A Three Dimensional View of the SYK Model ?

Sumit R. Das

(S.R. Das, A. Jevicki and K. Suzuki : 1704.07208) (S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki : 1710.XXXXX)

Large N and Space-time

- Generating real space from large number of internal degrees of freedom has a long history.
- Eguchi-Kawai Large-N reduction (1982)
- Matrix quantum mechanics (1990)
- BFSS Matrix Theory (1996)
- IKKT Matrix Theory (1996)
- AdS/CFT correspondence (1997)

Matrix Quantum Mechanics

• Here M is a $N \times N$ Hermitian matrix, whose dynamics is given by the Hamiltonian

$$H = \mathrm{Tr}\{-\frac{\partial^2}{\partial M \partial M} + V(M)\}$$

- At large N the singlet sector was solved by Brezin, Itzykson, Parisi and Zuber (1980)
- We can make a standard change of variables to the density of eigenvalues

$$M_{ij}(t) \to \rho(x,t) = \frac{1}{N} \text{Tr}\delta(M - xI)$$

- The space of eigenvalues x becomes a real space.
- The theory can be written in terms of $\rho(x,t)$
- This is one of the earliest examples of holography x is the holographic direction. (S.R.D. & A. Jevicki, 1990)

- In a certain limit this is in fact 1+1 dimensional string theory, whose only dynamical degree of freedom is represented by $\rho(x,t)$.
- In fact there is a detailed correspondence with usual string theory results.

(Gross & Klebanov,; Sengupta & Wadia; Dhar, Mandal & Wadia; Polchinski and Naatsume)

• Two dimensional string theory is interesting – this even has a black hole (*Mandal, Sengupta and Wadia; Witten*). However the black hole is not understood in the matrix model version very well. It is not in the singlet sector – and the entire theory is not solvable.

- The most interesting setup for holography is of course the AdS/CFT correspondence. (Maldacena; Witten; Gubser, Klebanov & Polyakov)
- E.g. a 3+1 dimensional field theory at large N becomes equivalent to a 9+1 dimensional string theory. Best understood in the supergravity limit.
- Matrix quantum mechanics in fact belongs to the same class –(*McGreevy & Verlinde*; *Klebanov, Maldacena & Seiberg*)
- However there is little hope that for e.g. N=4 one will be able to understand an explicit map from the field theory variables to the gravity variables and therefore understand how the large N theory grows these additional dimensions.
- It is clearly useful to look for solvable models of holography where we understand *how* this happens such "recognizable carriatures" have always played key roles.
- This might also lead to a connection to more recent ideas of emergence of spacetime from quantum entanglement and complexity.

Vector Models and Bilocal Fields

- Models with fields in vector representations (instead of adjoint representations) are usually solvable at large N – they have been useful to understand some aspects of the origins of holography.
- Klebanov and Polyakov (2002) conjectured that e.g. conformal 3d O(N) vector models are in fact dual to Higher Spin Gauge theories of Vasiliev type in one higher dimensional AdS space-time.
- S.R.D. and A. Jevicki (2003) proposal : this may be understood by recognizing that all invariants can be expressed in terms of Yukawa type bilocal fields.

$$\sigma(\vec{x}, \vec{y}) = \frac{1}{N} \sum_{i} \phi^{i}(\vec{x}) \phi^{i}(\vec{y})$$

• One can now express the path integral as a path integral over these bilocals. The technique for doing this was worked out by *A. Jevicki and B. Sakita (1982)*

• Now introduce center of mass and relative coordinates and express the relative coordinate in terms of the magnitude and angles, and perform an expansion

$$\vec{u} = \frac{1}{2}(\vec{x} + \vec{y}) \qquad \vec{v} = \frac{1}{2}(\vec{x} - \vec{y}) \equiv (r, \theta_1 \cdots \theta_{d-1})$$

$$\sigma(\vec{x}, \vec{y}) = \sum_{l, m_1 \cdots m_{d-2}} \varphi_{l, m_a}(\vec{u}, r) Y_{l, m_a}(\theta_a)$$

- Our first instinct was to identify r with the Poincare coordinate in AdS_{d+1} , and then the fields $\varphi_{l,m_a}(\vec{u},r)$ would be the infinite tower of massless higher spin fields.
- If this is true, *all* the conformal transformations of \vec{x} and \vec{y} , or equivalently \vec{u} , \vec{v} should reproduce the Killing symmetries of AdS_{d+1} acting on higher spin fields.

• This works for dilatations, translations and rotations

$$\delta_D \sigma = -\left(u^i \frac{\partial}{\partial u^i} + r \frac{\partial}{\partial r} + \Delta\right) \sigma$$
$$\delta_T \sigma = t^i \frac{\partial}{\partial u^i} \sigma$$
$$\delta_R \sigma = \theta^{ij} \left(u^i \frac{\partial}{\partial u^j} - u^j \frac{\partial}{\partial u^i} + L_{ij}\right) \sigma$$

- Here $\,\Delta\,$ is the scaling dimension of $\sigma\,$

$$L_{ij} = v_i \frac{\partial}{\partial v_j} - v_j \frac{\partial}{\partial v_i}$$

are angular momentum generators which become interpreted as spin in the d+1 dimensional theory.

• These are now isometries of AdS_{d+1} with r being identified as the Poincare coordinate.

• However this does not work for the special conformal transformations

$$\delta_S \sigma = \{ [2(\epsilon \cdot u)u^i - |u|^2 \epsilon^i - r^2 \epsilon^i] \frac{\partial}{\partial u^i} + 2(\epsilon \cdot u)r \frac{\partial}{\partial r} + 2\Delta(\epsilon \cdot u) + (\epsilon^j u^i - u^j \epsilon^i)L_{ji} \} \sigma + 2(\epsilon \cdot v)v^i \frac{\partial}{\partial u^i} \sigma$$

• The last term is not present for the corresponding isometry. In fact this term mixes up fields of different spins.

EXCEPT WHEN d = 1

- Vasiliev theory is supposed to be dual to the gauged version of the 2+1 dimensional O(N) model, e.g. with a Chern-Simons gauge field.
- This means that we need to restrict to the singlet sector. A way to do this is to consider bilocals at equal times and use a Hamiltonian formalism.
- For d=3 O(N) *De Mello Koch, Rodrigues, Jevicki and Jin (2011*) invented a non-local transformation of the fields in light front quantization to have these symmetries realized linearly the resulting formalism works, but rather messy.
- It is not known how to impose suitable conditions on the unequal time bilocals to obtain this.
- Recently, however, the d = 1 bilocals have become quite useful in understanding a toy model of holography : the Sachdev-Ye-Kitaev model.

Bilocals in d=1

• When we have one dimension, the SL(2,R) transformations are

$$\delta x = \epsilon_1, \qquad \delta x = \epsilon_2 x \qquad \delta x = \epsilon_3 x^2$$

$$\delta y = \epsilon_1, \qquad \delta y = \epsilon_2 y \qquad \delta y = \epsilon_3 y^2$$

- Defining z = (x y) t = (x + y)
- We get the following transformations

$$\delta t = \epsilon_1 \qquad \delta z = 0$$

$$\delta t = \epsilon_2 t \qquad \delta z = \epsilon_2 z$$

$$\delta t = \frac{1}{2} \epsilon_3 (t^2 + z^2) \qquad \delta z = \epsilon_3 t z$$

• These are exactly the Killing isometries of Lorentzian AdS_2

$$ds^{2} = \frac{1}{z^{2}} [-dt^{2} + dz^{2}]$$

SYK Model

• This is a quantum mechanical model of N real fermions which are all connected to each other by a random coupling. The Hamiltonian is

$$H = \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \chi_i \chi_j \chi_k \chi_l$$

- The couplings are random with a Gaussian distribution with width J
- This model is of interest since this displays quantum chaos and thermalization.
- When N is large, one can treat this using replicas, and Kitaev showed that one can restrict to replica diagonal space –basically may forget about replicas

• Averaging over the J_{ijkl} gives rise to the action

$$S = -\frac{1}{2} \int dt \sum_{i=1}^{N} \chi_i \partial_t \chi_i - \frac{J^2}{8N^3} \int dt_1 \int dt_2 (\sum_{i=1}^{N} \chi_i(t_1)\chi_i(t_2))^4$$

• We can now express the path integral in terms of bilocal collective field (*Jevicki, Suzuki and Yoon*)

$$\Psi(t_1, t_2) \equiv \frac{1}{N} \sum_{i=1}^{N} \chi_i(t_1) \chi_i(t_2)$$

• The path integral is now

$$\int \mathcal{D}\Psi(t_1,t_2) \ e^{-S_c[\Psi]}$$

• Where the collective action includes the jacobian for transformation from the original variables to the new bilocal fields

$$S_{c}[\Psi] = \frac{N}{2} \int dt_{1} \partial_{t_{1}} \Psi(t_{1}, t_{2})|_{t_{1} \to t_{2}} + \frac{N}{2} \operatorname{Tr} \log \Psi - \frac{J^{2}N}{8} \int dt_{1} dt_{2} \Psi^{4}(t_{1}, t_{2})$$

• The equations of motion are the large N Dyson-Schwinger equations

$$\frac{\partial}{\partial t_1}\Psi(t_1, t_2) + \delta(t_1 - t_2) - J^2 \int dt_3 [\Psi(t_3, t_1)]^3 \Psi(t_3, t_2) = 0$$

- At strong coupling which is the IR of the theory the first term can be neglected
- The saddle point solution (*Kitaev; Polchinski and Rosenhaus*)

$$\Psi_0(t_1, t_2) = \left(\frac{1}{4\pi J^2}\right)^{\frac{1}{4}} \frac{\operatorname{sgn}(t_{12})}{\sqrt{|t_{12}|}} \, .$$

The Strong Coupling Spectrum

• Expand the bilocal action around the large N saddle point

$$\Psi(t_1, t_2) = \Psi_0(t_1, t_2) + \sqrt{\frac{2}{N}} \eta(t_1, t_2)$$
$$\eta(t_1, t_2) \equiv \Phi(t, z) = \sum_{\nu, \omega} \tilde{\Phi}_{\nu, \omega} u_{\nu, \omega}(t, z)$$
$$u_{\nu, \omega}(t, z) = \operatorname{sgn}(z) e^{i\omega t} Z_{\nu}(|\omega z|)$$

• Where $Z_{\nu}(x)$ denotes a complete orthonormal set of combination of Bessel functions (*Polchinski and Rosenhaus*)

$$Z_{\nu}(x) = J_{\nu}(x) + \xi_{\nu} J_{-\nu}(x), \qquad \xi_{\nu} = \frac{\tan(\pi\nu/2) + 1}{\tan(\pi\nu/2) - 1}$$

• The order is real discrete u = 3/2 + 2n or purely imaginary continuous u = ir

• These appear when one diagonalizes the kernel which appears in the quadratic action for $\eta(t_1, t_2)$ and are in fact eigenfunctions of the wave operator of a scalar field in AdS_2 with mass at the BF bound

$$\left[z^{2}(-\partial_{t}^{2}+\partial_{z}^{2})+\frac{1}{4}\right]e^{-i\omega t}z^{1/2}Z_{\nu}(\omega z)=\nu^{2}\ e^{-i\omega t}z^{1/2}Z_{\nu}(\omega z)$$

• The orthonormality and completeness relations are

$$\int_{0}^{\infty} \frac{dx}{x} Z_{\nu}^{*}(x) Z_{\nu'}(x) = N_{\nu} \,\delta(\nu - \nu') \qquad N_{\nu} = \begin{cases} (2\nu)^{-1} & \text{for } \nu = 3/2 + 2n \\ 2\nu^{-1} \sin \pi \nu & \text{for } \nu = ir , \end{cases}$$
$$\int \frac{d\nu}{N_{\nu}} Z_{\nu}^{*}(|x|) Z_{\nu}(|x'|) = x \,\delta(x - x') \,.$$

• The integral here is a shorthand for a sum over discrete modes and an integral over imaginary values

• This leads to the quadratic action

$$S_{(2)} = \frac{3J}{32\sqrt{\pi}} \sum_{\nu,\omega} N_{\nu} \tilde{\Phi}_{\nu,\omega} (\tilde{g}(\nu) - 1) \tilde{\Phi}_{\nu,\omega}$$
$$\tilde{g}(\nu) = -\frac{2\nu}{3} \cot\left(\frac{\pi\nu}{2}\right)$$

where

• The spectrum is therefore given by the solutions of the equation

$$\tilde{g}(\nu) = 1$$
 $\nu = p_m$

The Bilocal Propagator

- The 4 point function of the fermions at large J has been calculated by Kitaev, *Polchinski* and Rosenhaus, Jevicki, Suzuki and Yoon, Maldacena and Stanford.....
- This is the two point function of the bilocal fluctuations. Performing the integral over ν the propagator can be expressed as a sum over poles

$$\mathcal{D}(t, z; t', z') = -\frac{32\pi^{\frac{3}{2}}}{3J} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega(t-t')} \sum_{m=1}^{\infty} R(p_m) \, \frac{Z_{-p_m}(|\omega|z^{>})J_{p_m}(|\omega|z^{<})}{N_{p_m}}$$

• Here $z^{>}(z^{<})$ denotes the greater (smaller) of z and z', and

$$R(p_m) = \frac{3p_m^2}{[p_m^2 + (3/2)^2][\pi p_m - \sin(\pi p_m)]}$$

is the residue at the pole $\nu=p_m$

- The object $\Phi(t, z)$ appeared as a field in 1+1 dimensions.
- However the field action in real space is non-polynomial in derivatives.

$$S^{(2)} = \int dt dz \{ (z^{1/2} \eta(t, z) \left[\tilde{g}(\sqrt{\mathcal{D}_B}) - 1 \right] (z^{1/2} \eta(t, z)) \}$$
$$\mathcal{D}_B \equiv z^2 (-\partial_t^2 + \partial_z^2) + \frac{1}{4}$$

- In fact the form of the propagator looks like a sum of contributions from an infinite number of fields in AdS
- The conformal dimensions of the corresponding operators are given by

$$h_m = \frac{1}{2} + p_m$$

- There is a special mode at $p_0 = 3/2$ which at strong coupling is a zero mode of the diffeomorphism invariance in the IR. We could have included this mode in the sum this would lead to an infinite contribution.
- As is well known, the dynamics of this zero mode is given by the Schwarzian action.
- However this is all at infinite J
- For finite J, the diffeo is explicitly broken. The mode $p_0 = 3/2$ has a correction (Maldacena and Stanford)

$$p_0 = 3/2 - \alpha \frac{\omega}{J}$$

1

• This leads to the following enhanced contribution of this mode to the propagator in the zero temperature limit

$$J\int \frac{d\omega}{\omega^2} e^{i\omega(t'_+ - t_+)} \left[\frac{\sin(\omega t_-)}{\omega t_-} - \cos(\omega t_-) \right] \left[\frac{\sin(\omega t'_-)}{\omega t'_-} - \cos(\omega t'_-) \right]$$
$$t_{\pm} \equiv \frac{t_1 \pm t_2}{2}, \qquad t'_{\pm} \equiv \frac{t_3 \pm t_4}{2}$$

AdS Interpretation

- At strong coupling, it is natural to expect that this model is dual to some theory in two dimensional AdS_2
- Maldacena, Stanford and Yang; Engelsoy, Mertens and Verlinde argued that the gravity sector should be Jackiw-Teitelboim type of dilaton-gravity in 1+1 dimensions coupled to some matter (Alihemri and Polchinski)

$$S = \frac{1}{16\pi G} \int \mathrm{d}^2 x \sqrt{-g} \Big(\Phi^2 R - V(\Phi) \Big) + S_{\text{matter}}$$

- Classical solutions have a AdS_2 metric, e.g. $ds^2 = \frac{1}{z^2} [-dt^2 + dz^2]$
- And a dilaton $\Phi^2 = 1 + \frac{a}{z}$
- A nonzero a breaks the conformal symmetry. Agrees with SYK where this breaking is in the UV (finite z). Naturally, $a\sim 1/J$

- The gravity sector of the theory is naturally thought as coming from the mode of the SYK model which is a zero mode at infinite coupling.
- In fact, the action which comes entirely from boundary terms is a Schwarzian action.
- *Mandal, Nayak and Wadia* has argued that the correct action is in fact Polyakov's action for 2d gravity.
- The matter part : the infinite number of poles of the SYK propagator indicates that there should be an infinite number of fields with conventional kinetics in this background.

The Matter as a KK tower

• We will now argue that this infinite tower of states is in fact the KK tower of a single scalar field in 2+1 dimensions with a Horava-Witten type compactification

$$ds^{2} = \frac{1}{z^{2}} \left[-dt^{2} + dz^{2} \right] + \left(1 - \frac{a}{z}\right)^{2} dy^{2}$$

- The third direction is an interval S^1/Z_2 of size 2L.
- To leading order in $a \sim 1/J$ the scalar field equation of motion

$$[\partial_t^2 - \partial_z^2 + \frac{m^2}{z^2} - \frac{1}{z^2}\partial_y^2 + V(y)]\Phi(t, z, y) = 0 \qquad V(y) = V\delta(y)$$

- We impose Dirichlet boundary condition at the end-points.
- The parameters V and L will be chosen appropriately.
- The metric above comes from near-horizon region of an extremal BTZ.

• Decompose the field

$$\Phi(t,z,y) = \int \frac{d\nu}{N_{\nu}} \int d\omega \sum_{k} e^{-i\omega t} z^{1/2} Z_{\nu}(|\omega|z) f_{k}(y) \chi(\omega,\nu,k)$$

- Where the $f_k(y)$ are eigenfunctions of the Schrodinger operator $\Big[-\partial_y^2 + V\delta(y)\Big]f(y) = k^2\,f(y)$
- This is a standard problem in quantum mechanics

• The odd parity solutions are

$$f(y) = \begin{cases} A\sin(k(y-L)) & (0 < y < L) \\ A\sin(k(y+L)) & (-L < y < 0) \end{cases} \quad k = \frac{\pi n}{L}$$

• While the even parity solutions are

$$f(y) = \begin{cases} B\sin(k(y-L)) & (0 < y < L) \\ -B\sin(k(y+L)) & (-L < y < 0) \end{cases} \quad B = \sqrt{\frac{2k}{2kL - \sin(2kL)}} \end{cases}$$

$$-\frac{2}{V}k = \tan(kL)$$

• If we choose V = 3 $L = \pi/2$ this is exactly the equation which determines the SYK spectrum.

• Substituting the expansion of the field in the action we get

$$S = \int \frac{d\omega}{2\pi} \int \frac{d\nu}{N_{\nu}} \sum_{p_m} (\nu^2 - \nu_0^2) \chi^*(\omega, p_m, \nu) \chi(\omega, p_m, \nu)$$
• where
$$\nu_0^2 = m_0^2 + \frac{1}{4} + p_m^2$$

• And p_m are the solutions of the equation

$$\frac{3}{2}\tan(\frac{\pi p_m}{2}) = -p_m$$

- If we now choose $\ m_0^2=-1/4$ $\$ the poles of the propagator in (ω,p_m,ν) space are exactly the poles of SYK
- Note that $m_0^2 = -1/4$ is the BF bound of AdS_2

The Green's function

wave function in 3rd direction

• The position space propagator is now given by

$$G^{(0)}(t,z,y;t',z',y') = -|zz'|^{\frac{1}{2}} \sum_{m=0}^{\infty} f_{p_m}(y) f_{p_m}(y') \int \frac{d\omega}{2\pi} e^{-i\omega(t-t')} \int \frac{d\nu}{N_{\nu}} \frac{Z_{\nu}^*(|\omega z|) Z_{\nu}(|\omega z'|)}{\nu^2 - p_m^2}$$

- Once again the integral over ν stands for a sum over the discrete set and an integral over the imaginary axis.
- This integral can be performed with the result

$$G(t, z, y; t', z', y') = -\frac{1}{4} \int_{-\infty}^{\infty} d\omega \sum_{p_m} e^{-i\omega(t-t')} \frac{f_{p_m}(y)f_{p_m}(y')}{\sin(\pi p_m)} Z_{-p_m}(|\omega z^>|) J_{p_m}(|\omega z^<|)$$

• If we evaluate this at y = y' = 0 we get

$$G^{(0)}(t,z,0;t',z',0) = \frac{1}{3} |zz'|^{\frac{1}{2}} \sum_{m=0}^{\infty} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega(t-t')} \, R(p_m) \, \frac{Z_{-p_m}(|\omega|z^{>}) J_{p_m}(|\omega|z^{<})}{N_{p_m}}.$$

$$R(p_m) = \frac{3p_m^2}{[p_m^2 + (3/2)^2][\pi p_m - \sin(\pi p_m)]}$$

- The nontrivial factor come from the wavefunctions evaluated at y = 0 and from other normalization factors.
- These factors exactly agree with the SYK result. There these factors come from the residues at poles apart from an overall number.

- The contribution from the $p_m = 3/2$ mode is divergent.
- This happens because the propagator contains $Z_{-p_m}(|\omega z^>|)$ which includes $\xi_{-3/2}$ this is infinite
- This is exactly as in the SYK model if we had worked at infinite coupling.
- Note that the odd parity modes did not play any role. It is in fact natural to consider the 3rd direction as an interval [0,L] with Dirichlet boundary conditions at one end and a specified value of the derivative at the other end (*Witten*)

$$\frac{df(y)}{dy}|_{y=0} = \frac{V}{2}f(0)$$

Eigenvalue shift

• The metric along the 3rd direction contains the parameter $a\sim 1/J$

$$ds^{2} = \frac{1}{z^{2}} \left[-dt^{2} + dz^{2} \right] + \left(1 - \frac{a}{z}\right)^{2} dy^{2}$$

• We now calculate the change of the spectrum perturbatively in this parameter.

$$S = \frac{1}{2} \int dz dy \int \frac{d\omega}{2\pi} \, \chi_{-\omega} \left(\mathcal{D}_0 + \mathcal{D}_1 \right) \chi_{\omega}$$

where

$$\mathcal{D}_{0} = \partial_{z}^{2} + \omega^{2} - \frac{m_{0}^{2}}{z^{2}} + \frac{1}{z^{2}} \left(\partial_{y}^{2} - V(y) \right),$$

$$\mathcal{D}_{1} = \frac{a}{z} \left[\partial_{z}^{2} - \frac{1}{z} \partial_{z} + \omega^{2} - \frac{m_{0}^{2}}{z^{2}} - \frac{1}{z^{2}} \left(\partial_{y}^{2} + V(y) \right) \right]$$

• We already solved the eigenvalue problem for \mathcal{D}_0 . The eigenfunctions are

$$z^{1/2}Z_{\nu}(|\omega|z) f_{p_m}(y)$$

• With the eigenvalues

$$(\nu^2 - p_m^2)$$

- The first order shift of the eigenvalues are given by $<
 u,p_m|\mathcal{D}_1|
 u,p_m>$
- The result for the shift of the "zero mode" is

$$<\nu, p_0 |\mathcal{D}_1|\nu, p_0> = \frac{a|\omega|}{2\pi} (2+q_0^2)$$

• Where

$$q_0 = \int dy f_{p_m}(y) \left[-\partial_y^2 - V\delta(y)\right] f_{p_m}(y)$$

• Recalling that $a \sim 1/J$ this is exactly of the same form as the answer obtained by Maldacena and Stanford in the SYK model

The Enhanced Propagator

 We can now use this to calculate the contribution of this mode to the propagator. In the expression for the infinite coupling propagator

$$G^{(0)}(t,z,0;t',z',0) = \frac{1}{3} |zz'|^{\frac{1}{2}} \sum_{m=0}^{\infty} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega(t-t')} \, R(p_m) \, \frac{Z_{-p_m}(|\omega|z^{>}) J_{p_m}(|\omega|z^{<})}{N_{p_m}}.$$

• The term with m=0 has $p_m = 3/2$. The divergence comes because

$$Z_{-p_m} = J_{-p_m}(\omega z) + \frac{\tan(\pi p_m/2) - 1}{\tan(\pi p_m/2) + 1} J_{p_m}(\omega z)$$

• The coefficient of J_{p_m} is divergent at $p_m = 3/2$

• To calculate the leading effect of a finite J we need to substitute the shift of the eigenvalues which we calculated

$$p_0 = 3/2 + a\omega$$

• This leads to the "enhanced" contribution

$$G_{\text{zero-mode}}^{(0)}(t, z, 0; t', z', 0) = -\frac{9\pi}{4a} \frac{B_0^2}{(2+q_0^2)} |zz'|^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{d\omega}{|\omega|} e^{-i\omega(t-t')} J_{\frac{3}{2}}(|\omega z|) J_{\frac{3}{2}}(|\omega z'|).$$

• Using $J_{3/2} = \sqrt{\frac{2}{\pi}} z^{-3/2} (\sin z - z \cos z)$

- Recalling that $a \sim 1/J$, this is in agreement with the SYK result of Maldacena and Stanford

q- Generalizations

- Maldacena and Stanford have studied generalizations of the SYK model with a q fermion interaction.
- After averaging over the original random couplings,

$$S = -\frac{1}{2} \int dt \sum_{i=1}^{N} \chi_i \partial_t \chi_i - \frac{J^2}{8N^3} \int dt_1 \int dt_2 (\sum_{i=1}^{N} \chi_i(t_1)\chi_i(t_2))^q$$

• One can proceed to the bilocal theory in a similar manner and obtain the quadratic action for fluctuations around the saddle

$$S^{(2)} \sim \int d\nu \int d\omega \tilde{\Phi}^{\star}_{\nu,\omega} [\tilde{\kappa}(\nu) - 1] \tilde{\Phi}_{\nu,\omega}$$

• The function which appears is

$$\kappa(\tilde{\nu}) = -\frac{1}{(q-1)} \frac{\Gamma(\frac{1}{2} + \frac{1}{q})\Gamma(\frac{1}{q})}{\Gamma(\frac{3}{2} - \frac{1}{q})\Gamma(1 - \frac{1}{q})} \frac{\Gamma(\frac{5}{4} - \frac{1}{q} + \frac{\nu}{2})\Gamma(\frac{5}{4} - \frac{1}{q} - \frac{\nu}{2})}{\Gamma(\frac{1}{4} + \frac{1}{q} + \frac{\nu}{2})\Gamma(\frac{1}{4} + \frac{1}{q} + \frac{\nu}{2})}$$

• The spectrum is then determined by solving

$$\kappa(\nu) = 1$$

• Does this follow from a 3 dimensional model ?

- Indeed it does
- The three dimensional background is now conformal to $AdS_2 \times [I]$
- The scalar field action now involves a non-trivial potential as well.
- We have now shown that the spectrum can be exactly reproduced in such a 3d model.
- We have not established a detailed correspondence with the SYK propagator as yet.
- In the large q limit, only one of these modes survives, and the effective theory is in fact a Liouville theory.

Comments

- It is important to note that the propagator we have used to identify with the fermion four point function in the SYK model is a non-standard propagator.
- This uses the modes $Z_{
 u}(x)$ rather than the modes $J_{
 u}(x)$
- The standard AdS bulk propagator for $p_m = 3/2$ is finite (Maldacena).
- In this sense this is somewhat different from standard AdS/CFT.

Comments

- It is important to note that the propagator we have used to identify with the fermion four point function in the SYK model is a non-standard propagator.
- This uses the modes $Z_{
 u}(x)$ rather than the modes $J_{
 u}(x)$
- The standard AdS bulk propagator for $p_m = 3/2$ is finite (Maldacena).
- In this sense this is somewhat different from standard AdS/CFT.
- The space in which the bilocals live is now-a-days called a Kinematic space which is sometimes a de Sitter space.

Comments

- It is important to note that the propagator we have used to identify with the fermion four point function in the SYK model is a non-standard propagator.
- This uses the modes $Z_{
 u}(x)$ rather than the modes $J_{
 u}(x)$
- The standard AdS bulk propagator for $p_m = 3/2$ is finite (Maldacena).
- In this sense this is somewhat different from standard AdS/CFT.
- The space in which the bilocals live is now-a-days called a Kinematic space which is sometimes a de Sitter space.
- In fact AdS_2 is not very different from dS_2 : the propagator may be more easily interpretable in de Sitter (*Maldacena*).

- There are other puzzles as well our "phenomenological" model the gravity background is fixed in fact the $p_m = 3/2$ mode, which is supposed to be the gravity mode is already contained in our 3d scalar field.
- A lot remains to be understood.
- However we believe that the 3 dimensional nature of the dual theory is here to stay.
- Unpacking a theory with all powers of derivatives to a theory in one additional dimension is rather rare – the fact that this works nicely for all values of q is a strong indication that there is something in here.....

