
< 0, σ‖ → 1, (C.6)

where the superscript asterisk indicates the value at I ′u = I ′′u = I∗u. The asymptotic

behavior of the constants c
‖
i near the separatrix σ1 ≈ 1 is found from

K̃α
u →

log [(1 + sin θ)/(1− sin θ)]

(σ1 − 1) log3(σ1 − 1)
, σ1 → 1, (C.7)

θ → θh(η) formally, see (2.6),

∂K̃α
u

∂Ĩu
→ −2 log [(1 + sin θ)/(1− sin θ)]

(
(σ1 − 1) log2(σ1 − 1)

)2 , σ1 → 1. (C.8)

The rightmost part of Eq. (C.1) is obtained by a linear transformation with some
constants α and β,

x = αz + β, α =
(

3c
‖
3

)−1/3
, β = −c‖2/(3c

‖
3), (C.9)

τ
‖
0 =

(
c0 − c1c2/(3c3) + 2c3

2/(27c2
3)
)‖
, τ

‖
1 = α

[
c1 − c2

2/(3c3)
]‖
. (C.10)

Near the stationary point for σ1 → 1, one obtains c
‖
1 → 0 and τ

‖
1 → −w‖ with the

positive quantity

w‖ =

(
c2

2

(3c3)4/3

)‖
→
∣∣∣∣
M log [(1 + sin θ)/(1− sin θ)] (σ1 − 1)

~ log(σ1 − 1)

∣∣∣∣
2/3

. (C.11)

Using expansion (C.1) in Eq. (3.6) and taking the integral over Θ′′v exactly (i.e.,
putting 2π for this integral), we obtain

δg
(0)
LD = − 2

2π~2
Re
∑

α

∫
dΘ′′ϕ

∫
dI ′ϕ

∫
dΘ′′u

1

|ω∗v |
e
i
(
τ
‖
0−π2 να

)

×

√√√√
√
w‖

c
‖
2

[
Ai
(
−w‖,Z−‖ ,Z+

‖

)
+ iGi

(
−w‖,Z−‖ ,Z+

‖

)]

≈ −2

~
Re
∑

α

∫
dΘ′′u

1

|ω∗v |

√√√√
√
w‖

c
‖
2

[
Ai
(
−w‖

)
+ iGi

(
−w‖

)]
e
i
(
τ
‖
0−π2 να

)
,

(C.12)

where

Z−‖ =
√
w‖, Z+

‖ =

√
c
‖
2√
w‖

I
(cr)
u

~
+
√
w‖, (C.13)
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Ai(−w, z1, z2) and Gi(−w, z1, z2) are the incomplete Airy and Gairy functions defined
by

{
Ai

Gi

}
(−w, z1, z2) =

1

π

∫ z2

z1

dz

{
cos

sin

}(
−wz +

z3

3

)
, (C.14)

Ai(−w) and Gi(−w) are the corresponding standard complete functions, I
(cr)
u =

Iu(σ
(cr)
1 , σ

(cr)
1 ) is the “creeping” elliptic 2DPO value defined in section 2. In the

second equation of (C.12), we used the fact that for any finite deformation η and
large kR near the separatrix (σ1 → 1)

Z−‖ → 0,

Z+
‖ → 4

[
M log [(1 + sin θ)/(1− sin θ)] pζ

2(σ1 − 1)2 log4(σ1 − 1)

]1/3
[

η√
η2 − 1

E

(√
η2 − 1

η

)
− 1

]

→∞. (C.15)

Using an analogous expansion of the action τ
‖
0 in (C.12) with respect to the angle

Θ′′u to the third order and a linear transformation like (C.9) one arrives at

δg
(0)
LD(ε) =

b

2ε0π2R~
Re
∑

α

∫
dΘ′′ϕ

∫
dI ′ϕ

1

kR

(
w‖w⊥

)1/4
√
|c‖2c⊥2 |

×
[
Ai
(
−w‖

)
+ iGi

(
−w‖

)] [
Ai
(
−w⊥,Z−⊥ ,Z+

⊥

)
+ iGi

(
−w⊥,Z−⊥ ,Z+

⊥

)]

× exp

{
i

~
[
S∗α
(
I ′, I ′′, ε

)
−
(
I ′ − I ′′

)∗ ·Θ′′∗
]

+
2i

3

[
(w‖)3/2 + (w⊥)3/2

]
− iπ

2
να

}
, (C.16)

where

w⊥ =

(
c2

2

(3c3)4/3

)⊥
> 0, (C.17)

Z−⊥ =
√
w⊥, Z+

⊥ =
π

2

∣∣∣3c⊥3
∣∣∣
1/3

+
√
w⊥, (C.18)

c⊥2 =
1

2~

(
J⊥u,α

)∗
=

(
∂2Sα

∂Θ′u
2 + 2

∂2Sα
∂Θ′u∂Θ′′u

+
∂2Sα

∂Θ′′u
2

)∗

LD

= −
FLD
xy

2πMKα
u

. (C.19)

FLD
xy is the stability factor for the long diameters,

FLD
xy = −4 sinh2

[
M arccosh

(
2η2 − 1

)]
, (C.20)
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c⊥3 =
1

6~

[
∂3Sα

∂Θ′u
3

+ 3
∂3Sα

∂Θ′u
2∂Θ′′u

+ 3
∂3Sα

∂Θ′u∂Θ′′u
2

+
∂3Sα

∂Θ′′u
3

]∗

=
1

6~

[
∂J⊥u,α
∂Θ′u

+
∂J⊥u,α
∂Θ′′u

]∗
< 0 . (C.21)

Note that according to (C.19) the quantity c⊥2 approaches zero near the separatrix
(σ1 → 1) like in the caustic case. This is the reason why we apply the Maslov-
Fedoryuk theory39), 41)–43) for the transformation of the integral over angle Θ′′u from
(C.12) to (C.16). The remaining two integrals over the azimuthal variables (I ′ϕ and
Θ′′ϕ) can be calculated in a similar way as explained in the text.

Divergence of the curvature Kϕ, Eq. (B.13), for the long diameters (σ1 → 1 ,
σ2 → 0) can be easy seen from the following expression valid for any polygon orbit
having a vertex on the symmetry axis,

Kβ
ϕ =

L0c

ρ2
0nvM~

[
2η2

1 + η2 tan2 ψ
− 1

]
, (C.22)

where L0 denotes the length of the side having a vertex at the pole, ρ0 the cylindrical
coordinate of another end of this side, and ψ the angle between this side and the
symmetry axis. For the long diameters, L0 → 2bM , ρ0 → 0 and ψ → 0, so that
Kβ
ϕ →∞ .

Appendix D
Derivation of the third-order term

D.1. Third-order curvatures

For the curvature K
(3)
1 which appears in the third-order terms in the expansion

of the action S/~ with respect to σ1, one obtains
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with the derivatives
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D.2. Stationary phase method with third-order expansions

After the expansion of the action in the Poisson-sum trace formula (3.10) up to
the second order with respect to σ2 and up to the third order with respect to σ1,
one obtains
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x = σ1 − σ∗1 , x± = σ±1 − σ∗1. (D.15)

After transformation from σ2 to the new Z2 variable,
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and a linear transformation from x to z,
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one obtains Eq. (3.15) with the ISPM3 amplitude
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Here Z±2 is defined by Eq. (3.20b) and
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In the limit c1 → 0
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For finite curvatures far from the bifurcations, one can extend the limits of the
Airy and Gairy functions (z− → 0 and z+ → ∞) and obtains the complete Airy
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Ai(−τ) and Gairy Gi(−τ) functions. Then, using the asymptotics of these functions
for large τ ∝ (kR)2/3 (large kR)
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and of the erf-function in Eq. (D.18) one obtains the SSPM limit (3.21).


