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Large N and Space-time
• Generating real space from large number of internal degrees of freedom has a long 

history.

• Eguchi-Kawai Large-N reduction (1982)
• Matrix quantum mechanics (1990)
• BFSS Matrix Theory (1996)
• IKKT Matrix Theory (1996)
• AdS/CFT correspondence (1997)



Matrix Quantum Mechanics
• Here       is a                Hermitian matrix, whose dynamics is given by the Hamiltonian

• At large N the singlet sector was solved by Brezin, Itzykson, Parisi and Zuber  (1980)
• We can make a standard change of variables to the density of eigenvalues

• The space of eigenvalues x becomes a real space.
• The theory can be written in terms of          
• This is one of the earliest examples of holography – x is the holographic direction. 

(S.R.D. & A. Jevicki, 1990)



• In a certain limit this is in fact 1+1 dimensional string theory, whose only dynamical 
degree of freedom is represented by            .

• In fact there is a detailed correspondence with usual string theory results.
(Gross & Klebanov,; Sengupta & Wadia; Dhar, Mandal & Wadia; Polchinski and 

Naatsume)
• Two dimensional string theory is interesting – this even has a black hole (Mandal, 

Sengupta and Wadia; Witten). However the black hole is not understood in the 
matrix model version very well. It is not in the singlet sector – and the entire theory 
is not solvable.



• The most interesting setup for holography is of course the AdS/CFT correspondence. 
(Maldacena; Witten; Gubser, Klebanov &Polyakov)

• E.g. a 3+1 dimensional field theory at large N becomes equivalent to a 9+1 
dimensional string theory. Best understood in the supergravity limit.

• Matrix quantum mechanics in fact belongs to the same class –(McGreevy & Verlinde; 
Klebanov, Maldacena & Seiberg)

• However there is little hope that for e.g. N=4 one will be able to understand an 
explicit map from the field theory variables to the gravity variables and therefore 
understand how the large N theory grows these additional dimensions.

• It is clearly useful to look for solvable models of holography where we understand 
how this happens – such “recognizable carriatures” have always played key roles.

• This might also lead to a connection to more recent ideas of emergence of space-
time from quantum entanglement and complexity.



Vector Models and Bilocal Fields
• Models with fields in vector representations (instead of adjoint representations) are 

usually solvable at large N – they have been useful to understand some aspects of 
the origins of holography.

• Klebanov and Polyakov (2002) conjectured that e.g. conformal 3d O(N) vector 
models are in fact dual to Higher Spin Gauge theories of Vasiliev type in one higher 
dimensional AdS space-time.

• S.R.D. and A. Jevicki (2003) proposal : this may be understood by recognizing that all 
invariants can be expressed in terms of Yukawa type bilocal fields.

• One can now express the path integral as a path integral over these bilocals. The 
technique for doing this was worked out by A. Jevicki and B. Sakita (1982)



• Now introduce center of mass and relative coordinates and express the relative 
coordinate in terms of the magnitude and angles, and perform an expansion

• Our first instinct was to identify     with the Poincare coordinate in             , and then 
the fields                       would be the infinite tower of massless higher spin fields.          

• If this is true, all the conformal transformations of      and     , or equivalently    , 
should reproduce the Killing symmetries of               acting on higher spin fields.



• This works for dilatations, translations and rotations

• Here        is the scaling dimension of

are angular momentum generators which become interpreted as spin in the d+1 
dimensional theory.
• These are now isometries of                with r being identified as the Poincare 

coordinate.  



• However this does not work for the special conformal transformations

• The last term is not present for the corresponding isometry. In fact this term mixes 
up fields of different spins.

EXCEPT WHEN



• Vasiliev theory is supposed to be dual to the gauged version of the 2+1 dimensional 
O(N) model, e.g. with a Chern-Simons gauge field.

• This means that we need to restrict to the singlet sector. A way to do this is to 
consider bilocals at equal times and use a Hamiltonian formalism. 

• For d=3 O(N) De Mello Koch, Rodrigues, Jevicki and Jin (2011) invented a non-local 
transformation of the fields in light front quantization to have these symmetries 
realized linearly – the resulting formalism works, but rather messy.

• It is not known how to impose suitable conditions on the unequal time bilocals to 
obtain this.

• Recently, however,  the              bilocals have become quite useful in understanding a 
toy model of holography : the Sachdev-Ye-Kitaev model.



Bilocals in d=1

• When we have one dimension, the SL(2,R) transformations are

• Defining
• We get the following transformations

• These are exactly the Killing isometries of Lorentzian



SYK Model

• This is a quantum mechanical model of N real fermions which are all connected to 
each other by a random coupling. The Hamiltonian is

• The couplings are random with a Gaussian distribution with width
• This model is of interest since this displays quantum chaos and thermalization.
• When N is large, one can treat this using replicas, and Kitaev showed that one can 

restrict to replica diagonal space –basically may forget about replicas



• Averaging over the         gives rise to  the action

• We can now express the path integral in terms of bilocal collective field (Jevicki, 
Suzuki and Yoon)



• The path integral is now

• Where the collective action includes the jacobian for transformation from the 
original variables to the new bilocal fields

• The equations of motion are the large N Dyson-Schwinger equations

• At strong coupling – which is the IR of the theory – the first term can be neglected
• The saddle point solution (Kitaev; Polchinski and Rosenhaus)



The Strong Coupling Spectrum
• Expand the bilocal action around the large N saddle point

• Where             denotes a complete orthonormal set of combination of Bessel 
functions (Polchinski and Rosenhaus)

• The order is real discrete                              or purely imaginary continuous



• These appear when one diagonalizes the kernel which appears in the quadratic 
action for               and are in fact eigenfunctions of the wave operator of a scalar field 
in              with mass at the BF bound 

• The orthonormality and completeness relations are

• The integral here is a shorthand for a sum over discrete modes and an integral over 
imaginary values



• This leads to the quadratic action

where 

• The spectrum is therefore given by the solutions of the equation



The Bilocal Propagator
• The 4 point function of the fermions at large J has been calculated by Kitaev, Polchinski

and Rosenhaus, Jevicki, Suzuki and Yoon, Maldacena and Stanford…..
• This is the two point function of the bilocal fluctuations. Performing the integral over 

the propagator can be expressed as a sum over poles

• Here                    denotes the greater (smaller) of z and z’, and 

is the residue at the pole 



• The object               appeared as a field in 1+1 dimensions. 
• However the field action in real space is non-polynomial in derivatives.

• In fact the form of the propagator looks like a sum of contributions from an infinite 
number of fields in AdS

• The conformal dimensions of the corresponding operators are given by



• There is a special mode at                  which – at strong coupling – is a zero mode of 
the diffeomorphism invariance in the IR. We could have included this mode in the 
sum – this would lead to an infinite contribution.

• As is well known, the dynamics of this zero mode is given by the Schwarzian action.
• However this is all at infinite J
• For finite J, the diffeo is explicitly broken. The mode                  has a correction 

(Maldacena and Stanford)

• This leads to the following enhanced contribution of this mode to the propagator in 
the zero temperature limit



AdS Interpretation
• At strong coupling, it is natural to expect that this model is dual to some theory in 

two dimensional 
• Maldacena, Stanford and Yang; Engelsoy, Mertens and Verlinde argued that the 

gravity sector should be Jackiw-Teitelboim type of dilaton-gravity in 1+1 dimensions 
coupled to some matter (Alihemri and Polchinski)

• Classical solutions have a            metric, e.g.
• And a dilaton
• A nonzero a breaks the conformal symmetry. Agrees with SYK where this breaking is 

in the UV ( finite z ). Naturally,                     



• The gravity sector of the theory is naturally thought as coming from the mode of the 
SYK model which is a zero mode at infinite coupling.

• In fact, the action – which comes entirely from boundary terms – is a Schwarzian
action.

• Mandal, Nayak and Wadia has argued that the correct action is in fact Polyakov’s
action for 2d gravity.

• The matter part : the infinite number of poles of the SYK propagator indicates that 
there should be an infinite number of fields with conventional kinetics in this 
background.



The Matter as a KK tower
• We will now argue that this infinite tower of states is in fact the KK tower of a single 

scalar field in 2+1 dimensions with a Horava-Witten type compactification

• The third direction is an interval of size 2L.
• To leading order in                   the scalar field equation of motion

• We impose Dirichlet boundary condition at the end-points.
• The parameters V and L will be chosen appropriately.
• The metric above comes from near-horizon region of an extremal BTZ.



• Decompose the field

• Where the             are eigenfunctions of the Schrodinger operator

• This is a standard problem in quantum mechanics



• The odd parity solutions are

• While the even parity solutions are

• If we choose                                           this is exactly the equation which determines 
the SYK spectrum.



• Substituting the expansion of the field in the action we get

• where

• And         are the solutions of the equation

• If we now choose                             the poles of the propagator in                       space 
are exactly the poles of SYK 

• Note that                          is the BF bound of                        



The Green’s function

• The position space propagator is now given by

• Once again the integral over     stands for a sum over the discrete set and an integral 
over the imaginary axis.

• This integral can be performed with the result

wave function in 3rd direction



• If we evaluate this at                       we get

• The nontrivial factor come from the wavefunctions evaluated at  y = 0 and from 
other normalization factors.

• These factors exactly agree with the SYK result. There these factors come from the 
residues at poles apart from an overall number.



• The contribution from the                      mode is divergent.
• This happens because the propagator contains                              which includes            

- this is infinite
• This is exactly as in the SYK model if we had worked at infinite coupling.

• Note that the odd parity modes did not play any role. It is in fact natural to consider 
the 3rd direction as an interval [0,L] with Dirichlet boundary conditions at one end 
and a specified value of the derivative at the other end (Witten)



Eigenvalue shift
• The metric along the 3rd direction contains the parameter

• We now calculate the change of the spectrum perturbatively in this parameter.

• where 



• We already solved the eigenvalue problem for         . The eigenfunctions are

• With the eigenvalues

• The first order shift of the eigenvalues are given by
• The result for the shift of the “zero mode” is

• Where                

• Recalling that                   this is exactly of the same form as the answer obtained by 
Maldacena and Stanford in the SYK model 



The Enhanced Propagator

• We can now use this to calculate the contribution of this mode to the propagator. In 
the expression for the infinite coupling propagator

• The term with m=0 has                     . . The divergence comes because 

• The coefficient of           is divergent at  



• To calculate the leading effect of a finite J we need to substitute the shift of the 
eigenvalues which we calculated

• This leads to the “enhanced” contribution

• Using

• Recalling that                  , this is in agreement with the SYK result of Maldacena and 
Stanford

•



q- Generalizations

• Maldacena and Stanford have studied generalizations of the SYK model with a  q -
fermion interaction.

• After averaging over the original random couplings,

• One can proceed to the bilocal theory in a similar manner and obtain the quadratic 
action for fluctuations around the saddle



• The function which appears is

• The spectrum is then determined by solving

• Does this follow from a 3 dimensional model ?



• Indeed it does 
• The  three dimensional background is now conformal to
• The scalar field action now involves a non-trivial potential as well.
• We have now shown that the spectrum can be exactly reproduced in such a 3d 

model.
• We have not established a detailed correspondence with the SYK propagator as yet. 
• In the large q limit, only one of these modes survives, and the effective theory is in 

fact a Liouville theory.



Comments
• It is important to note that the propagator we have used to identify with the fermion 

four point function in the SYK model is a non-standard propagator.
• This uses the modes              rather than the modes
• The standard AdS bulk  propagator for                      is finite (Maldacena).
• In this sense this is somewhat different from standard AdS/CFT.
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Comments
• It is important to note that the propagator we have used to identify with the fermion 

four point function in the SYK model is a non-standard propagator.
• This uses the modes              rather than the modes
• The standard AdS bulk  propagator for                      is finite (Maldacena).
• In this sense this is somewhat different from standard AdS/CFT.
• The space in which the bilocals live is now-a-days called a Kinematic space – which is 

sometimes a de Sitter space.
• In fact            is not very different from          : the propagator may be more easily 

interpretable in de Sitter (Maldacena).



• There are other puzzles as well – our “phenomenological” model the gravity 
background is fixed – in fact the                     mode,  which is supposed to be the 
gravity mode is already contained in our 3d scalar field.

• A lot remains to be understood.
• However we believe that the 3 dimensional nature of the dual theory is here to stay.
• Unpacking a theory with all powers of derivatives to a theory in one additional 

dimension is rather rare – the fact that this works nicely for all values of  q is a strong 
indication that there is something in here…..



THANK YOU
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