Testing the Standard Model of Cosmology with Large-scale Structures in the Real and Simulated Universe

Hwang, Ho Seong (KIAS)

September 20, 2017 KIAS-YITP Joint Workshop 2017 @ YITP

A Road to Reality (YITP)

History of the Universe

History of the Universe

We think we live in the Universe that can be described by a standard cosmological model.

Based on General Relativity

Free Hydrogen and Helium:

Table 9. Parameter 68 % confidence levels for the base ACDM cosmology computed from the *Planck* CMB power spectra, in combination with the CMB lensing likelihood ("lensing").

Parameter	Planck TT+lowP+lensing
$\Omega_b h^2$	0.02226 ± 0.00023
$\Omega_c h^2$	0.1186 ± 0.0020
100θ _{MC}	1.04103 ± 0.00046
τ	0.066 ± 0.016
$\ln(10^{10}A_s)$	3.062 ± 0.029
<i>n_s</i>	0.9677 ± 0.0060
H_0	67.8 ± 0.9
Ω _m	0.308 ± 0.012
$\Omega_m h^2$	0.1415 ± 0.0019
$\Omega_m h^3$	0.09591 ± 0.00045
σ_8	0.815 ± 0.009
$\sigma_8 \Omega_m^{0.5} \dots$	0.4521 ± 0.0088
Age/Gyr	13.799 ± 0.038
r _{drag}	147.60 ± 0.43
k _{eq}	0.01027 ± 0.00014

Issues in the Standard Cosmological Model

Space: Is the Universe really homogenous and isotropic?

Contents: What is the nature of dark matter and dark energy?

Phenomena/Laws: New Physics instead of dark matter and dark energy?

Models appear to be in contradiction with observations: Missing Satellite Problem Central Density Profile of Dark Matter Halos (core vs. cusp)

Issues in the Standard Cosmological Model

Effects of Dark Matter/Energy

Expansion History of the Universe

Growth History of Structures

Kim & Park

Effects of Dark Matter/Energy

Test the Standard Cosmological Model with Large-scale Structure of the Universe

LSS: Any structure of galaxy distribution larger than galaxy clusters (>~10 Mpc)

In Short, we call it "Cosmic Web"

Why Large-Scale Structure of the Universe?

Large Structures : grew from small initial fluctuations after the inflation (might tell us how early universe looks like)

Smaller structures form first, larger structures form later: we can study the formation of structure in action

Physical properties of large-scale structure depend on
 cosmological parameters
 physics of galaxy formation

- > Test of Standard Cosmological Model with the large-scale structure
- > There were many such tests in nearby Universe
- > Need to study the evolution of large-scale structure (structure is still forming)
- > Good theoretical input from cosmological simulations (C. Park & J. Kim)

Q: Is the large-scale structure in cosmological simulations consistent with that in observations?

Goal: To better understand Cosmology and Structure Formation

Coma Cluster @ z=0.023 (SDSS)

Source: Science, New Series, Vol. 246, No. 4932 (Nov. 17, 1989), pp. 897-903 Mapping the Universe

11 0

MARGARET J. GELLER AND JOHN P. HUCHRA

CfA Great Wall

Source: Science, New Series, Vol. 246, No. 4932 (Nov. 17, 1989), pp. 897-903 Mapping the Universe

MARGARET J. GELLER AND JOHN P. HUCHRA

Source: Science, New Series, Vol. 246, No. 4932 (Nov. 17, 1989), pp. 897-903 Mapping the Universe

MARGARET J. GELLER AND JOHN P. HUCHRA

The Anthonous Journal, 624/863–464, 2005 May 10 © 2005 The American Antonomical Society All rights sourced. Printed in U.S.A.

MNRAS 429, 2900-2916 (2013)

doc 10.1003/mmrashi

A structure in the early Universe at $z \sim 1.3$ that exceeds the homogeneity scale of the R-W concordance cosmology

Roger G. Clowes,^{1*} Kathryn A. Harris,¹ Srinivasan Raghunathan,^{1,2}[†] Luis E. Campusano,² Ilona K. Söchting³ and Matthew J. Graham⁴ ¹Aveniah Reveals Institut, University of Central Lancashie, Prestos PRI 2000 ¹Otomentario Astronomico Cerro Calita, Departamento de Astronomica Universitad de Calit, Casilla 26-D, Santago, Chile ¹Astrophysics, Dany Williams Building, Edite Back, Discoving of Oct. Option Oct. 2001 ¹Collorents built of Colling, 1200 Ener California Building, CA 81/25, 2031

Dec (deg)

Fig. 4. Galaxies in the BGW superclusters in Cartesian coordinates. Different colors show the individual superclusters in the BGW system.

BOSS Great Wall (Lietzen+16) The Annoratives Journal, 638:863–484, 2005 May 10 © 2007. The American Annoratived Society, All rights sourced. Printed in U.S.A.

Q: Do we expect this kinds of largest-scale structures in our standard ACDM cosmology? (~ physically meaningful structure?)

Largest Structures: Cosmological Tests

* Springel+06 (see Park+90;+12;+15): Ok.

* Sheth & Diaferio 11: The Sloan Great Wall is very unusual; Difficult (4 sigma) to reconcile with the ΛCDM model

Q: Do we expect this kinds of largest-scale structures in our standard ACDM cosmology? A: Yes, for nearby universe (~1.3 Gyrs ago, quantitative analysis in Park+12)

 Only for nearby universe where structure formation is almost complete.
 To fully understand how structure forms in the universe, it is important to study the evolution of large-scale structure, sensitive to dark matter and dark energy.

Subaru/HSC SSP

HectoMAP (Geller, Hwang, Sohn+)

HectoMAP (50 deg², Geller+11, Geller & Hwang 15, Hwang+16)
 ~70,000 redshifts: One of densest and complete survey of red galaxies at r<21.3
 HectoMAP: ~1250 gals/deg², SDSS/BOSS: ~150 gals/deg²

Weak Lensing Analysis of Subaru/HSC images in the HectoMAP region

Gravitational Lensing

Gravitational Lensing

Gravitational Lensing => Dark Matter Distribution

Horizon Runs @ KIAS

One of densest and largest cosmological simulations

	HR1	HR2	HR3	HR4
Model	WMAP5	WMAP5	WMAP5	WMAP5
$\Omega_{\rm M}$	0.26	0.26	0.26	0.26
$\Omega_{\rm b}$	0.044	0.044	0.044	0.044
Ω_{Λ}	0.74	0.74	0.74	0.74
Spectral index	0.96	0.96	0.96	0.96
$H_0 \ [100 \ \mathrm{km \ s^{-1} Mpc^{-1}}]$	72	72	72	72
σ_8	0.794	0.794	0.794	0.794
Box size $[h^{-1}Mpc]$	6592	7200	10815	3150
No. of grids for initial conditions	4120^{3}	6000^{3}	7210^{3}	6300 ³
No. of CDM particles	4120^{3}	6000^{3}	7210^{3}	6300^{3}
Starting redshift	23	32	27	100
No. of global time steps	400	800	600	2000
Mean particle separation $[h^{-1}Mpc]$	1.6	1.2	1.5	0.5
Particle mass $[10^{11}h^{-1}M_{\odot}]$	2.96	1.25	2.44	0.0902
Minimum halo mass (30 particles) $[10^{11}h^{-1}M_{\odot}]$	88.8	37.5	73.2	2.706
Mean separation of minimum mass PSB halos $[h^{-1}Mpc]$	13.08	9.01	11.97	4.08

Kim J., Park C. +15

T =11.179 Byrs ago

25 Mpc/h

Large-scale Structures in the HectoMAP and Horizon Runs

HectoMAP: Science Goals

> Compare the mass distribution with that in weak lensing maps

> Directly measure the mass accretion rate of galaxy clusters

> Cosmological test with the largest structures

In this Talk,

By applying the same criteria to the observations and simulations to identify over- and under-dense large-scale features of the galaxy distribution,

> 1) Compare the Physical Properties of over- and under-dense large scale-structures in HectoMAP and Horizon Run 4, and

> 2) Examine the Probability to find observed largest structures in the simulation.

Identification of Over-dense Large-scale Structure

Richness Distribution of Over-dense LSS

Size Distribution of Over-dense LSS

Identification of Under-dense LSS (Voids)

Volume Distribution of Voids

Size Distribution of Voids

> 1) Compare the Physical Properties of over- and under-dense large scale-structures in HectoMAP and Horizon Run 4, and

► The physical properties of observed large-scale structures at intermediate redshifts (0.22<z<0.44) are remarkably consistent with predictions of the standard ACDM model.

2) Largest Structures: HectoMAP vs. 300 Horizon Run 4 mock surveys

> 2) Examine the Probability to find observed largest structures in the simulation.

► The properties of the largest over- and under-dense structures in HectoMAP are well within the distributions for the largest structures drawn from 300 Horizon Run 4 mock surveys.

 The same criteria in identifying large-scale structures in the observations and simulations
 Comparable samples of galaxies and halos with the matched number densities

Summary I

Statistics for Largest-Scale Structure (over- and under-density structures)
ACDM model is still consistent with observations at 0.22<z<0.44 (~9-11 Gyrs old)</p>

What's next?

Scientific Issue?

F - ----

0.000

> Continue the cosmological test with large-scale structure

Focusing the EVOLUTION of large-scale structure: sensitive to dark matter and dark energy

Theory/Simulations: using Modified Gravity models including f(R), dilaton, symmetron, general chameleon, DGP and Galileon

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + L_m \right] \quad \text{f(R)}$$

What's next?

Scientific Issue?

> Continue the cosmological test with large-scale structure

- Focusing the EVOLUTION of large-scale structure: sensitive to dark matter and dark energy
- Observations: Current/Planned Wide-Field Spectroscopic Galaxy Surveys
 - > SDSS eBOSS (2.5m, 2014 2020)
 - ≻ Taipan (1.2m, 2017-2020)
 - ► HETDEX (9.2m, 2017-)
 - > DESI (4m) (2018-2022)
 - > Subaru PFS SSP (8m, 2019-)
 - > 4MOST (VISTA 4m, 2022-)
 - > Euclid (1.3m in space, 2022-)
 - > WFIRST (2.4m in space, mid-2020s)?
 > GMT (25m)?

Summary II

<= Effects of Dark Matter/Energy

Concluding Remarks

Cosmology and Structure Formation

Observation

10 billion years ago

Supernovae

5 billion years ago

Nature of dark matter and dark energy?

Theory

New Physics instead of dark matter and dark energy?

Better Simulations including baryon physics

Goal: Keep Expanding our Horizons to better understand Cosmology & Structure Formation

Thank you!