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Abstract

On the basis of the cranked Skyrme-Hartree-Fock calculations in
the three-dimensional coordinate-mesh representation, we suggest that,
in addition to the well-known candidate 32S, the neutron-rich nucleus
36S and the drip-line nuclei, 48S and 50S, are also good candidates for
finding superdeformed rotational bands in Sulfur isotopes. Calculated
density distributions for the superdeformed states in 48S and 50S exhibit
superdeformed neutron skins.
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1 Introduction

Recently, superdeformed (SD) rotational bands have been discovered in 36Ar,
40Ca and 44Ti [1–6]. One of the interesting new features of them is that they
are built on excited 0+ states and observed up to high spin, in contrast to
the SD bands in heavier mass regions where low-spin portions of them are
unknown in almost all cases [7–11]. These excited 0+ states may be associated
with multiparticle-multihole excitations from the spherical closed shells, so that
we can hope to learn from such data detailed relationships between spherical
shell model and SD configurations. For the mass A =30-50 region, although
existence of a SD band in 32S with the SD magic number N = Z = 16 has
been expected for a long time [12], it has not yet been observed and remains
as a great challenge [13–17].

In this paper, as a continuation of the systematic theoretical search [14,18]
for SD bands in the mass A =30-50 region by means of the cranked Skyrme-
Hartree-Fock (SHF) method [19], we would like to suggest that, in addition
to 32S, the neutron-rich nucleus 36S and the nuclei, 48S and 50S, which are
situated close to the neutron-drip line [20, 21], are also good candidates for
finding SD rotational bands in Sulfur isotopes. The appearance of the SD
band in 36S is suggested in connection with the SD shell structure at N = 20
characterizing the observed SD band in 40Ca. The drip-line nuclei, 48S and
50S, are expected to constitute a new “SD doubly closed” region associated
with the SD magic numbers, Z = 16 for protons and N � 32 for neutrons. An
interesting theoretical subject for the SD bands in nuclei near the neutron drip
line is to understand deformation properties of neutron skins. The calculated
density distributions indeed exhibit superdeformed neutron skins.

The calculation has been carried out with the use of the three-dimensional
(3D), Cartesian coordinate-mesh representation without imposing any sym-
metry restriction [14, 18]. In parallel, we also carry out the standard calcu-
lations [22–25] imposing reflection symmetries. By comparing the symme-
try restricted and unrestricted calculations, we can examine the stability of
the SD solutions of the SHF equations against reflection-asymmetric deforma-
tions. In this way, we have found several cases where the SD minima obtained
in the symmetry-restricted calculations are in fact unstable with respect to
the reflection-asymmetric deformations. In general, the SD states are rather
soft against reflection-asymmetric deformations, so that we need careful study
about the stabilities of them against various kinds of deformation breaking the
reflection symmetries.

After a brief account of the cranked SHF calculational procedure in Sec-
tion 2, we present and discuss results of the calculation in Section 3, and give
conclusions in Section 4. We shall present deformation energy curves for Sulfur
isotopes from 32S to 50S, and focus our attention on properties of rotational
bands built on the SD 0+ states, stabilities of the SD local minima against
the reflection-asymmetric deformations, and density distributions of the SD
states.
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A preliminary version of this work was reported in [26].

2 Cranked SHF calculation

Since the cranked SHF method in the 3D coordinate-mesh representation is
well known [22–25], we here give only a minimum description about the com-
putational procedure actually adopted. For a recent comprehensive review
on selfconsistent mean-field models for nuclear structure, see Ref. [19]. The
cranked SHF equation for a system uniformly rotating about the x-axis is given
by

δ < H − ωrotĴx >= 0, (1)

where H , ωrot and Ĵx mean the Hamiltonian with the Skyrme interaction,
the rotational frequency and the x-component of angular momentum, respec-
tively, and the bracket denotes the expectation value with respect to a Slater
determinantal state. We solve the cranked SHF equation by means of the
imaginary-time evolution technique [22] in the 3D Cartesian-mesh represen-
tation. The algorithm of numerical calculation is the standard one [22–25],
except that we allow for both reflection- and axial-symmetry breakings. In
this case, it is important to accurately fulfill the center-of-mass and principal-
axis conditions. This is done by means of the constrained HF procedure [27].
We solved these equations inside the sphere with radius R=10 fm and mesh
size h=1 fm, starting with various initial configurations. The accuracy for
evaluating deformation energies with this mesh size was carefully checked by
Tajima [25] and was found to be quite satisfactory. When we make a de-
tailed analysis of density distributions, however, we use a smaller mesh size
of h = 1

3
fm. In addition to the symmetry-unrestricted cranked SHF calcu-

lation, we also carry out symmetry-restricted calculations imposing reflection
symmetries about the (x, y)-, (y, z)- and (z, x)-planes. Below we call these
symmetry-unrestricted and -restricted cranked SHF versions “unrestricted”
and “restricted” ones, respectively.

Solutions of the cranked SHF equation give local minima in the deforma-
tion energy surface. In order to explore the deformation energy surface around
these minima and draw deformation energy curves as functions of deformation
parameters, we carry out the constrained HF procedure with relevant con-
straining operators [27]. For the Skyrme interaction, we adopt the widely used
three versions; SIII [28], SkM∗ [29] and SLy4 [30]. The pairing correlation is
not taken into account in this paper. It will be dealt with in future by means
of the symmetry-unrestricted Hartree-Fock-Bogoluibov code [31].
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3 Results of calculation

3.1 Deformation energy curves

Figure 1 shows deformation energy curves for Sulfur isotopes from 32S to 50S
obtained with the use of the SIII interaction. Solid lines with and without
filled circles represent the results obtained by the unrestricted and restricted
versions, respectively. The result of calculation indicates that the SD minima
(with the quadrupole deformation parameter β2 ≈ 0.6) appear in the neutron-
rich nucleus 36S and the drip-line nuclei, 48S and 50S, in addition to the well-
known case of 32S. As seen in Figs. 2 and 3, similar results are obtained for
the SkM∗ and SLy4 interactions, except that the SD states in 48S is unstable
against the reflection-asymmetric deformation for the SLy4 interaction (see
subsection 3.3).

As discussed in Refs. [14–18], the SD local minimum in 32S corresponds
to the doubly closed shell configuration with respect to the SD magic number
Z = N = 16 and involves two protons and two neutrons in the down-sloping
single-particle levels originating from the f7/2 shell. The SD local minimum
in 36S results from the coherent combination of the SD magic number, Z =
16, and the neutron shell effects occurring at large deformation for N = 20.
The latter shell effect has been confirmed recently by the discovery of the SD
rotation band in 40Ca [4, 5]. The SD shell gap at N = 20 is associated with
the 4p-4h excitation from below the N = 20 spherical closed shell to the f7/2

shell. Focusing our attention on the occupation numbers of such high-j shells
and distinguishing protons(π) and neutrons(ν), these SD configurations in 32S
and 36S are denoted in Figs. 1-3 as f 2

πf 2
ν and f 2

πf 4
ν , respectively.

The SD local minima in the drip-line nuclei, 48S and 50S, result from the
coherent combination of the proton SD shell effect and the neutron shell effects
occurring at superdeformation for N =32-34. The neutron configurations in
these SD states are similar to those in the known SD bands in 60Zn and 62Zn
associated with the SD magic numbers N =30-32 [32,33]. We find that the SD
shell effect is strong also for N = 34 in the Sulfur isotopes under consideration,
while the SD local minimum in 46S with N = 30 is unstable against the
reflection-asymmetric deformation (see subsection 3.3). In the drip-line nuclei
48S and 50S, the f7/2 shell is fully occupied even in the spherical limit and
the SD configurations involve neutron excitations from the fp-shell to the
g9/2 shell. As before, focusing our attention on the occupation numbers of
the high-j shells, let us use the notation fn1

π gn2
ν for a configuration in which

single-particle levels originating from the f7/2 and g9/2 shell are occupied by
n1 protons and n2 neutrons, respectively. With such notations, both the SD
local minima in 48S and 50S correspond to the f 2

πg4
ν configuration.

The appearance of the SD minimum in 36S suggests that we can expect a SD
band associated with the same neutron configuration to appear also in the N =
20 isotone, 38Ar, situated between 36S and 40Ca. We examined this point and
the result is shown in Fig. 4. We find that the two local minima associated with
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the configurations f 2
πf 2

ν and f 2
πf 4

ν compete in energy and their relative energy
differs for different versions of the Skyrme interaction: As clearly seen in the
deformation-energy curves obtained by the symmetry-restricted calculations,
the former with smaller β2 is slightly lower for SkM∗ and SLy4 while the
latter with larger β2 is slightly lower for SIII. Counting both protons and
neutrons, these local minima respectively correspond to the 4p-6h and 6p-8h
configurations with respect to the spherical doubly closed shell of 40Ca. As
we discussed in the previous papers [18, 26], the two configurations can mix
each other in the crossing region through the reflection-symmetry breaking
components in the mean field. Specifically, around the crossing point between
the down-sloping [3213

2
] level (coming from the f7/2 shell) and the up-sloping

[2001
2
] level (coming from the d3/2 shell below the N = 20 spherical magic

number), the r3Y31-type non-axial octupole deformation is generated, and they
mix each other through this component of the mean field (see Fig. 5). Note
that the matrix element of the operator r3Y31 between the two levels satisfies
the selection rules, ∆n3 = 2 and ∆Λ = 1, for the asymptotic quantum numbers
n3 and Λ. As a result of this mixing, the deformation-energy curve becomes
rather flat in the symmetry-unrestricted calculation. Recently, the SD band
corresponding to the 4p-6h configuration was found in experiment [34]. The
data suggest significant competition between different configurations, which
requires further analysis of shape fluctuation dynamics by going beyond the
static mean-field approximation.

3.2 SD rotational bands

Let us focus our attention on the SD local minima shown in Figs. 1-3, and
investigate properties of the rotational bands built on them. Excitation ener-
gies of these SD rotational bands are plotted in Fig. 6 as functions of angular
momentum. These rotational bands are calculated by cranking each SHF so-
lution (the SD local minima in Figs. 1-3) and following the same configuration
with increasing value of ωrot until the point where we cannot clearly identify
the continuation of the same configuration any more. Thus, the highest values
of angular momentum in this figure does not necessarily indicate the band-
termination points but merely suggest that drastic changes in their microscopic
structure take place around there. Different slopes with respect to the angular
momentum between 36S and 50S can be easily understood in terms of the well
known scaling factor A5/3 for the rigid-body moment of inertia. This point
can be confirmed in Fig. 7 which displays the angular momentum I, the kine-
matical and dynamical moments of inertia, J (1) = I/ωrot and J (2) = dI/dωrot,
and the rigid-body moments of inertia Jrig = m

∫
ρ(r)(y2 + z2)dr as functions

of the rotational frequency ωrot. We see that the calculated moments of in-
ertia are slightly larger than the rigid-body values at ωrot = 0, and smoothly
decrease as ωrot increases until ωrot ≈2.5 and 1.8 MeV/h̄ for 32,36S and 50S,
respectively. The result calculated with the SLy4 interaction is shown here,
but we obtained similar results also with the SIII and SkM∗ interactions.
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Calculated quadrupole deformation parameters (β2, γ) are displayed in the
upper portion of Fig. 6. We see that the β2 values slowly decrease while
the axial-asymmetry parameters γ gradually increase with increasing angular
momentum for all cases of 32S, 36S and 50S. The variations are rather mild in
the range of angular momentum shown in this figure. Single-particle energy
diagrams (Routhians) for these SD bands are displayed in Fig. 8 as functions
of the rotational frequency ωrot. This figure indicates that level crossings take
place in 36S and 50S if we further increase the angular momentum.

3.3 Stabilities of the SD states against reflection-asymmetric

deformations

Let us examine stabilities of the SD local minimum against both the axially
symmetric and asymmetric octupole deformation (Y30, Y31, Y32, Y33). Figure 9
presents deformation energy curves as functions of the octupole deformation
parameters β3m(m = 0, 1, 2, 3) for fixed quadrupole deformation parameters
(the equilibrium value of β2 at the SD minimum in each nucleus and γ = 0).
The computation was carried out by means of the constrained HF procedure
with the use of the SIII, SkM∗, and SLy4 interactions. The result of calculation
clearly indicates that the SD states in 32S, 36S and 50S are stable against the
octupole deformations and that they are softer for β3m with lower values of m
(i.e., for β30 and β31), irrespective of the Skyrme interactions used. We obtaind
a similar result also for 48S (but omitted in this figure).

Although the SD minima in 32S, 36S and 50S are stable with respect to
β3m(m = 0, 1, 2, 3), we found several cases where the SD minima obtained
in the symmetry-restricted calculations become unstable when we allow for
reflection-asymmetric deformations of a more general type. As a first example,
let us discuss the SD minimum in 46S which appears in the restricted calcula-
tion (see Figs. 1-3). In this case, the coupling between the down-sloping [3301

2
]

level (associated with the f7/2 shell) and the up-sloping [2025
2
] level (stemming

from the d5/2 shell) takes place in the proton configuration, when we allow for
the breaking of both the axial and reflection symmetries. Thus, the SD config-
uration f 2

πg2
ν mixes with the g2

ν configuration (which lacks the proton excitation
to the f7/2 shell and has a smaller equilibrium value of β2). As a consequence
of this mixing, the barrier between the two configurations disappears and the
SD minimum becomes unstable in the unrestricted calculations (see Figs. 1-3).
Note that the difference ∆n3 in the asymptotic quantum number n3 between
the two single-particle levels, [3301

2
] and [2025

2
], is three, so that they cannot

be mixed by the octupole operator r3Y32 which transfers the asymptotic quan-
tum numbers n3 and Λ by ∆n3 = 1 and ∆Λ = 2. Thus, this mixing may be
associated with the reflection-asymmetric deformation of a more higher order
like r5Y52.

As a second example, we take up the SD minimum in 48S. In this case,
two configurations, f 2

πg2
ν and f 2

πg4
ν compete in energy and their relative energy

differs for different versions of the Skyrme interaction; the former with smaller
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β2 is slightly lower (higher) for SLy4 (SIII and SkM∗) (see Figs. 1-3). When
we allow for the breaking of both the axial and reflection symmetries, the
coupling between the down-sloping [4313

2
] level (associated with the g9/2 shell)

and the [3101
2
] level in the fp shell takes place in the neutron configuration,

so that they mix each other. Note that the [4313
2
] and [3101

2
] levels satisfy

the selection rules, ∆n3 = 2 and ∆Λ = 1, for the matrix elements of the
octupole operator r3Y31. In the calculation with the SLy4 interaction, since
the former configuration with smaller β2 is situated slightly lower in energy
than the latter, the barrier between the two configurations disappears as a
result of this mixing. This mixing effect in conjunction with that mentioned
above for the f 2

πg2
ν configuration in 46S deteriorates the SD minimum for the

SLy4 case.
The above examples indicate detailed microscopic mechanisms within the

mean-field theory how the stability of the SD local minimum is determined
by relative energies between the neighboring configurations and their mixing
properties. In this connection, it should be noted that the pairing interaction
ignored in this paper might also play an important role in the mixing of crossing
configurations. It thus remains to be an interesting future subject to study the
competition between the two different mixing mechanisms, i.e., the symmetry
breaking in the mean field and the pairing correlation.

3.4 Density distributions

Figure 10 displays the neutron and proton density profiles for the SD states in
32S, 36S and 50S calculated with the use of the SLy4 interaction. We obtained
similar results also for SIII and SkM∗. In this figure, equi-density lines with
50% and 1% of the central density in the (x, y)- and (y, z)-planes are drawn
for the SD bands at I = 0 and at high spins. We can clearly see that superde-
formed neutron skin appears in 50S which is situated close to the neutron drip

line. The root-mean-square values,
√
〈x2〉,

√
〈y2〉,

√
〈z2〉 and Rrms =

√
〈r2〉,

of these density distributions are listed in Table 1. To indicate the deforma-
tion properties of the neutron skin in 50S, calculated values for protons and
neutrons are separately listed together with their sums and differences. We
obtained density distributions similar to those for 50S also for the SD state in
48S. A similar result of theoretical calculation exhibiting the superdeformed
neutron skin was previously reported in Ref. [35] for the SD state in the very
neutron-rich nucleus 208

66Dy142.

4 Conclusions

On the basis of the cranked SHF calculations in the 3D coordinate-mesh rep-
resentation, we have suggested that, in addition to the well-known candidate
32S, the neutron-rich 36S and the the drip-line nuclei, 48S and 50S, are also good
candidates for finding SD rotational bands in Sulfur isotopes. Calculated den-
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sity distributions for the SD states in 48S and 50S, which are situated close to
the neutron-drip line, exhibit superdeformed neutron skins.
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Table 1

Root-mean-square values,
√
〈x2〉,

√
〈y2〉,

√
〈z2〉 and Rrms =

√
〈r2〉, of the

density distributions at I = 0 (second column) and at I = 20, 22, 28 (third
column) of the SD band in 32S, 36S and 50S, calculated with the use of the SLy4
interaction. Neutron and proton contributions are separately listed together
with their sums (total) and differences (diff.).

32S
I = 0 I ∼ 20√

〈x2〉
√
〈y2〉

√
〈z2〉 Rrms

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

total 1.53 1.53 2.85 3.57 1.53 1.67 2.67 3.50
neutrons 1.52 1.52 2.83 3.55 1.52 1.66 2.65 3.48
protons 1.54 1.54 2.86 3.60 1.54 1.68 2.68 3.52

diff. -0.02 -0.02 -0.04 -0.04 -0.02 -0.02 -0.04 -0.05

36S
I = 0 I ∼ 22√

〈x2〉
√
〈y2〉

√
〈z2〉 Rrms

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

total 1.59 1.59 2.78 3.58 1.61 1.73 2.63 3.53
neutrons 1.62 1.62 2.78 3.60 1.64 1.75 2.64 3.57
protons 1.55 1.55 2.78 3.54 1.57 1.69 2.61 3.48

diff. 0.07 0.07 0.00 0.06 0.08 0.06 0.03 0.09

50S
I = 0 I ∼ 28√

〈x2〉
√
〈y2〉

√
〈z2〉 Rrms

√
〈x2〉

√
〈y2〉

√
〈z2〉 Rrms

total 1.81 1.81 3.11 4.03 1.82 1.96 2.95 3.98
neutrons 1.90 1.90 3.17 4.16 1.91 2.05 3.02 4.12
protons 1.62 1.62 2.96 3.75 1.63 1.75 2.79 3.67

diff. 0.28 0.28 0.20 0.41 0.28 0.31 0.23 0.45
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Figure 1: Deformation energy curves for Sulfur isotopes from 32S to 50S calculated
at I = 0 as functions of the quadrupole deformation β2 by means of the constrained
SHF procedure with the SIII interaction. The deformation parameter is defined as
β2 = 4π

5 〈∑A
i=1 r2

i Y20(θi, φi)〉/〈
∑A

i=1 r2
i 〉. The axial-asymmetry parameter γ is con-

strained to be zero. Solid curves with and without filled circles represent the results
obtained by the unrestricted and restricted versions, respectively. The notation
fn1

π fn2
ν indicates a configuration in which single-particle levels originating from the

f7/2 shell are occupied by n1 protons and n2 neutrons. Likewise, fn1
π gn2

ν indicates
that levels from the f7/2 shell are occupied by n1 protons and those from the g9/2

shell by n2 neutrons.
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Figure 2: The same as Fig.1 but for the SkM∗ interaction.
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Figure 3: The same as Fig.1 but for the SLy4 interaction.
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Figure 5: Schematic illustration of configuration-mixing mechanism through the oc-
tupole components of the mean field. When the reflection symmetry is imposed, the
positive- and negative-parity single-particle levels sharply cross, and the two config-
urations (having different number of particles in the f7/2 shell) do not mix within
the mean-field approximation (left-hand side). In contrast, when such symmetry
restriction is removed, smooth crossover between the two configurations is possible
via mixing of the positive- and negative-parity levels (right-hand side). Octupole
deformation β3 of the mean field rises in the crossing region. In this figure, the
crossing between the two levels with the asymptotic quantum numbers [3213

2 ] and
[2001

2 ] is illustrated as an example. The two levels satisfy the selection rule, ∆n3 = 2
and ∆Λ = 1, for the matrix elements of the non-axial octupole operator r3Y31, so
that the mixing between them takes place mainly through the r3Y31 component of
the mean field.
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Figure 6: Plot of the excitation energies versus angular-momentum for the SD ro-
tational bands in 32S, 36S, and 50S calculated by means of the cranked SHF method.
Results obtained with the use of the SIII, SkM∗, and SLy4 interactions are plotted by
solid, dashed, and dotted curves, respectively. Their shape evolutions as functions
of angular momentum I in the (β2, γ) plane are displayed in the upper portions.
The β2 values decrease with increasing I.
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Figure 7: The angular momenta I and the moments of inertia J are plotted as
functions of rotational frequency ωrot for the SD rotational bands in 32S, 36S, and
50S. The SLy4 interaction is used. Values of the kinematical and dynamical moments
of inertia, J (1) = I/ωrot and J (2) = dI/dωrot, are plotted in unit of h̄2/MeV by
solid and dashed curves, respectively. For reference, the rigid-body moments of
inertia Jrig = m

∫
ρ(r)(y2 + z2)dr evaluated with the calculated density ρ(r) are

also indicated.
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Figure 8: Single-particle energy diagrams (Routhians) for the SD bands in 32S, 36S,
and 50S, plotted as functions of rotational frequency ωrot. The left(right)-hand side
displays those for protons(neutrons). The levels associated with the g9/2 and f7/2

shells are drawn by thick-solid and thick-dashed lines, respectively. Other occupied
levels associated with the sd and fp shells are drawn by thin-solid and thin-dashed
lines, respectively. Unoccupied levels are drawn by thin-dotted lines. Numbers
indicate the Fermi surfaces and total numbers of single-particle states below them.
The result calculated with SLy4 is shown here, but we obtained similar results also
with SIII and SkM∗.
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Figure 9: Deformation energy curves (measured from energies at β3 = 0) as func-
tions of the octupole deformation parameters β3m(m = 0, 1, 2, 3), calculated for 32S,
36S, and 50S, by means of the constrained HF procedure with the use of the SIII,
SkM∗ and SLy4 interactions. The quadrupole deformation parameters are fixed at
the equilibrium value of β2 in each nucleus and γ = 0. One of the β3m(m = 0, 1, 2, 3)
is varied while the other β3m’s are fixed to zero. The deformation parameters β3

and β3m are defined in terms of the expectation values of the octupole operators
(see Ref. [18] for their explicit expressions).
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Figure 10: Left-hand side: Density distributions in the (y, x)- and (z, x)- planes
of the SD band at I = 0 in 32S, 36S, and 50S, calculated with the use of the SLy4
interaction. Neutron (proton) equi-density lines with 50% and 1% of the central
density are shown by dashed (solid) lines (the inner and outer lines correspond to
the 50% and 1% lines, respectively). Right-hand side: Same as the left-hand side
but for I = 20, 22, 28 for 32S, 36S, and 50S, respectively.
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