
ar
X

iv
:n

uc
l-

th
/0

31
00

52
 v

1 
  2

1 
O

ct
 2

00
3

KUNS-1870

Nuclear moments of inertia and wobbling motions in triaxial

superdeformed nuclei

Masayuki Matsuzaki∗

Department of Physics, Fukuoka University of Education,

Munakata, Fukuoka 811-4192, Japan

Yoshifumi R. Shimizu†

Department of Physics, Graduate School of Sciences,

Kyushu University, Fukuoka 812-8581, Japan

Kenichi Matsuyanagi‡

Department of Physics, Graduate School of Science,

Kyoto University, Kyoto 606-8502, Japan

(Dated: October 21, 2003)

Abstract

The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked

shell model plus random phase approximation. Firstly, by calculating at low spins the γ-dependence

of the three moments of inertia associated with the wobbling motion, the mechanism of the appear-

ance of the wobbling motion in positive-γ nuclei is clarified theoretically — the rotational alignment

of the πi13/2 quasiparticle(s) is the essential condition. This indicates that the wobbling motion is

a collective motion that is sensitive to the single-particle alignment. Secondly, we prove that the

observed unexpected rotational-frequency dependence of the wobbling frequency is an outcome of

the rotational-frequency dependent dynamical moments of inertia.
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I. INTRODUCTION

Deformation of the nuclear shape from spherical symmetric one has long been one of the

most important issues in nuclear structure physics. Among them, searches for evidences of

the triaxial (Y22 or γ) one have been pursued long time, for example, the even-odd energy

staggering in the low-spin part of the γ bands [1], the signature dependence of the energy

spectra and the E2/M1 transition rates in medium-spin odd-odd and odd-A nuclei [2, 3, 4],

properties of the K isomers [5, 6], and so on. But their results have not been conclusive;

making a clear distinction between the static and the dynamic (vibrational) ones has not

been successful up to now. Theoretically, appearance of the wobbling motion, which is

well-known in classical mechanics of asymmetric tops [7] and whose quantum analog was

discussed in terms of a rotor model about thirty years ago [8], is a decisive evidence of

static triaxial deformations. Subsequently its microscopic descriptions were developed by

several authors [9, 10]. Since the small-amplitude wobbling mode carries the same quantum

numbers, parity π = + and signature α = 1, as the odd-spin members of the γ band, Ref.[11]

anticipated that it would appear as a high-spin continuation of the γ band, but it has not

been resolved that in what nuclei, at what spins, and with what γ wobbling modes would

be observed.

Shimizu and Matsuyanagi [12] and Onishi [13] performed extensive numerical calcula-

tions for normally-deformed Er isotopes with relatively small |γ|. Matsuzaki [14], Shimizu

and Matsuzaki [15], and Horibata and Onishi [16] also studied 182Os with relatively large

negative-γ but their correspondence to experimental information has not been very clear.

These studies indicate the necessity of high-spin states in stably and strongly γ-deformed

nuclei. Bengtsson studied high-spin states around 164Hf [17] and found systematic existence

of the TSD (triaxial super- or strongly deformed) states with ε2 ∼ 0.4 and |γ| ∼ 20◦. This

shed light on the data of the yrast TSD band in 163Lu [18]; and in 2000 an excited TSD

band was observed in this nucleus and from the strengths of the interband E2 transition

rates this was unambiguously identified with the wobbling motion [19]. This data was ana-

lyzed by using a particle-rotor model [20] and the E2 transition rates were reproduced well.

Subsequently TSD bands were found in some Lu and Hf isotopes and wobbling excitations

were observed also in 165,167Lu [21, 22]. A close look at these data, however, tells us that

the sign of their γ-deformation seems to contradict to an irrotational motion and that the
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unexpected behavior of the wobbling frequency has not been explained yet.

Thus in the preceding Rapid Communication [23] we presented an answer to these prob-

lems. In the present paper, after summarizing the discussion there we extend numerical

analyses to elucidate it. An emphasis is put on the behavior of the calculated dynamic

moments of inertia.

II. WOBBLING MOTION IN TERMS OF THE RANDOM PHASE APPROXI-

MATION

We start from a one-body Hamiltonian in the rotating frame,

h′ = h− �ωrotJx, (1)

h = hNil −∆τ (P
†
τ + Pτ ) − λτNτ , (2)

hNil =
p2

2M
+

1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

+vlsl · s + vll(l
2 − 〈l2〉Nosc

). (3)

In Eq.(2), τ = 1 and 2 stand for neutron and proton, respectively, and chemical potentials λτ

are determined so as to give correct average particle numbers 〈Nτ 〉. The oscillator frequencies

in Eq.(3) are expressed by the quadrupole deformation parameters ε2 and γ in the usual way.

They are treated as parameters as well as pairing gaps ∆τ . The orbital angular momentum

l in Eq.(3) is defined in the singly-stretched coordinates x′k =
√

ωk

ω0

xk, with k = 1 – 3

denoting x – z, and the corresponding momenta. By diagonalizing h′ at each ωrot, we obtain

quasiparticle (QP) orbitals and the nuclear yrast (0QP) state. Since h′ conserves parity π

and signature α, nuclear states can be labeled by them. Nuclear states with QP excitations

are obtained by exchanging the QP energy and wave functions such as

(−e′µ,Vµ,Uµ) → (e′µ̄,Uµ̄,Vµ̄), (4)

where µ̄ denotes the signature partner of µ.

We perform the random phase approximation (RPA) to the residual pairing plus doubly-

stretched quadrupole-quadrupole (Q′′ ·Q′′) interaction between QPs. Since we are interested

in the wobbling motion that has a definite quantum number, α = 1, only two components
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out of five of the Q′′ ·Q′′ interaction are relevant. They are given by

H
(−)
int = −1

2

∑
K=1,2

κ
(−)
K Q

′′(−)†
K Q

′′(−)
K , (5)

where the doubly-stretched quadrupole operators are defined by

Q′′
K = QK(xk → x′′k =

ωk

ω0
xk), (6)

and those with good signature are

Q
(±)
K =

1√
2(1 + δK0)

(QK ±Q−K) . (7)

The residual pairing interaction does not contribute because Pτ is an operator with α = 0.

The equation of motion, [
h′ +H

(−)
int , X

†
n

]
RPA

= �ωnX
†
n, (8)

for the eigenmode

X†
n =

(α=±1/2)∑
µ<ν

(
ψn(µν)a†µa

†
ν + ϕn(µν)aνaµ

)
(9)

leads to a pair of coupled equations for the transition amplitudes

TK,n =
〈[
Q

(−)
K , X†

n

]〉
. (10)

Then, by assuming γ �= 0, this can be cast [10] into the form

(ω2
n − ω2

rot)


ω2

n − ω2
rot

(
Jx −J (eff)

y (ωn)
)(

Jx − J (eff)
z (ωn)

)
J (eff)

y (ωn)J (eff)
z (ωn)




= 0, (11)

which is independent of κ
(−)
K s. This expression proves that the spurious (Nambu–Goldstone)

mode given by the first factor and all nomal modes given by the second are decoupled from

each other. Here Jx = 〈Jx〉/ωrot as usual and the detailed expressions of J (eff)
y,z (ωn) are given

in Refs.[10, 14, 15]. Among normal modes, one obtains

ω2
wob = ω2

rot

(
Jx − J (eff)

y (ωwob)
)(

Jx − J (eff)
z (ωwob)

)
J (eff)

y (ωwob)J (eff)
z (ωwob)

, (12)

by putting ωn = ωwob. Note that this gives a real excitation only when the right-hand side

is positive and it is non-trivial whether a collective solution appears or not. Evidently this

4



coincides with the form derived by Bohr and Mottelson in a rotor model [8] and known

in classical mechanics [7], aside from the crucial feature that the moments of inertia are

ωrot-dependent in the present case.

One drawback in our formulation is that our Jx tends to be larger than corresponding

experimental values because of the spurious velocity dependence of the Nilsson potential

as discussed in Refs.[24, 25]. A remedy for this was discussed there but that for J (eff)
y,z has

not been devised yet. Therefore we assume for the present a similar discussion holds for

the latter and accordingly the ratio J (eff)
y,z (ωwob)/Jx which actually determines ωwob is more

reliable than their absolute magnitudes.

Interband electric quadrupole transitions between the n-th excited band and the yrast

are given as

B(E2 : In → (I ± 1)yrast) =
1

2

(
T

(E)
1,n ± T

(E)
2,n

)2

, (13)

in terms of

T
(E)
K,n = e

Z

A
TK,n. (14)

They will be abbreviated to B(E2)out later for simplicity. In-band ones are given as

B(E2 : I → I − 2) =
1

2

(√
3

2

〈
Q

(+)(E)
0

〉
+

1

2

〈
Q

(+)(E)
2

〉)2

, (15)

in terms of 〈
Q

(+)(E)
K

〉
= e

Z

A

〈
Q

(+)
K

〉
, (16)

and assumed to be common to all bands. They will be abbreviated to B(E2)in. Here we

adopted a high-spin approximation [26]. The transition quadrupole moment Qt is extracted

from B(E2)in by the usual rotor-model prescription.

To compare collectivities of these two types of E2 transitions, we introduce a pair of

deformation parameters

R2αy =

√
15

16π

〈
x2 − z2

〉
=

〈
1

2
Q

(+)
2 −

√
3

2
Q

(+)
0

〉
,

R2αz =

√
15

16π

〈
x2 − y2

〉
=
〈
Q

(+)
2

〉
. (17)

Then it is evident that the in-band one is expressed as

B(E2 : I → I − 2) =
1

2
R4
(
α(E)

y − α(E)
z

)2

. (18)
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As for the interband ones, by expanding Q
(−)
K by X†

ns and Xns, where n runs both normal

modes and the Nambu–Goldstone mode X†
NG = 1√

2I
(Jz + iJy), we obtain from [Q

(−)
1 , Q

(−)
2 ] =

0 a kind of sum rule ∑
n �=NG

T1,nT2,n = −2

I
R4 αyαz. (19)

Consecutively introducing the ratios of the dynamic to static deformations,

ry,n =
T1,n

2R2αy
,

rz,n = − T2,n

2R2αz

, (20)

the sum rule above reads ∑
n �=NG

ry,nrz,n =
1

2I
. (21)

The dynamic amplitudes TK,n describe shape fluctuations associated with the vibrational

motion in the uniformly rotating frame. Transformation to the body-fixed (Principal-Axis)

frame [10] turns the shape fluctuation into the fluctuation of the angular momentum vector,

i.e., the wobbling motion. This transformation relates the ratios, ry,n and rz,n, to the

moments of inertia [15]:

ry,n = cn
1√
2I

(
Wz,n

Wy,n

)1/4

,

rz,n = σncn
1√
2I

(
Wy,n

Wz,n

)1/4

, (22)

where cn is a real amplitude that relates the dynamic amplitude TK,n and the moment of

inertia, σn is the sign of
(
Jx − J (eff)

y

)
(so σn > 0 for wobbling-like RPA solutions), and

Wy,n = 1/J (eff)
z (ωn) − 1/Jx,

Wz,n = 1/J (eff)
y (ωn) − 1/Jx. (23)

Thus, the interband B(E2) is rewritten as,

B(E2 : In → (I ± 1)yrast)

=
1

I
R4 c2n

[
α(E)

y

(
Wz,n

Wy,n

)1/4

∓ σnα
(E)
z

(
Wy,n

Wz,n

)1/4
]2

, (24)
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which coincides with the formula given by the rotor model [8], except for the appearance of

the amplitude cn and sign σn. Substituting the ratios, ry,n and rz,n, into Eq.(21), one finds

that the amplitudes should satisfy

∑
n �=NG

σnc
2
n = 1. (25)

This form of sum rule clearly indicates that the amplitude cn is a microscopic correction

factor quantifying the collectivity of the wobbling motion, for which c2n � 1 means the full-

collectivity and reproduces the results of the macroscopic rotor model in both the energy

and the interband B(E2) values.

III. NUMERICAL CALCULATION AND DISCUSSION

A. Summary of the preceding study

Since the first experimental confirmation of the wobbling excitation in 163Lu [19], γ �
+20◦ has been widely accepted as the shape of the TSD states in this region. This is

predominantly because the calculated energy minimum for γ � +20◦ is deeper than that

for γ � −20◦ [17] according to the shape driving effect of the aligned πi13/2 quasiparticle.

The recent precise measurements of Qt [27] also support this. On the other hand, the

sign of γ-deformation leads different consequences on moments of inertia, which are directly

connected to the excitation energy of the wobbling mode through the wobbling frequency

formula [8], c.f. Eq.(12). Since the RPA is a microscopic formalism, no distinction between

the collective rotation and the single-particle degrees of freedom has been made.

Therefore, the moments of inertia calculated in our RPA formalism in sect.II are those

for rotational motions of the whole system. In contrast, the macroscopic irrotational-like

moments of inertia are often used in the particle-rotor calculations, where Jy > Jx 	 Jz

for γ � +20◦ and they lead to an imaginary wobbling frequency ωwob. It is, however, noted

that the moments of inertia of the particle-rotor model are those of the rotor and no effect

of the single-particle alignments is included, so that they do not necessarily correspond to

those calculated in our RPA formalism.

In the preceding paper [23] we have performed microscopic RPA calculations without

dividing the system artificially into the rotor and particles. That work proved that for the
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calculated moment of inertia, Jx = 〈Jx〉/ωrot, the contribution from the aligned QP(s),

∆Jx = iQP/ωrot with iQP being the aligned angular momentum, is superimposed on an

irrotational-like moment of inertia (Jy > Jx) of the “core”. Consequently the total Jx is

larger than Jy, which makes wobbling excitation in γ > 0 nuclei possible.

The second consequence of the formulation adopted in Ref.[23] is that the three moments

of inertia are automatically ωrot-dependent even when the mean-field parameters are fixed

constant. This is essential in order to explain the observed ωrot-dependence of ωwob —

decreasing as ωrot increases. Otherwise ωwob is proportional to ωrot.

Another important feature of the data is that the interband B(E2) values between the

wobbling and the yrast TSD bands are surprisingly strong. Our RPA wave function gave

extremely collective B(E2)out that gathered |cn=wob| � 0.6 – 0.8 in the sum rule (Eq.(25))

but the result accounted for only about one half of the measured one.

To elucidate these findings more, in the following we extend our numerical analyses

putting a special emphasis on the γ-dependence of the moments of inertia in subsect.III B.

Dependence on other parameters is also studied in detail. Features in common and different

between even-even and odd-A nuclei are also pointed out. In subsect.IIIC, we discuss ωrot-

dependence. In subsect.IIID, characteristics of B(E2)out are discussed. Calculations are

performed in five major shells; Nosc = 3 – 7 for neutrons and Nosc = 2 – 6 for protons. The

strengths vls and vll in Eq.(3) are taken from Ref.[28].

B. Dependence on the mean-field parameters γ, ε2, and ∆

1. The even-even nucleus 168Hf

Hafnium-168 is the first even-even nucleus in which TSD bands were observed [29]. In

this nucleus three TSD bands were observed but interband γ-rays connecting them have

not been observed yet. This means that the character of the excited bands has not been

established, although we expect at least one of them is wobbling excitation. An important

feature of the data is that the average transition quadrupole moment was determined as

Qt = 11.4+1.1
−1.2 eb. This imposes a constraint on the shape. Thus we choose ε2 = 0.43,

γ = 20◦, and ∆n = ∆p = 0.3 MeV, which reproduce the observed Qt, as a typical mean-field

parameter set.
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First we study the dependence of various quantities on γ and other mean-field parameters

at �ωrot = 0.25 MeV. Around this frequency the (πi13/2)
2 alignment that is essential for

making wobbling excitation in γ > 0 nuclei possible is completed and therefore the wobbling

motion is expected to emerge above this frequency (see Fig.7 shown later).

Figure 1 shows dependence on γ calculated with keeping ε2 = 0.43 and ∆n = ∆p = 0.3

MeV. Figure 1(a) graphs the calculated excitation energy in the rotating frame, �ωwob. As

γ comes close to 0 (symmetric about the z axis) and −60◦ (symmetric about the y axis),

ωwob approaches 0, see Eq.(12). We did not obtain any low-lying RPA solutions at around

γ = 40◦ whereas a collective solution appears again for 50◦ ≤ γ ≤ 60◦.
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(d)
K=1
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FIG. 1: Triaxiality dependence of (a) excitation energy of the wobbling motion, (b) three moments

of inertia associated with it, (c) expectation values of angular momenta in the yrast state, and (d)

quadrupole transition amplitudes between the wobbling and the yrast states in 168Hf, calculated

at �ωrot = 0.25 MeV with ε2 = 0.43 and ∆n = ∆p = 0.3 MeV.

Figure 1(b) shows the calculated moments of inertia. Their γ-dependence resembles the

irrotational, the so-called γ-reversed, and the rigid-body moments of inertia, in γ < 0,

0 < γ < 40◦, and 50◦ ≤ γ ≤ 60◦, respectively. These model moments of inertia are given by
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J irr
k = 4Bβ2 sin2 (γ +

2

3
πk), (26)

J rev
k = 4Bβ2 sin2 (−γ +

2

3
πk), (27)

and

J rig
k = J0

(
1 −

√
5

4π
β cos (γ +

2

3
πk)

)
, (28)

where k = 1 – 3 denote the x – z principal axes, B the irrotational mass parameter, J0 the

rigid moment of inertia in the spherical limit, and β is a deformation parameter like ε2. The

γ-reversed moment of inertia was introduced to describe positive-γ rotations in the particle-

rotor model [3] but its physical meaning has not been very clear; in particular, it does

not fulfill the quantum-mechanical requirement that the rotations about the symmetry axis

should be forbidden. We have clarified in the preceding paper [23] that the contributions from

aligned quasiparticles superimposed on irrotational-like moments of inertia (Jx < Jy) can

realize Jx > Jy and this is the very reason why the wobbling excitation (see Eq.(12)) appears

in positive-γ nuclei. We also discussed that multiple alignments could eventually lead to

a rigid-body-like moment of inertia. Figure 1(c) indicates that, in the present calculation

in which configuration is specified as the adiabatic quasiparticle vacuum at each ωrot, two

πi13/2 protons align for γ > 0 as mentioned above while they have not fully aligned for γ < 0

at this ωrot. This determines the overall γ-dependence of Jx in Fig.1(b). As for the neutron

part, corresponding to the disappearance of the solution at around γ = 40◦, the expectation

value of the neutron angular momentum, 〈Jx〉n, drops around this region.

To look at this more closely, we investigate the Nilsson single-particle diagram at ωrot = 0.

Figure 2(a) graphs neutron single-particle energies for 0 ≤ ε2 ≤ 0.43 with γ = 0, while

Fig.2(b) for 0 ≤ γ ≤ 60◦ with ε2 = 0.43. The chemical potential that gives correct neutron

number N = 96 for γ > 0 at �ωrot = 0.25 MeV is also drawn in the latter. This figure

clearly shows that with this ε2 a shell gap exists for γ � 20◦ at N = 96. And by comparing

this with Fig.1 we see that the dropping of 〈Jx〉n is a consequence of the deoccupation of the

orbital that is [651 1/2] at γ = 0 (hereafter simply referred to as the [651 1/2] orbital even at

γ �= 0) originating from the g9/2 spherical shell. Figure 2(b) also explains the reason why the

wobbling excitation revives at around γ = 50◦ again; the occupation of other oblate-favoring

orbitals makes it possible and leads to a rigid-body-like behavior of the moments of inertia.
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Figures 2(c) and (d) are corresponding ones for protons. This indicates that the proton shell

gap is more robust.
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FIG. 2: Nilsson single-particle energy diagrams at ωrot = 0, (a) for 0 ≤ ε2 ≤ 0.43 with γ = 0, and

(b) for 0 ≤ γ ≤ 60◦ with ε2 = 0.43 for neutrons. (c) and (d) are corresponding ones for protons.

Solid and dashed curves represent even and odd parity orbitals, respectively. Asymptotic quantum

numbers of some important orbitals are explicitly indicated. Chemical potentials that give particle

numbers N = 96 and Z = 72 for γ = +20◦ at �ωrot = 0.25 MeV are also indicated in (b) and (d).

Figure 1(d) graphs the quadrupole transition amplitudes TK (K = 1, 2) associated with

the wobbling mode. (TK corresponds to (−1)K−1QK in Ref.[15].) This shows that their

relative sign changes with that of γ as discussed in Refs.[14, 15]. This feature can be

understood as: γ ∼ 0 is the γ-vibrational region because the K = 2 component is dominant

(see also Jx � J (eff)
y and J (eff)

z � 0 in Fig.1(b)), and the mixing of the K = 1 component due

to triaxiality and rotation gives rise to the character of the wobbling motion. This relative

sign leads to a selection rule of the interband transition probabilities B(E2)out [15]. In the

present case we obtain B(E2 : I → I−1)out ≷ B(E2 : I → I+1)out for γ ≷ 0, and typically

their ratio to the in-band ones is B(E2 : I → I − 1)out/B(E2 : I → I − 2)in ∼ 0.1.

Figure 3 shows dependence on ε2 calculated with keeping γ = 20◦ and ∆n = ∆p = 0.3
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MeV. The steep rises at around ε2 = 0.33 in Figs.3(a) and (b) indicate the necessity of the

(πi13/2)
2 (the [660 1/2] orbital in Fig.2(d)) alignment for the appearance of the wobbling

mode. Aside from this, ωwob is almost constant in the calculated range. The slight increase

at around ε2 = 0.4 stems from the occupation of the ν[651 1/2] orbital. We have confirmed

that in this case the (νj15/2)
2 alignment at around ε2 = 0.47 seen in Fig.3(b) does not affect

ωwob visibly since ∆J (eff)
y in this case is almost the same as ∆Jx. Figure 3(c) graphs Qt.

This figure indicates that the chosen shape ε2 = 0.43 and γ = 20◦ reproduces the measured

Qt.
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FIG. 3: Deformation dependence of (a) excitation energy of the wobbling motion, (b) expectation

values of angular momenta in the yrast state, and (c) transition quadrupole moment in the yrast

state in 168Hf, calculated at �ωrot = 0.25 MeV with γ = 20◦ and ∆n = ∆p = 0.3 MeV.

Figure 4 shows dependence on the pairing gaps. Since we do not have detailed information

about the gaps, we assume ∆n = ∆p for simplicity. This figure shows that the dependence

on the gaps is weak unless they are too large. This is a striking contrast to the β and γ

vibrations; it is well known that pairing gaps are indispensable for them.

12



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

� ω
w

ob
 (

M
eV

)

∆n=∆p(MeV)

FIG. 4: Pairing gap dependence of excitation energy of the wobbling motion in 168Hf, calculated

at �ωrot = 0.25 MeV with ε2 = 0.43 and γ = 20◦. ∆n = ∆p is assumed for simplicity.

2. The odd-A nucleus 167Lu

Next we study 167Lu in a way similar to the preceding 168Hf case. We choose γ = 20◦ and

∆n = ∆p = 0.3 MeV as representative mean-field parameters as above. As for ε2, however,

we examined various possibilities because Qt has not been measured in this nucleus. Since

the sensitive ε2-dependence through the occupation of the ν[651 1/2] orbital appears only at

ωrot > 0.4 MeV and therefore the “band-head” properties do not depend on ε2 qualitatively,

first we discuss them adopting ε2 = 0.43 in order to look at the difference between the

even-even and the odd-Z cases.

Figure 5 shows dependence on γ at ωrot = 0.25 MeV with keeping ε2 = 0.43 and ∆n =

∆p = 0.3 MeV constant. Figure 5(a) graphs ωwob. In the γ > 0 region, the solution is

quite similar to the 168Hf case. In the γ < 0 region, that for −60◦ ≤ γ � −30◦ is quite

similar again but for −30◦ � γ < 0 its character is completely different. In this region the

presented solution is the lowest in energy and becoming collective gradually as γ decreases.

The largeness of ωwob corresponds to that of Jx−J (eff)
y in Fig.5(b). Comparison of Figs.5(c)

and 1(c) certifies that the alignment of the πi13/2 quasiparticle(s) is almost complete for

γ > 0 whereas less for γ < 0. This produces quantitative even-odd differences as explained

below.

Having confirmed that these features are independent of ε2 and N except that we did

not obtain any low-lying solutions for 35◦ � γ ≤ 60◦ in the small-ε2 cases, we look into

underlying unperturbed 2QP energies to see the even-odd difference. In Fig.6 we present

the energies of the lowest (π(Nosc = 6))2 states which represent the biggest difference. In
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FIG. 5: The same as Fig.1 but for 167Lu.

the yrast (πi13/2)
2 configuration, Ap and Bp in the usual notation are occupied in the even-Z

case, the lowest 2QP state of signature α = 1 with respect to this is B̄pCp (where ¯ denotes

the conjugate state, see Eq.(4)). In the odd-Z case in which Ap is occupied, the lowest one is

BpĀp. Since both e′Bp
and e′

Āp
decrease as γ decreases, this 2QP state becomes the dominant

component in the lowest-energy RPA solution. Note here that the sum e′Bp
+e′

Āp
corresponds

to the signature splitting between Ap and Bp when they are seen from the usual even-even

vacuum. Since both Bp and Āp are of K = 1/2 character, the resulting RPA solution can

not have the K = 2 collectivity as shown in Fig.5(d). According to the relation [15],

J (eff)
y

Jx
=

[
1 +

ωwob

ωrot

sin γ

sin (γ + 4
3
π)

T1

T2

]−1

, (29)

J (eff)
y in Fig.5(b) becomes small for −30◦ � γ < 0. These discussion serves to exclude the

possibility of γ � −20◦ for the TSDs that support collective wobbling excitations in the

odd-Z cases, whereas the even-odd difference in γ > 0 is merely quantitative.
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C. Dependence on the rotational frequency ωrot

1. 168Hf and 174Hf

The analyses above indicate that the chosen mean-field parameters are reasonable, and

therefore we proceed to study ωrot-dependence with keeping these parameters constant.

Figure 7 shows the result for 168Hf. These figures indicate again the (πi13/2)
2 alignment that

makes Jx larger than J (eff)
y is indispensable for the formation of the wobbling excitation. At

around �ωrot = 0.45 MeV the (νj15/2)
2 alignment occurs. In contrast to the low-spin case

reported in Fig.5, in the present case its effect on ωwob is visible as a small bump. Although

the character of the observed excited TSD bands has not been resolved, some anomaly is

seen at around this ωrot in one of them [29]. We suggest this is related to the (νj15/2)
2

alignment.

We performed calculations also for γ = −20◦. In that case, however, wobbling excitation

exists only at small ωrot because Jx − J (eff)
y is small as seen from Fig.1(b).

Very recently TSD bands were observed in another even-even nucleus, 174Hf [30]. It is

not trivial if a similar band structure is observed in the nucleus with six neutrons more

since the existence of the TSD states depends on the shell gap. Multiple TSD bands were

observed but connecting γ-rays have not been resolved also in this nucleus. We performed a

calculation adopting ε2 = 0.453 and γ = 16◦ suggested in Ref.[30] and ∆n = ∆p = 0.3 MeV.

The result is presented in Fig.8. The most striking difference from the case of 168Hf above

is that ωwob decreases steadily as ωrot increases after the (πi13/2)
2 alignment is completed.
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pectation values of angular momenta in the yrast state, and (c) three moments of inertia associated

with the wobbling motion in 168Hf, calculated with ε2 = 0.43, γ = 20◦ and ∆n = ∆p = 0.3 MeV.

This is because the (νj15/2)
2 alignment that causes the small bump in the 168Hf case shifts

to very low ωrot due to the larger neutron number.
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FIG. 8: Rotational frequency dependence of excitation energy of the wobbling motion in 174Hf,

calculated with ε2 = 0.453, γ = 16◦ and ∆n = ∆p = 0.3 MeV.
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2. 167Lu

The wobbling excitation was first observed experimentally in 163Lu [19], later it was also

observed in 165Lu [21] and 167Lu [22]. The characteristic features common to these isotopes

are 1) ωwob decreases as ωrot increases contrary to the consequence of calculations adopting

constant moments of inertia, and 2) B(E2 : I → I − 1)out/B(E2 : I → I − 2)in is large —

typically around 0.2.

Here we concentrate on the isotone of 168Hf discussed above, that is, 167Lu in order to

see the even-odd difference. A comparison of Figs.7 and 9 proves that all the differences are

due to the fact that the number of the aligned πi13/2 quasiparticle is less by one: 1) The

(πi13/2)
2 alignment at around ωrot = 0.2 MeV is absent, and 2) the BpCp crossing occurs at

around ωrot = 0.55 MeV, which is proper to the (πi13/2)
1 configuration.
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FIG. 9: The same as Fig.7 but for 167Lu. Experimental values taken from Ref.[22] are also included

in (a).
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D. Interband B(E2) transitions

Compared to the excitation energy, the interband B(E2) values relative to the in-band

ones have been measured in only few cases. In Fig.10, we report calculated B(E2) ratios

for I (wobbling on yrast TSD) → I ± 1 (yrast TSD) transitions in 168Hf and 167Lu. The

measured ones are also included for the latter.

The first point is the magnitude of the larger (I → I−1) ones. Apparently, the calculated

B(E2) values are smaller by factor 2 – 3. The measured interband B(E2) values amount

almost to the macroscopic rotor value. In the RPA calculations, as summarized in sect.II, the

B(E2) value is reduced by a factor c2n=wob (see Eq. (24)): Only the case with the full-strength

c2n=wob = 1 the rotor value is recovered. Although the obtained RPA wobbling solutions are

extremely collective in comparison with the usual low-lying collective vibrations, like the

β- or γ-vibrations, for which typically |cn| � 0.3 – 0.4, this factor is still |cn=wob| � 0.6

– 0.8. This is the main reason why the calculated B(E2) values are a factor 2 – 3 off

the measured ones. As is well-known, giant resonances also carry considerable amount of

quadrupole strengths, so it seems difficult for the microscopic correction factor c2n=wob to be

unity; it is not impossible, however, because the “sum rule” discussed in sect.II is not the

sum of positive-definite terms. In the RPA formalism, the reduction factor c2n=wob for the

B(E2) value, Eq. (24), comes from the fact that the wobbling motion is composed of the

coherent motion of two-quasiparticles, and reflects the microscopic structure of collective

RPA solutions. The measurement that the B(E2) value suffers almost no reduction may be

a challenge to the microscopic RPA theory in the case of the wobbling motion. Calculated

B(E2) ratios for 174Hf are slightly smaller than those for 168Hf in Fig.10(a).

The second point is the staggering, that is, the difference between I → I ± 1. We

clarified [15] its unique correspondence to the sign of γ as mentioned in subsect.III B; that

holds for both even-even and odd-A systems. Recently this staggering was discussed from a

different point of view [31]; but it looks to apply only to γ < 0 cases.

IV. CONCLUSION

The nuclear wobbling motion, which is a firm evidence of stable triaxial deformations,

was identified experimentally in the triaxial superdeformed odd-A Lu isotopes. In principle,
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FIG. 10: Interband E2 transition rates for I (wobbling on yrast TSD) → I ± 1 (yrast TSD)

transitions in (a) 168Hf and (b) 167Lu. The latter is presented as functions of 2× spin I, while

the former is presented as functions of the rotational frequency since experimental spin assignment

has not been done for 168Hf. The rotational-frequency range corresponding to (b) is very narrow

in comparison to (a). Interband transition rates are divided by the in-band ones. Experimental

values [22] are also shown in (b). Noting that, for 167Lu, the states I +1 (TSD1) are slightly higher

in energy than I (TSD2) at I > 51/2� and B(Tλ; I → I + 1) � B(Tλ; I + 1 → I) holds at high

spins, we plotted those for I → I +1 at the places with the abscissae I +1 in order to show clearly

their characteristic staggering behavior.

wobbling excitation is possible both in γ > 0 and γ < 0 nuclei. Every information, theoretical

and experimental, suggests γ > 0 for these bands. According to the wobbling frequency

formula [8], c.f. Eq.(12), its excitation in nuclei rotating principally about the x axis requires

Jx > Jy,Jz, although irrotational-like model moments of inertia give Jx < Jy for γ >

0. To solve this puzzle, we studied the nuclear wobbling motion, in particular, the three

moments of inertia associated with it in terms of the cranked shell model plus random

phase approximation. This makes it possible to calculate the moments of inertia of the

whole system including the effect of aligned quasiparticle(s). The results indicate that the

γ-dependence of the calculated moment of inertia is basically irrotational-like (Jx ≷ Jy for

γ ≶ 0) if aligned quasiparticle(s) (πi13/2 in the present case) does not exist. But once it is

excited, it produces an additional contribution, ∆Jx = iQP/ωrot, and consequently can lead

to Jx > Jy. This is the very reason why wobbling excitation exists in γ > 0 nuclei. In

this sense, the wobbling motion is a collective motion that is sensitive to the single-particle

alignments.
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The resulting moment of inertia for 0 < γ � 30◦ resembles the γ-reversed one, i.e., the

irrotational moment of inertia but with Jx and Jy being interchanged. That for 50◦ � γ �

60◦, where single-particle angular momenta dominate, is rigid-body-like. That for γ < 0

is irrotational-like except for odd-A nuclei with −30◦ � γ < 0 where a specific 2QP state

determines the lowest RPA solution.

Having studied qualitative features of the three moments of inertia at low spins, we

calculated wobbling bands up to high spins. Experimentally they were confirmed only in

odd-A Lu isotopes as mentioned above. The most characteristic feature of the data is that

ωwob decreases as ωrot increases. This obviously excludes constant moments of inertia. In our

calculation three moments of inertia are automatically ωrot-dependent even when mean field

parameters are fixed constant. It should be stressed that the wobbling-like solution in our

RPA calculations is insensitive to the mean-field parameters, especially to the pairing gaps,

as is shown in subsect.III B 1. This distinguishes the wobbling-like solution from the usual

collective vibrations, which are sensitive to the pairing correlations. Thus, our microscopic

RPA calculation confirms that the observed band is associated with a new type of collective

excitation, although comparisons to the observed excitation energy indicate that there is

room for improving the calculation.

As for the interband transition rates, our calculation accounted for only about one half

or less of the measured ones, even though the wobbling-like solution is extremely collective

compared to the usual vibrational modes. This issue is independent of the details of choosing

parameters. This confronts microscopic theories with a big challenge.
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