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What is Quantum gravity Phenomenology?

We have nowadays several workable quantum gravity theories and various scenarios for how 
the continuous and semi-classical limit are reached within them

I.e. we have for the first time a chance to ask the hard questions about how and what we can 
probe of the fabric of spacetime.

Missing a definitive scenario for the continuum limit of QG I will explore here some lines of 
research and their outcomes and lessons…

Let’s see where this goes…

Old “dogma”: you shall not access any quantum 
gravity effect as this would require experiments at the 

Planck scale!

This has changed in the last decade, as several 
proposal for QG effects have been proposed.
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QG phenomenology a la carte

Broken or deformed Symmetries 
• Lorentz 
• Translations 
• Diffeomorphism (strong bounds from pulsar timing 

Donoghue et al. PhysRevD.81.084059)

Dimensions 
• Extra dimensions  
• (still missing obs. evidence so far) 
• Dimensional reduction in QG  

• (early universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP  
• (no strong constraints) 
• Non-commutative geometries

ex pluribus quattuor

QG Modified 
gravitational dynamics 

• E.g. Bouncing Universes 
• Regular Black holes.
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• (early universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP  
• (no strong constraints) 
• Non-commutative geometries

Let’s start with 
the PULP stuff..

ex pluribus quattuor

QG Modified 
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• E.g. Bouncing Universes 
• Regular Black holes.



Symmetries Violations
Spacetime locally Poincaré invariant… 

Translations Breaking (CAUSETS) 
Lorentz breaking (several QG scenarios)



Breakdown of translations in discrete QG:
The CAUSET case study

Models with Lorentz invariance violation and testsModels with translation invariance violation and tests

Causal sets
Swerves

(Philpott, Dowker, Sorkin 0810.5591)

“Spacetime Plinko”

1. Treat massive particles as point particles
2. Particle can only hop from point to point on a causal set
3. Lorentz-invariant momentum space diffusion of  initial distribution 𝜌:

The problem: cold stuff  gets hot.
(Kaloper, DM astro-ph/0607485) 

Relic neutrinos go relativistic quickly, violating
bounds on hot dark matter.

𝑘 < 10−61𝐺𝑒𝑉3

Similar cosmological limits for photons

Dowker, Henson, Sorkin gr-qc/0311055

Causal sets need two scales – conclusion also reached by Benincasa, Dowker 1001.2725.

What is QG pheno

Two questions

Is gravity quantized?

𝛼, 𝛽, 𝛾 argument

The pane of  inflation

Categorization

Lorentz violation

Lorentz deformation

Translation violation

Non-locality

Dimension

Summary

 1. Treat massive particles as point particles  
 2. Particle can only hop from point to point on a causal set.  

LIKE A SPACETIME PACHINKO!  
 3. Lorentz-invariant momentum space diffusion of initial probability 

distribution 𝜌(p,x,τ): 

The problem with this diffusion in momentum space is basically that cold stuff becomes rapidly hot. 
Even assuming this applies only to elementary particles you get strong bounds from cosmology.

N.Kaloper and D.Mattingly, 
  Low energy bounds on Poincare violation in causal set theory, 

  Phys. Rev. D 74, 106001 (2006). 
STRONG BOUNDS FROM RELIC NEUTRINOS NOT VIOLATING BOUNDS ON HOT DM.  

Similar bounds also for photons w.r.t. CMB (Philipot, Dowker, Sorkin, Phys. Rev. D 79, 124047 (2009).) k < 10�61GeV3

F. Dowker, J. Henson and R. D. Sorkin, 
  Quantum gravity phenomenology, Lorentz 
invariance and discreteness, 
  Mod. Phys. Lett. A 19, 1829 (2004).

See also similar ideas by S. Hossenfelder,  
Phys.Rev. D88 (2013) no.12, 124031  
Phys.Rev. D88 (2013) no.12, 124030 

The causal sets program: spacetime is fundamentally discrete and spacetime events 
are related by a partial order given by the causality relations between spacetime 
events. So CAUSET encode causality and, by counting points, provide a notion of 
volume. This is enough to reconstruct the metric (Malament): “Order + Number = 
Geometry”. A CAUSET on average preserves LI but violates translation invariance.

Then Phenomenology exercise
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 1. If discreteness scale is Planck then you need anomalous 
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Teaser: We shall come back to this later…

The causal sets program: spacetime is fundamentally discrete and spacetime events 
are related by a partial order given by the causality relations between spacetime 
events. So CAUSET encode causality and, by counting points, provide a notion of 
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Lorentz violation: a possible first glimpse of QG?

Suggestions for Lorentz violation searches (at low or high energies)  
were not inspired only by Analogue models of emergent gravity.  

They came also from several QG models
 String theory tensor VEVs (Kostelecky-Samuel 1989, ...) 
 Cosmological varying moduli (Damour-Polyakov 1994) 

 Spacetime foam scenarios (Ellis, Mavromatos, Nanopoulos 1992, Amelino-Camelia et al. 1997-1998) 
 Some semiclassical spin-network calculations in Loop QG (Gambini-Pullin  1999) 

 Einstein-Aether Gravity (Gasperini 1987, Jacobson-Mattingly 2000, …) 
 Some non-commutative geometry calculations (Carroll et al. 2001) 

 Some brane-world backgrounds (Burgess et al. 2002)  
 Ghost condensate in EFT (Cheng, Luty, Mukohyama, Thaler 2006) 

 Horava-Lifshiftz Gravity (Horava 2009, …)

Lorentz invariance is rooted via Einstein equivalence principle in GR and it is a 
fundamental pillar of the SM. The more fundamental is an ingredient of your theory the 

more needs to be tested observationally! 

You do not need Planck scale observations to constraint Planck suppressed Lorentz 
violations. 

In any quantum/Discrete gravity model it is a non-trivial task to recover exact Local 
Lorentz Invariance and/or background independence. Hence it is very important to 

understand what is needed in order to conciliate LLI and forms of hard or quantum 
discreteness at the Planck scale.

Quote: “How you dare to Violate Lorenz Invariance?”
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 Some brane-world backgrounds (Burgess et al. 2002)  
 Ghost condensate in EFT (Cheng, Luty, Mukohyama, Thaler 2006) 

 Horava-Lifshiftz Gravity (Horava 2009, …)

But what we mean by Lorentz Invariance violation?

Lorentz invariance is rooted via Einstein equivalence principle in GR and it is a 
fundamental pillar of the SM. The more fundamental is an ingredient of your theory the 

more needs to be tested observationally! 

You do not need Planck scale observations to constraint Planck suppressed Lorentz 
violations. 

In any quantum/Discrete gravity model it is a non-trivial task to recover exact Local 
Lorentz Invariance and/or background independence. Hence it is very important to 

understand what is needed in order to conciliate LLI and forms of hard or quantum 
discreteness at the Planck scale.

Quote: “How you dare to Violate Lorenz Invariance?”



Breaking of 
Local Lorentz Invariance

 Principle of relativity ➔ group structure 
 Homogeneity ➔ linearity of the 

transformations 
 Isotropy of Space➔ rotational invariance 

and Riemannian structure 
 Precausality ➔ observer independence of co-

local time ordering

Lorentz transformations with 
unfixed limit speed C 

C=∞ ➔ Galileo 
C=clight ➔ Lorentz 

Experiments determine C!

W. von Ignatowsky 
(Tiblisi 1875-Leningrad 1942) 

von Ignatowsky theorem (1911): Axiomatic Special Relativity
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W. von Ignatowsky 
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von Ignatowsky theorem (1911): Axiomatic Special Relativity

Break Precausality ➔ Hell breaks loose, better not! 

Break Principle of relativity ➔ Preferred frame effects     

 Break kinematical Isotropy ➔ Finsler geometries. E.g. Very Special 
Relativity (Glashow, Gibbons et al.). 

Break Homogeneity ➔ no more linear transformations ➔ No Locally 
Euclidean Space. ➔ tantamount to give up operative meaning of 

coordinates

Lorentz breaking does not necessarily mean to have a preferred frame!
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Break Precausality ➔ Hell breaks loose, better not! 

Break Principle of relativity ➔ Preferred frame effects     

 Break kinematical Isotropy ➔ Finsler geometries. E.g. Very Special 
Relativity (Glashow, Gibbons et al.). 

Break Homogeneity ➔ no more linear transformations ➔ No Locally 
Euclidean Space. ➔ tantamount to give up operative meaning of 

coordinates

Lorentz breaking does not necessarily mean to have a preferred frame!

Let’s relax the Relativity Principle first and study the phenomenology.  
To do this we need a framework…



Dynamical frameworks for LIV
Frameworks for preferred frame effects

E.g. QED, rot. Inv. dim 3,4 operators E.g. QED, dim 5 operators

(Colladay-Kosteleky 1998, Colemann-Glashow 1998) (Myers-Pospelov 2003)

EFT+LV
Non EFT proposals:  

Spacetime foam models (Ellis et al.) 
DSR/Relative Locality

local EFT with LIV 
Non-renormalizable ops,  

CPT ever or odd 
(no anisotropic scaling),  

(UV LIV – QG inspired LIV)
Minimal Standard Model Extension 

Renormalizable ops.  
(IR LIV - LI SSB)

See e.g. Amelino-Camelia. Living Reviews of Relativity 

See e.g. SL. CQG Topic Review (2013) 

NOTE: CPT violation implies Lorentz violation but LV does not 
imply CPT violation in local EFT.  

“Anti-CPT” theorem (Greenberg 2002 ).  
So one can catalogue LIV by behaviour under CPT

Generally assumed rotational invariance  
•  simpler and boost w.r.t. CMB frame small  
•  cutoff  idea only implies boosts are broken, rotations maybe not 
•  boost violation constraints likely also boost + rotation violation constraints
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EFT with Lorentz breaking Ops.
Matter Sector Constraints

SL, CQG Topic Review 2013

 Penning traps 
 Clock comparison experiments 

 Cavity experiments 
 Spin polarised torsion balance  

 Neutral mesons  
 Slow atoms recoils

Terrestrial tests: Astrophysical tests: 
 Cosmological variation of  couplings, CMB  

 Cumulative effects in astrophysics 
 Anomalous threshold reactions   

 Shift of  standard thresholds reactions with new 
threshold phenomenology  

 LV induced decays not characterised by a threshold 
 Reactions affected by “speeds limits”

E2
� = k2 + ⇠(n)±

kn

Mn�2
pl

photons

E2
matter = m2

+ p2 + ⌘(n)±
pn

Mn�2
pl

leptons/hadrons ,

where, in EFT, ⇠(n) ⌘ ⇠(n)+ = (�)

n⇠(n)� and ⌘(n) ⌘ ⌘(n)+ = (�)

n⌘(n)� .



Example: Constraints on QED with 
dim 5 CPT Odd

The Crab nebula a supernova remnant (1054 A.D.) distance ~1.9 kpc from Earth. 
Spectrum (and other SNR) well explained by synchrotron self-Compton (SSC) 

Electrons are accelerated to very high energies at pulsar: in LI QED γe≈109÷1010 
High energy electrons emit synchrotron radiation 

Synchrotron photons undergo inverse Compton with the high energy electrons
Synchrotron Inverse Compton

Jacobson, SL, Mattingly: Nature (2003) 
L.Maccione, SL, A.Celotti and J.G.Kirk:  JCAP 0710 013 (2007) 

L.Maccione, SL, A.Celotti and J.G.Kirk, P. Ubertini:Phys.Rev.D78:103003 (2008)
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Electrons are accelerated to very high energies at pulsar: in LI QED γe≈109÷1010 
High energy electrons emit synchrotron radiation 

Synchrotron photons undergo inverse Compton with the high energy electrons
Synchrotron Inverse Compton

The synchrotron spectrum is strongly affected by LIV: maximum gamma factor 
for subliminal leptons and vacuum Cherekov limit for superluminal ones (there 

are both electrons and positrons and they have opposite η).  
Spectrum very well know via EGRET, now AGILE+FERMI

Jacobson, SL, Mattingly: Nature (2003) 
L.Maccione, SL, A.Celotti and J.G.Kirk:  JCAP 0710 013 (2007) 
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Example: Constraints on dim 5-6 
CPT even LV QED

GZK photons are pair produced by decay of π0 produced in GZK process

Cosmic Rays Photo pion production: 
The Greisen-Zatsepin-Kuzmin effect

The Greisen-Zatsepin-Kuzmin 
effect and secondary production

Galaverni, Sigl, arXiv:0708.1737. PRL 
Maccione, SL, arXiv:0805.2548. JCAP

In this case we need ultra high energies: 
pcrit for e-~100 PeV
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Caveat: A potential problem with  
the UHECR data?

With increased statistics the composition of UHECR beyond 1019 eV seems more and 
more dominated by iron ions rather than protons at AUGER. 

With improved statistic the correlated AUGER UHECR-AGN events has been lost: large 
deflections? i.e. heavy (high Z) ions? 

Ions do photodisintegration rather than the GZK reaction, this may generate much less 
protons which are able to create pions via GZK and hence UHE photons.

Have we really seen the GZK cutoff or sources exhaustion? See e.g. arXiv:1408.5213.  

If not all the constraints on dim 6 CPT even operators would not be robust…  

Furthermore puzzling cut off above 2 PeV in UHE neutrinos at IceCube maybe 
consistent with p4 LIV at MLIV~1015 GeV. F.W. Stecker, S.T. Scully, SL, D. Mattingly. JCAP 2015
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At the moment we cannot anymore deem 
the dim 6 ops constraints robust.



What about Lorentz breaking by dissipative effects?
By Kramers-Kronig one would naturally expect also dissipative effects.

The energy loss rate Γ can be computed a la Breit-Wigner

For an ultra-relativistic particle with momentum k traveling over a long distance D, a constraint is 
obtained by requiring its lifetime τ to be larger than the propagation time D/c, that is τ>D/c or cħ/Γ>D.

Let us consider the observed 80 TeV photons from the Crab nebula, DCrab ≈1.9 Kparsec. We get 

Similar considerations leads to 
Electron/positron σ< 10-23 (From Crab and 1 pc traveled) 

Neutrinos σ< 10-27  
(detection of a bunch of extraterrestrial neutrinos with energies between 30 and 250 TeV by Ice-Cube)  

Gravitational waves could in principle provide constraints. Unfortunately, current experiments are sensitive to 
waves which are far too low energy (1-103 Hz) for providing meaningful constraints. 

!2 = c2k2 ± i|�4|c2k5/M3
pl , where �4 ⌘ (4⌫4M3

pl)/3c
Next order would be

Noticeably we do not have constraints better than O(1).  But if indeed spacetime would behave like a superfluid 
phase of fundamental constituents this would be the first non-zero terms. Worth keep looking…

SL, L. Maccione 
Phys.Rev.Lett. 112 (2014) 151301 

@2t  1 = c2r2 1 +
1X

n=2

4

3
⌫n @trn 1

Using the Planck scale as the natural scale of the new physics and so define 
at lowest order a dimensionless coefficient σ=(4ν2MPl)/3c

Analogue gravity describes spacetime emergence in hydrodynamics. 
Dissipation->Viscosity. Using the analogy one expects a generalised 
Navier-Stokes equations describing the propagation of perturbations 
of the velocity potential ψ1



Conceptual issues with Lorentz breaking? 
The flies in the Ointment…

• Naturalness problem 

• Possible breakdown of black hole thermodynamics 

Lorentz breaking theories suffers two main 
theoretical problems



The “un-naturalness” of small LV in EFT
[Collins et al. PRL93 (2004), Lifshitz theories (anisotropic scaling): Iengo, Russo, Serone (2009)] 

Gambini, Rastgoo, Pullin Class.Quant.Grav. 28 (2011) 155005 . Polcinski (2011). 
Belenchia, A.~Gambassi and S.L., ``Lorentz violation naturalness revisited,’' JHEP 1606, 049 (2016).
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Violations of the Generalised Second Law in Lorentz 
breaking scenarios

Conclusion: Violation of LLI seems to lead to violation of the Generalized 
Second Law (GSL). 

S.L.Dubovsky, S.M.Sibiryakov, Phys. Lett. B 638 (2006) 509. 
C. Eling, B. Z. Foster, T. Jacobson and A. C. Wall, “Lorentz violation and perpetual motion”, Phys. Rev. D 75 (2007) 101502. 

T. Jacobson and A. C. Wall, “Black hole thermodynamics and Lorentz symmetry”,  Found. Phys. 40 (2010) 1076.
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A and B fields interacts only gravitationallyExample

Surround the BH with two shells of A and B fields 

It is possible to choose the temperatures of the 
shells such that 

TB,Haw >Tb,shell>TA,shell>TA,Haw 

and still get flux from Shell A to Shell B!A,shell
B,shell

But is it consistent to consider Lorentz breaking matter without 
breaking Lorentz also in the gravitational sector?
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shells such that 

TB,Haw >Tb,shell>TA,shell>TA,Haw 
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But is it consistent to consider Lorentz breaking matter without 
breaking Lorentz also in the gravitational sector?

What can we say about Lorentz breaking in the 
gravitational sector?



Gravity VS Local Lorentz invariance
(what does not kill you makes you stronger)



LIV constraints with Gravitational Waves

• Gravitational theories with LIV need cgrav>clight to avoid gravy-
cherenkov: from UHECR this implies the conservative bound 

(clight-cgrav)/clight<10-15 

• Using a Bayesian approach that combines the first three 
gravitational wave detections reported by the LIGO collaboration 

arXiv.org:1707.06101 constrains  -0.45 < (cgrav-clight)/clight< 0.42  

• E.g. if faint GRB detection almost simultaneous and co-local to 
GW150914 would be robust then (cgrav-clight)/clight<10-17 (Ellis et 

al. arXiv:1602.04764). 

• Future Tests: polarisation constraints extra DOF in GW 
(e.g.associated to preferred foliation), test nature of Horizon via 

ringdown 

• GW indirect detection via B-modes of CMB could confirm need to 
quantise gravity (but just gravitons) plus would tell us about 

possible modified gravitational dynamics.

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3

This is the dawn of a new channel also for QG phenomenology!

A first crude test of IR LIV in the gravity sector is to check for GW speed vs Light or Neutrino 
speed measurement (e.g. supernova, GRB, neutron binaries merging). Presently we know from 

binary pulsars Δc/c<1% for GW vs light.

http://arxiv.org/abs/arXiv:1602.04764


Lorentz breaking gravity
Rotationally invariant Lorentz violation in the gravity sector via a vector field. 
Take the most general theory for a unit timelike vector field coupled to gravity 

which is second order in derivatives.

Einstein-Aether 
(Jacobson-Mattingly 2000)
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All the PPN parameters vanish except for α1,α2 
which describe preferred frame effects.

Current solar system constraints imply α1< 10-4 and α2< 10-7 
which can be used to reduce the parameter space to 2 

parameters, c1 and c3.
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• GC is the “cosmological” gravitational constant
that appears in the Friedmann equations [Eq. (28)];

• G is the “e↵ective” gravitational constant in a bi-
nary system [Eq. (88)].

Regarding the masses:

• m̃A is the gravitational mass of the A-th body in a
point-particle approximation [Eq. (31)];

• mA is the “active” gravitational mass of the A-th
body in a point-particle approximation [Eq. (87)];

• M
tot

is the total gravitational mass of a star, which
includes the gravitational, Æther and baryonic con-
tributions [Eq. (57)]; this mass generalizes m̃A

to regimes where the point-particle approximation
does not hold;

• M
obs

is the mass measured by Keplerian experi-
ments, which turns out to coincide with M

tot

;

• M⇤ ⌘ GNM
tot

= GNM
obs

is the length scale asso-
ciated with the total mass M

tot

= M
obs

;

• M(r) is a function with dimension of length, de-
fined by Eq. (137) and approachingM⇤ as r ! +1;

• m ⌘ m
1

+m
2

is the total active mass of a binary
system in the point-particle approximation;

• µ ⌘ m
1

m
2

/m is the active reduced mass of a binary
system in the point-particle approximation.

Regarding the velocities, we use

• vi or viA are both the 3-velocity of an object relative
to the Æther field;

• vi
12

= vi
1

� vi
2

is the relative velocity of the two
bodies in a binary;

• V i
CM is the center-of-mass velocity of the binary

relative to the Æther.

II. MODIFIED GRAVITY THEORIES

In this section, we define the theories we focus on. We
begin with a description of Einstein-Æther theory and
follow with khronometric theory (the low-energy limit of
Hořava gravity). In both cases, we first introduce the ac-
tion that defines the theory and then describe its current
experimental constraints.

A. Einstein-Æther Theory

Einstein-Æther theory describes gravity by means of
a metric g↵� and a unit-norm timelike dynamical vec-
tor field U↵ (the “Æther field”). The latter locally de-
fines a preferred time direction, which breaks boost- and
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that appears in the Friedmann equations [Eq. (28)];
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nary system [Eq. (88)].

Regarding the masses:

• m̃A is the gravitational mass of the A-th body in a
point-particle approximation [Eq. (31)];

• mA is the “active” gravitational mass of the A-th
body in a point-particle approximation [Eq. (87)];

• M
tot

is the total gravitational mass of a star, which
includes the gravitational, Æther and baryonic con-
tributions [Eq. (57)]; this mass generalizes m̃A

to regimes where the point-particle approximation
does not hold;

• M
obs

is the mass measured by Keplerian experi-
ments, which turns out to coincide with M

tot

;
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obs

is the length scale asso-
ciated with the total mass M

tot

= M
obs
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• M(r) is a function with dimension of length, de-
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is the total active mass of a binary
system in the point-particle approximation;
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II. MODIFIED GRAVITY THEORIES

In this section, we define the theories we focus on. We
begin with a description of Einstein-Æther theory and
follow with khronometric theory (the low-energy limit of
Hořava gravity). In both cases, we first introduce the ac-
tion that defines the theory and then describe its current
experimental constraints.

A. Einstein-Æther Theory

Einstein-Æther theory describes gravity by means of
a metric g↵� and a unit-norm timelike dynamical vec-
tor field U↵ (the “Æther field”). The latter locally de-
fines a preferred time direction, which breaks boost- and

What about the UV ops in Lorentz 
breaking gravity?
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IR limit: L2 is Einstein-Aether (Jacobson-Mattingly) with hypersurface orthogonal aether field.  

Observationally constrained but not ruled out: similar strength constraints on L2

The condition M*<1016 GeV  
is a consequence of  the need to protect perturbative renormalizability w.r.t. the mass scale of  the Horava scalar mode
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Mass scales MLV≅2 × 1016 GeV are excluded at 95% CL.   
The window for MLV~M* is closed. 

Therefore a mechanism, suppressing the percolation of  LV in the matter sector, 
must be present in HL models, and such mechanism should not only protect lower 

order operators but also UV ones. 
Pospelov’s Gravitational confinement? Low M*? GW opportunity?



What about LIV BH thermodynamics? 

Let’s playing Jenga with BH thermodynamics.  
What is really at the root of it?
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Arif Mohd. e-Print: arXiv:1309.0907 
Temperature: Berglund, Bhattacharyya, Mattingly, Phys.Rev.Lett. 110 (2013) 7, 
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FIG. 1: Conformal diagram of black hole with Universal horizon, showing lines of constant
khronon field, with the Universal horizon shown in red.

extensively throughout this paper, we will briefly summarize some of the relevant details of
the solutions. For more information and background we refer the reader to Ref. [12]. Both
solutions, in Eddington–Finkelstein coordinates, can be written as

ds2 = �e(r) dv2 + 2dv dr + r

2 d⌦2

. (6)

Here the form of the æther is

u

a = {↵(r), �(r), 0, 0} ; ua = {�(r)� e(r)↵(r),↵(r), 0, 0} . (7)

Note from the normalization condition, u2 = �1, there is a relation between ↵(r) and �(r):

�(r) =
e(r)↵(r)2 � 1

2↵(r)
. (8)

We can also define a spacelike vector sa, such that

s

a
ua = 0; s

2 = 1. (9)

Explicitly

s

a = {↵(r), e(r)↵(r)� �(r), 0, 0} =

⇢
↵(r),

e(r)↵(r)2 + 1

2↵(r)
, 0, 0

�
, (10)

which clearly ensures s2 = 1. The two known exact black-hole solutions to Einstein–Æther
theory correspond to the special combinations of coe�cients c

123

= 0 and c

14

= 0.

• Solution 1: c
123

= 0.
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Work in progress…
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Deformed QM? Alternative relativity groups?
(If you can’t break it, can you deform it? )



Pikovski et. al. 1111.1979

the commutator deformation is (12)

[x, p]
µ0

= i~

s

1 + 2µ0
(p/c)2 +m2

M2
P

. (2)

Here m is the mass of the particle and µ0 is again a free
numerical parameter. For small masses m ⌧ p/c .
M

Pl

, and for µ0 = �0, the above modified commu-
tator reduces to Eq. 1. However, an important dif-
ference is that the commutation relation in Eq. 2 de-
pends directly on the rest-mass of the particle. In the
limit p/c ⌧ m . M

P

the commutator reduces to
[x, p]

µ0
⇡ i~

�
1 + µ0m

2/M2
P

�
, which can be seen as

a mass-dependent rescaling of ~. It is worth noting that
a modified, mass-dependent Planck constant ~ = ~(m)

also appears in other theories, some of which predict
that the value of Planck’s constant can decrease with in-
creasing mass (~ ! 0 for m � M

P

), in contrast to the
prediction above. Such a reduction would also account
for a transition to classicality in massive systems or at
energies close to the Planck energy (7, 11).

Among the various proposals for different commuta-
tor deformations, we choose as a last example the re-
cently proposed commutator (15) which also accounts
for a maximum momentum that is present in several ap-
proaches to quantum gravity (6, 7)

[x, p]
�0

= i~
 
1� �0

p

M
P

c
+ �2

0

✓
p

M
P

c

◆2
!

. (3)

Here �0 is again a free numerical parameter that char-
acterizes the strength of the modification. Experimental
bounds on �0 are more stringent than in the case of Eq.
1 and were considered in Ref. (16). The best current
bound can be obtained from Lamb shift measurements
in Hydrogen, which yield �0 . 10

10 (see Table 1).
The strength of the modifications in all the discussed

examples depends on the mass of the system. For a har-
monic oscillator in its ground state the minimum mo-
mentum uncertainty is given by p0 =

p
~m!

m

, where
m is the mass of the oscillator and !

m

is its angular
frequency. The deformations are therefore enhanced in
massive quantum systems. We note that theories of de-
formed commutators have an intrinsic ambiguity as to
which degrees of freedom it should apply to for compos-
ite systems (see Supplementary Information). For the
center of mass mode, the mass dependence of the defor-
mations suggests that using massive quantum systems
allows easier experimental access to the possible defor-
mations of the commutator, provided that precise quan-
tum control can be attained. Opto-mechanical systems,

Table 1: Current experimental bounds on quantum-
gravitational commutator deformations. The parame-
ters �0 and �0 quantify the deformation strengths of the
modification given in Eq. 1 and in Eq. 3, respectively.
For electron tunneling an electric current measurement
precision of �I ⇠ 1 fA was taken.

system/ experiment �0,max

�0,max

Refs.

Position measurement 10

34
10

17 (21, 22)
Hydrogen Lamb shift 10

36
10

10 (14, 16)
Electron tunneling 10

33
10

11 (14, 16)

where the oscillator mass can be around the Planck-
mass and even larger, therefore offer a natural test-bed
for probing commutator deformations of its center of
mass mode.

2 Scheme to measure the deforma-
tions

In the following we will outline a quantum optical
scheme that allows to measure deformations of the
canonical commutator of a mechanical oscillator with
unprecedented precision. For simplicity we use dimen-
sionless quadrature operators X

m

and P
m

. They are
related to the position and momentum operators via
x = x0Xm

and p = p0Pm

, where x0 =

p
~/(m!

m

)

and p0 =

p
~m!

m

.
The scheme relies on displacements of the mas-

sive mechanical oscillator in phase space, where the
displacement operator is given by (27) D(z/

p
2) =

ei(Re[z]X
m

�Im[z]P
m

). The action of this operator dis-
places the mean position and momentum of any state
by Im[z] and Re[z], respectively. In quantum mechan-
ics, two subsequent displacements provide an additional
phase to the state, which can be used to engineer quan-
tum gates (28–30). Here we consider displacements of
the mechanical resonator that are induced by an ancil-
lary quantum system, the optical field, with an interac-
tion strength �. A sequence of four opto-mechanical
interactions is chosen such that the mechanical state is
displaced around a loop in phase space, described by the
four-displacement operator

⇠ = ei�nL

P

m e�i�n

L

X

m e�i�n

L

P

m ei�nL

X

m . (4)

In classical physics, after the whole sequence neither

3
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Garay, gr-qc/9403008, 

Hossenfelder 

1203.6191

[x, p] = i~
 
1� �0

p

MP c
+ �0

✓
p

MP

◆2
!

Planck scale test requires constraint of O(1)

5

FIG. 2. Residual angular frequency fluctuations as a function of the oscillation amplitude. The fluctuations ∆ω are measured during the free
decay, for the DPO (a), wheel (b) and membrane (c) oscillators. On the upper axes, the same oscillation amplitudes are normalized to the
respective oscillator ground state wavefunction width

√
!/mω0. Red solid lines are the fits with Equation 8, dashed lines reports the 95%

confidence area. In the inset, we report the values of the quadratic coefficient b measured for the membrane oscillator at different excitation
amplitudes, with their 95% confidence error bars (for appreciating the improvement in the accuracy, we just show the positive vertical semi-axis
in logarithmic scale). For the two points at highest amplitude, the measured b is significantly different from zero. The green lines show the
interval of b calculated from the nonlinear behaviour observed in the frequency domain for stronger excitation.

Mass Frequency Max. ampl. Max. Q0 Max. ∆ω/ω0 β β0 indicator
(kg) (Hz) (nm)

3.3 × 10−5 5.64 × 103 600 6 × 1010 4 × 10−7 7 × 10−29 3 × 107 ∆ω
" " 7 × 10−25 2 × 1011 3rd harmonic

7.7 × 10−8 1.29 × 105 8 × 10−24 5 × 1013 ∆ω
" " 2 × 10−19 2 × 1018 3rd harmonic

2 × 10−8 1.42 × 105 55 7 × 108 6 × 10−8 3 × 10−25 6 × 1012 ∆ω
2 × 10−11 7.47 × 105 7.5 7 × 106 4 × 10−8 4 × 10−21 2 × 1019 ∆ω

" " 47 4 × 107 3 × 10−6 " " ∆ω
" " 2 × 10−14 1 × 1026 3rd harmonic

TABLE I. Results of the experiment. Maximum relative frequency shifts measured for different oscillators, corresponding oscillation ampli-
tudes, and upper limits to the deformation parameters β and β0 obtained in this work.

limits to the involved parameters.

For a more accurate and specific bound, we focus on the
model described by Eqs. (7-8). The values and uncertainties in
β and β0 are obtained from b and from the third harmonic dis-
tortion, using the oscillator parameters (namely, its mass and
frequency). In Table I we summarize our results for the differ-
ent upper limits, given at the 95% confidence level. The results
for β0 are also displayed in Fig. 3 as a function of the oscilla-
tor mass, and compared with some previously existing limits.
We have achieved a significant improvement, by many orders
of magnitude, working on systems with disparate mass scales
and considering different measured observables.

II. DISCUSSION

We have performed an extended experimental analysis of
the possible dependence of the oscillation frequency and third
harmonic distortion on the oscillation amplitude in micro- and
nano-oscillators, spanning a wide range of masses. Assuming
that a deformed commutator between position and momentum
governs the dynamics through standard Heisenberg equations,
we obtain a reduction by many orders of magnitude of the

previous upper limits to the parameters quantifying the com-
mutator deformation. We remark that the measurements have
been performed on state of the art oscillators, allowing low
statistical uncertainty (due to the high mechanical quality fac-
tor), low background noise (thanks to the shot-noise limited
detection and the cryogenic environment), high frequency sta-
bility (beyond the resonance linewidth), and the highest exci-
tation amplitude allowed by each oscillator. The latter con-
dition is not commonly explored in metrological micro- and
nano-oscillators [31, 32], and we could indeed achieve the
limit given by the intrinsic oscillators non-linearity. These ef-
fects are not well mastered at present, therefore we have kept
the conservative attitude of setting an upper limit to the over-
all nonlinear behavior, which includes possible quantum grav-
ity effects. A detailed modeling of the structural nonlinearity
could allow in the future to subtract their effects from our data
(in particular in the case of the DPO, for which the shape of
∆ω vs q0 is clearly different from a parabola), and thus set even
stronger limits to the remaining nonlinearity and actually to
β0. The mentioned crucial properties (highQm, high resonance
frequency at a given mass, high frequency stability) must be
conserved or improved in possible further experiments aiming

Bawaj et al. arXiv:1411.6410
Nature Communications 6, 7503 
(2015).

Recently further improved via macroscopic  
harmonic opto-mechanical oscillators 

We need to do better…
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scopic mechanical oscillators [23]. Here we elaborate a dif-
ferent experimental protocol and describe a set of dedicated
experiments with state-of-the-art micro- and nano-oscillators.
We show that, in the Heisenberg picture of quantum mechan-
ics and assuming the validity of the commutator (2) for the
coordinates of the center-of-mass, the time evolution of its
position exhibits an additional third harmonic term and a de-
pendence of the oscillation frequency on its amplitude. The
strength of such effects depends on β0. We then analyze the dy-
namics of different oscillators in order to place upper bounds
to the parameters quantifying the deformation to the standard
quantum-mechanical commutator. Such bounds span a wide
range of test mass values, around the landmark given by the
Planck mass. Previous limits, derived indirectly from the anal-
ysis of some metrological experiments, are substantially low-
ered, by several orders of magnitude.

I. RESULTS

A. Theoretical model

The basic idea of our analysis is assuming that the com-
mutation relations between the operator q describing a mea-
sured position in a macroscopic harmonic oscillator, and its
conjugate momentum p, are modified with respect to their
standard form. In other words, and more generally, we sup-
pose that the deformed commutator should be applied to any
couple of position/momentum conjugate observables that are
treated in a quantum way in experiments and standard theo-
ries. At the same time, we keep the validity of the Heisen-
berg equations for the temporal evolution of an operator Ô, i.e.
dÔ/dt = [Ô,H]/i!, where H is the Hamiltonian. For an os-
cillator with mass m and resonance angular frequency ω0, we
also assume that the Hamiltonian maintains its classical form
H = mω20q

2/2 + p2/2m. Such hypotheses are also underlying
the proposal of Ref. [23].
We first define the usual dimensionless coordinatesQ and P,

according to q =
√
!/(mω0)Q and p =

√
!mω0 P. The Hamil-

tonian is now written in the standard form H = !ω02
(

Q2 + P2
)

and the commutator of Eq. (2) becomes

[Q, P] = i
(

1 + βP2
)

, (3)

where β = β0
(

!mω0/m2Pc
2) is a further dimensionless parame-

ter that we assume to be small (β≪ 1). Such assumption will
have to be consistent with the experimental results.
We now apply the transform

P =
(

1 +
1
3
βP̃2

)

P̃ (4)

discussed, e.g., in Ref. [22]. As we will see later, to our pur-
pose P̃ is just an auxiliary operator, we do not need to decide if
either P or P̃ corresponds to the classical momentum. Q and
P̃ obey the (non deformed) canonical commutation relation

[Q, P̃] = i. At the first order in β, the Hamiltonian can now be
written as

H =
!ω0

2
(

Q2 + P̃2
)

+
!ω0

3
βP̃4 . (5)

The Heisenberg evolution equations for Q and P̃, using the
Hamiltonian (5) read

Q̇ = ω0P̃
(

1 +
4
3
βP̃2

)

, (6a)

˙̃P = −ω0Q . (6b)

The coupled relations (24) are formally equivalent to the
equations describing the evolution of a free anharmonic os-
cillator with position −P̃ (Q is its conjugate momentum), in
a potential V = ω20

(

P̃2/2 + βP̃4/3
)

containing a fourth-order
component.
The Poincaré’s solution [24], for initial conditions
−P̃(0) = A and ˙̃P(0) = 0, is −P̃(t) = A

(

(1 + ϵ/32) cos(ω̃t) −
(ϵ/32) cos(3 ω̃t)

)

where ϵ = −4A2β/3 and ω̃ =
(

1 − 3
8 ϵ

)

ω0.
The solution is valid at the first order in ϵ, and implies
two relevant effects with respect to the harmonic oscillator:
the appearance of the third harmonic and, less obvious, a
dependence of the oscillation frequency on the amplitude
(more precisely, a quadratic dependence of the frequency shift
on the oscillation amplitude).
Using again Eq. (24b) to find Q(t), keeping the first order in
βQ20 where Q0 is the oscillation amplitude for Q, we obtain

Q = Q0
[

sin(ω̃t) +
β

8
Q20 sin(3 ω̃t)

]

, (7)

where

ω̃ =
(

1 +
β

2
Q20

)

ω0 . (8)

The position Q(t) is our meaningful (i.e., measured) variable,
whatever is the physical meaning of P and P̃. P. Pedram calcu-
lates in Ref. [19] the evolution of an harmonic oscillator with
an Hamiltonian deformed according to the GUP considered in
this work, and finds a frequency modified as (in our notation)
ω̃ = ω0

√

1 + βQ20. Such expression is equivalent to Eq. (8) in
the limit of small (βQ20), satisfied in the present work.
We have performed the experiments with highly isolated os-

cillators, i.e., with a highmechanical quality factorQm ! ω0τ,
where τ is a long but nonetheless finite relaxation time, re-
sponsible for an additional term −2P/τ in the right hand
side of Eq. (24b). Damping has a twofold effect: (i) an
exponential decay of the oscillation amplitude; (ii) a non-
trivial time-dependence of the phase. In the limit Qm ≫ 1,
the dynamics is described by a modified version of Eq. (7)
with the replacements ω̃t→ Φ(t), implying ω̃(t) = dΦ/dt, and
Q0 → Q0 exp(−t/τ). More details on the inclusion of damp-
ing in the evolution equations are reported in the Supplemen-
tary Material.



Local Lorentz Invariance Deformations?

W. von Ignatowsky 
(Tiblisi 1875-Leningrad 1942) 

Doubly/Deformed Special Relativity

Relative Locality (curved momentum space)

Amelino-Camelia, Int.J.Mod.Phys. D11 (2002) 35-60  
C.Rovelli, arXiv:0808.3505. L.Smolin, arXiv:0808.3765.

Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin. Phys.Rev. D84 (2011) 084010 

Hossenfelder, Phys.Rev.Lett. 104 (2010) 140402 

Often linked to quantum groups like 𝜿-Minkowski 
Possibly linked to Finsler or Finsler-like structures? 

Amelino-Camelia, Barcaroli, Gubitosi, SL, Loret. Phys.Rev. D90 (2014) no.12, 125030

Aletrnatively, let’s look back at von Ignatowsky theorem (1911): 
Axiomatic Special Relativity

3

An even richer stream of research characterizes the study of Finsler geometry, which could be
viewed as an approach suitable for abandoning Riemannian geometry as the arena for the relativistic
dynamics of particles, essentially allowing for a velocity dependent geometry to describe spacetime
structure.

There is already a well-established common point between the DSR-relativistic theories frame-
work and Finsler geometry, and this is the possibility of allowing for modified dispersion relations.
It was already shown in [5] that Finsler metrics can be used to describe the geometry on which a par-
ticle with modified dispersion relation lives, but it was not investigated whether Finsler geometries
have room to accommodate also a description of the (modified) relativistic symmetries.

We tackle this challenge here by focusing on the illustrative example of the curved momentum
space that was inspired [6, 7] by the so-called κ-Poincaré quantum-group deformation of the Poincaré
group [8–10]. κ-Poincaré is a widely studied candidate to describe departures from Special Relativity
that could arise in a "semiclassical" regime of Quantum Gravity (whose scale is set by the value of
κ), where the gravitational degrees of freedom are integrated out, leaving an effective field theory
for matter. Indeed this was shown to be the case at least for 2 + 1-dimensional quantum gravity
[11].

An important player in our analysis is a known prescription for deriving the Killing vectors as-
sociated to a given Finsler geometry. Until now it was not clear whether these Killing vectors
are actually associated to symmetries that leave invariant a given dispersion relation. For the
κ-Poincaré-inspired momentum space, which we use as illustrative example of our thesis, the re-
lationship between (modified) dispersion and relativistic transformations has been already studied
in detail and this placed us in a strong position for investigating a possible description in terms of
Finsler geometry.

Without loosing any of the conceptual challenges that are here of interest we work in 1 + 1
dimensions and at the first order in the deformation parameter ℓ (ℓ ∼ 1/κ is a length scale, related
to the scale of curvature of momentum space), so that formulas are less bulky and indeed the
conceptual issues come more to the forefront. Our greek indices have values {0, 1}, and we set c
and ! to one.

II. DESCRIPTION OF PARTICLES WITH κ-POINCARÉ SYMMETRIES

The κ-Poincaré group [8–10] is a deformation of the Poincaré group that accommodates a second
invariant scale (an energy scale) besides the speed of light, without violating the relativity principle.
The energy scale κ governs the departures from the standard special relativistic symmetries. We
will indicate it as 1/ℓ, where ℓ is a parameter with dimensions of a length, expected to be of the
order of the Planck length.

When the so-called bicrossproduct basis [12] is chosen, the κ-Poincaré generators associated to
spacetime translations (P0, P1) and boost (N ) satisfy the following Lie brackets 1:

{P0, P1} = 0

{N , P0} = P1 (1)

{N , P1} = P0 − ℓP 2
0 −

ℓ

2
P 2
1 .

1 Because of the classical nature of the physical framework that we are going to study (there are no pure quantum
effects, i.e. ! ∼ 0) we use as Lie brackets the Poisson ones.
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An even richer stream of research characterizes the study of Finsler geometry, which could be
viewed as an approach suitable for abandoning Riemannian geometry as the arena for the relativistic
dynamics of particles, essentially allowing for a velocity dependent geometry to describe spacetime
structure.

There is already a well-established common point between the DSR-relativistic theories frame-
work and Finsler geometry, and this is the possibility of allowing for modified dispersion relations.
It was already shown in [5] that Finsler metrics can be used to describe the geometry on which a par-
ticle with modified dispersion relation lives, but it was not investigated whether Finsler geometries
have room to accommodate also a description of the (modified) relativistic symmetries.

We tackle this challenge here by focusing on the illustrative example of the curved momentum
space that was inspired [6, 7] by the so-called κ-Poincaré quantum-group deformation of the Poincaré
group [8–10]. κ-Poincaré is a widely studied candidate to describe departures from Special Relativity
that could arise in a "semiclassical" regime of Quantum Gravity (whose scale is set by the value of
κ), where the gravitational degrees of freedom are integrated out, leaving an effective field theory
for matter. Indeed this was shown to be the case at least for 2 + 1-dimensional quantum gravity
[11].

An important player in our analysis is a known prescription for deriving the Killing vectors as-
sociated to a given Finsler geometry. Until now it was not clear whether these Killing vectors
are actually associated to symmetries that leave invariant a given dispersion relation. For the
κ-Poincaré-inspired momentum space, which we use as illustrative example of our thesis, the re-
lationship between (modified) dispersion and relativistic transformations has been already studied
in detail and this placed us in a strong position for investigating a possible description in terms of
Finsler geometry.

Without loosing any of the conceptual challenges that are here of interest we work in 1 + 1
dimensions and at the first order in the deformation parameter ℓ (ℓ ∼ 1/κ is a length scale, related
to the scale of curvature of momentum space), so that formulas are less bulky and indeed the
conceptual issues come more to the forefront. Our greek indices have values {0, 1}, and we set c
and ! to one.

II. DESCRIPTION OF PARTICLES WITH κ-POINCARÉ SYMMETRIES

The κ-Poincaré group [8–10] is a deformation of the Poincaré group that accommodates a second
invariant scale (an energy scale) besides the speed of light, without violating the relativity principle.
The energy scale κ governs the departures from the standard special relativistic symmetries. We
will indicate it as 1/ℓ, where ℓ is a parameter with dimensions of a length, expected to be of the
order of the Planck length.

When the so-called bicrossproduct basis [12] is chosen, the κ-Poincaré generators associated to
spacetime translations (P0, P1) and boost (N ) satisfy the following Lie brackets 1:

{P0, P1} = 0

{N , P0} = P1 (1)

{N , P1} = P0 − ℓP 2
0 −

ℓ

2
P 2
1 .

1 Because of the classical nature of the physical framework that we are going to study (there are no pure quantum
effects, i.e. ! ∼ 0) we use as Lie brackets the Poisson ones.
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• Particles travel at observer energy dependent speeds (Rosati et. al. 1203.4677) 
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Upshot: Toss any constraints that rely on interactions 
and only use time of flight

Constraint on the photon LIV coefficient ξ by using the fact that 
different colours will travel at different speeds. Given current data we 

can cast constrains only on O(E/M) LIV…

E.g. if

Constraints of  ξ~O(10-1) on O(E/M) LIV 
have been cast using time of  arrival 

measurements on beams of  light from 
distant sources like GRBs and AGN 

(FERMI,MAGIC,HESS).

FERMI-LAT measurements of GRB 090510.  
(Vasileiou et. al. 1305.3463)  

GRB 090510: z=0.9  
Peak E: 30 GeV 

5

En
er

gy
 (M

eV
)

210

310

410

510

En
er

gy
 (M

eV
)

210

310

410

510

En
er

gy
 (M

eV
)

210

310

410

510

En
er

gy
 (M

eV
)

210

310

410

510

Time after trigger (sec)
-5 0 5 10 15 20 25 30

Ev
en

ts
 p

er
 0

.3
0 

se
c

0

2

4

6

8

10

12

14

16
GRB080916C

Time after trigger (sec)
-2 0 2 4 6 8 10 12 14

Ev
en

ts
 p

er
 0

.0
5 

se
c

0

2

4

6

8

10

12

14

16

18

20

22

24

GRB090510

Time after trigger (sec)
0 20 40 60 80

Ev
en

ts
 p

er
 0

.3
0 

se
c

0

2

4

6

8

10

12

14
GRB090902B

Time after trigger (sec)
0 5 10 15 20

Ev
en

ts
 p

er
 0

.3
0 

se
c

0

5

10

15

20

25

GRB090926A

FIG. 1. Time and energy profiles of the detected events from the four GRBs in our sample. Each column shows an event energy
versus event time scatter plot (top) and a light curve (bottom). The vertical lines denote the time intervals analyzed (solid line
for n = 1 and dashed line for n = 2), the choice of which is described in Sec. IV. If a dashed line is not visible, it approximately
coincides with the solid one.

and σr and σd are the rise and decay time constants.
For v = {1, 2} the equation describes a two-sided expo-
nential or Gaussian function respectively. We use the
best fit parameters (as obtained from a maximum likeli-
hood analysis) to define a “pulse interval”extending from
the time instant that the pulse height rises to 5% of its
amplitude to the time instant that it fells to 15% of its
amplitude. We choose such an asymmetric cut because
of the long falling-side tails of GRB pulses.

We then expand this initial “pulse interval” until no
photons that were generated outside of it (at the source)
could have been detected inside of it (at the Earth) due
to LIV dispersion, and also until no photons that were
generated inside of it (at the source) could have been
detected outside of it (at the Earth) due to LIV disper-
sion. We use conservative values of EQG,1 = 0.5 × EPl

and EQG,2 = 1.5 × 1010 GeV for the maximum degree
of LIV dispersion considered in extending the time inter-
val, values which correspond to roughly one half of the

stringent and robust limits obtained by Fermi [23] and
H.E.S.S. [28, 29]. The interval resulting from this expan-
sion is the one chosen for the analysis (hereafter referred
to as the “default” interval). The main reason for ex-
tending the interval is to avoid constraining the possible
emission time of the highest-energy photons in the initial
“pulse interval” to a degree that would imply an artifi-
cially small level of dispersion.

The choice of time interval for GRB 090510 and n = 1
is demonstrated in Fig. 2. The (default) time intervals
for all GRBs are shown in Fig. 1 with the vertical solid
(n = 1) and dashed lines (n = 2), and are also reported
in Tab. II.
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and σr and σd are the rise and decay time constants.
For v = {1, 2} the equation describes a two-sided expo-
nential or Gaussian function respectively. We use the
best fit parameters (as obtained from a maximum likeli-
hood analysis) to define a “pulse interval”extending from
the time instant that the pulse height rises to 5% of its
amplitude to the time instant that it fells to 15% of its
amplitude. We choose such an asymmetric cut because
of the long falling-side tails of GRB pulses.

We then expand this initial “pulse interval” until no
photons that were generated outside of it (at the source)
could have been detected inside of it (at the Earth) due
to LIV dispersion, and also until no photons that were
generated inside of it (at the source) could have been
detected outside of it (at the Earth) due to LIV disper-
sion. We use conservative values of EQG,1 = 0.5 × EPl

and EQG,2 = 1.5 × 1010 GeV for the maximum degree
of LIV dispersion considered in extending the time inter-
val, values which correspond to roughly one half of the

stringent and robust limits obtained by Fermi [23] and
H.E.S.S. [28, 29]. The interval resulting from this expan-
sion is the one chosen for the analysis (hereafter referred
to as the “default” interval). The main reason for ex-
tending the interval is to avoid constraining the possible
emission time of the highest-energy photons in the initial
“pulse interval” to a degree that would imply an artifi-
cially small level of dispersion.

The choice of time interval for GRB 090510 and n = 1
is demonstrated in Fig. 2. The (default) time intervals
for all GRBs are shown in Fig. 1 with the vertical solid
(n = 1) and dashed lines (n = 2), and are also reported
in Tab. II.

Enough with the breaking and deforming?
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FIG. 2. The spacetime of a bouncing star.

IV. CONSTRUCTION OF THE BOUNCING
METRIC

Because of spherical symmetry, we can use coordinates
(u, v, ✓, �) with u and v null coordinates in the r-t plane
and the metric is entirely determined by two functions of
u and v:

ds2 = �F (u, v)dudv + r2(u, v)(d✓2 + sin2 ✓d�2) (23)

In the following we will use di↵erent coordinate patches,
but generally all of this form. Because of the assumption
(vi), the conformal diagram of spacetime is trivial, just
the Minkowski one, see Figure 2. From assumption (iii)
there must be a “t = 0” hyperplane which is the surface
of reflection of the time reversal symmetry. It is con-
venient to represent it in the conformal diagram by an
horizontal line as in Figure 2. Now consider the incom-
ing and outgoing null shells. By symmetry, the bounce
must be at t = 0. For simplicity we assume (this is not
crucial) that it is also at r = 0. These are represented
by the two thick lines at 45 degrees in Figure 2. In the
Figure there are two significant points, � and E , that lie
on the boundary of the quantum region. The point �
has t = 0 and is the maximal extension in space of the
region where the Einstein equations are violated. Point
E is the first moment in time where this happens. We
discuss later the geometry of the line joining E and �.

Because the metric is invariant under time reversal, it
is su�cient for us to construct it for the region below
t = 0 (and make sure it glues well with its future). The
upper region will simply be the time reflection of the
lower. The in-falling shell splits spacetime into a region
interior to the shell, indicated as I in the Figure and
an exterior part. The latter, in turn, is split into two
regions, which we call II and III, by the line joining E
and �. Let us examine the metric of these three regions
separately:

FIG. 3. Classical black hole spacetime and the region II.

(I) The first region, inside the shell, must be flat by
Bhirko↵’s theorem. We denote null Minkowski co-
ordinates in this region (u

I

, v
I

, ✓, �).

(II) The second region, again by Bhirko↵’s theorem,
must be a portion of the metric of a mass m,
namely it must be a portion of the (maximal ex-
tension of the) Schwarzschild metric. We denote
null Kruskal coordinates in this region (u, v, ✓, �)
and the related radial coordinate r.

(III) Finally, the third region is where quantum gravity
becomes non-negligible. We know nothing about
the metric of this region, except for the fact that it
must join the rest of the spacetime. We denote null
coordinates for this quantum region (u

q

, v
q

, ✓, �)
and the related radial coordinate r

q

.

We can now start building the metric. Region I is
easy: we have the Minkoswki metric in null coordinates
determined by

F (u
I

, v
I

) = 1, r
I

(u
I

, v
I

) =
v
I

� u
I

2
. (24)

It is bounded by the past light cone of the orgin, that is,
by

v
I

= 0. (25)

In the coordinates of this patch, the ingoing shell is there-
fore given by v

I

= 0.
Let us now consider region II. This must be a por-

tion of the Kruskal spacetime. Which portion? Put an
ingoing null shell in Kruskal spacetime, as in Figure 3.
The point � is a generic point in the region outside the
horizon, which we take on the t = 0 surface, so that
the gluing with the future is immediate. More crucial
is the position of the point E . Remember that E is the
point where the in-falling shell reaches the quantum re-
gion. Clearly this must be inside the horizon, because
when the shell enters the horizon the physics is still clas-
sical. Therefore the region that corresponds to region II
in our metric is the shaded region of Kruskal spacetime
depicted in Figure 3.

In null Kruskal–Szekeres coordinates the metric of the
Kruskal spacetime is given by

F (u, v) =
32m3

r
e

r
2m (26)

3

r = 2m

r = rin r

t

FIG. 2: Evaporating Plank star in Eddington-Finkelstein co-
ordinates.

collapse) measured at infinity, and is connected to the
Schwarzschild radius by

rSch ⇠ 2m. (6)

From Einstein’s equations, curvature is proportional to
energy density and our hypothesis is then that when cur-
vature reaches the Planck scale we enter the quantum
domain

R ⇠ 8⇡⇢P . (7)

From (5) and (7) we have that the boundary of the non-
classical region is, neglecting factors of order one, at the
radius

rin ⇠
✓

m

mP

◆ 1
3

lP . (8)

This gives a first naive estimate n ⇠ 1/3. More covari-
antly, identifying the Planck star with the quantum re-
gion, the area of the surface of the Planck star is given
by

Aq ⇠
✓

m

mP

◆2
3

l

2
P . (9)

More precise estimates using realistic metrics are of
course possible, but do not change much this first es-
timate [26].

Let us write a metric that could describe the result-
ing e↵ective geometry. In Eddington-Finkelstein coordi-
nates, the metric of a collapsed black hole reads

ds

2 = r

2
d!

2 + 2dv dr � F (r)du

2
. (10)

where d!

2 is the metric of a two-sphere and

F (r) = (1 � 2m/r) (11)

is the standard red shift factor of the Schwarzschild met-
ric. The ingoing null geodesics are at constant u. The
outgoing ones satisfy

dr

dv

=
1

2
(1 � 2m/r) (12)

Pf

Pi

FIG. 3: Penrose diagram of the life of a star undergoing
gravitational collapse. The dotted line indicates the exter-
nal boundary of the star. The shaded area is the region
where quantum gravity modifies the classical Einstein equa-
tions. The dark line represents the two trapping horizons: the
external evaporating one, and the internal accreting one. The
arrows indicate the Hawking radiation (outgoing and ingo-
ing). Pi and Pf denote the boundary of the external horizon
at the beginning and the end of the Hawking evaporation.
The lowest light-line is where the horizon of the black hole
would be if no Hawking evaporation was present. There is no
event horizon.

and therefore are outgoing for r > 2m and ingoing for
r < 2m. Once inside the r = 2m horizon, a timelike
geodesic is bound to hit r = 0. We can mimic the quan-
tum gravitational repulsive force by correcting the red
shift factor as follows [33]

F (r) = 1 � 2mr

2

r

3 + 2↵

2
m

(13)

which gives a regular metric. Expanding in 1/r this gives

F (r) = 1 � 2m/r + 4↵

2
m

2
/r

4
. (14)

The new term represents a strong short-scale repulsive
force due to quantum e↵ects. Its e↵ect is to stop the
inside bending of the light cones. The ingoing lightlike
geodesics turn back vertical at the lowest zero of the term
in parenthesis, near (8). (See [33] for a version regular at
r = 0.) A timelike geodesic that enters the outer horizon
will later enter the inner one and then move upward in
t = v�r (this t is not the Schwarzschild time coordinate).
See Figure 1.

The inner horizon is at the new lower zero rin of the
red shift factor. This happens at rin ⇠ ↵. For this to be
of order m

n (which is our definition of n), we must have

↵ ⇠ m

n
. (15)

For instance, if n = 1/3 the onset of quantum gravity
e↵ects is at the naive n = 1/3 scale considered above.

Let us now take the Hawking radiation and its back
reaction into account. This will give a slow shrinking of
the outer horizon, which we can represent in the metric
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FIG. 4: Full spectrum of gamma-rays emitted by a decaying
Planck star at z = 3 (log scales).

the explosion remain to be investigated. The shape of
the di↵use integrated signal, and more specifically its po-
tential specific signature allowing to distinguish it from
standard primordial black holes, requires a full numerical
analysis. It could also be interesting to investigate the
emission of charged articles, in particular positrons and
antiprotons (some interesting threshold e↵ets could be
expected). As well known, the much smaller horizon can
be compensated by the large galactic confinement e↵ect.
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We estimate the size of a primordial black hole exploding today via a white hole transition, and
the power in the resulting explosion, using a simple model. We point out that Fast Radio Bursts,
strong signals with millisecond duration, probably extragalactic and having unknown source, have
wavelength not far from the expected size of the exploding hole. We also discuss the possible higher
energy components of the signal.

I. THE MODEL

The fate of the vast amount of matter fallen into black
holes is unknown. A possibility investigated by numer-
ous authors is that quantum gravity generates pressure
(or weakens gravity) halting the collapse and triggering a
bounce causing the black hole to explode [1–19] possibly
at a size much larger than Planckian [20–22]. Lifetimes
of stellar or galactic holes are far too long for us to have a
chance to detect the resulting explosion. But primordial
black holes formed in the very early universe, if they ex-
ist [23–26], could be exploding today. For a black hole of
initial mass m, the hypothesis that the phenomenon pre-
vents the firewall problem [27] implies a maximal lifetime
shorter than the Hawking evaporation time [28], but still
of order m3 in Planck units (c = ~ = G = 1). In [22], the
signal emitted by a primordial black hole exploding today
was estimated, under this maximal lifetime hypothesis,
to be in the Gev range. The phenomenology of such an
event has been studied in [29]. For related suggestions
see [30–36].

Later theoretical work on the gravitational field of such
bouncing “Planck star” has pointed out that quantum
gravity e↵ects might become relevant earlier, allowing
for shorter blackhole lifetime [37]. Classical general rela-
tivity outside the region of the hole is compatible with a
black-to-white quantum transition. The black and white
hole solutions of the Einstein equations can be glued and
their singularities replaced by a finite (in space and in
time) non-classical tunnelling region. An estimate of the
time needed to exit the semiclassical regime yields a black
hole lifetime of the order

⌧ = 4k m2 (1)

in Planck units, where k is estimated to k = .05 in [37].
Primordial black holes of initial mass around

m =

r
tH
4k

⇠ 1.2⇥ 1023 kg (2)

where tH is the Hubble time, can therefore be expected to
explode today. The possibility of observing signals from
white holes was first pointed out long ago by Narlikar,
Appa Rao and Dadhich in [38].
A “bounce” can take a cosmological time because of

the general-relativistic time dilation: the proper time
of an observer outside the hole is cosmological, but the
proper time of an observer bouncing with the star inside
the hole is very small (order m, namely the time light
takes to cross the collapsing object).
If this happens, most of the energy of the black hole

is still present at explosion time, because Hawking radia-
tion does not have the time to consume it. The exploding
object should have a total energy of the order

E = mc2 ⇠ 1.7⇥ 1047 erg (3)

concentrated in a size given by the corresponding
Schwarzschild radius

R =
2Gm

c2
⇠ .02 cm (4)

We may expect two main component of the signal from
such an explosion: (i) a lower energy signal at a wave-
length of the order of the size of the exploding object.
(ii) a higher energy signal which depend on the details of
the liberated hole content. We discuss the first signal in
Section II, the possibility of identifying it with observed
signals in Section III, and the second in Section IV.

II. LOW ENERGY SIGNAL

A strong explosion in a small region should emit a sig-
nal with a wavelength of the order of the size of the re-
gion or somehow larger, and convert some fraction of its
energy in photons. Therefore it is reasonable to expect
from this scenario an electromagnetic signal emitted in
the infrared

�predicted & .02 cm. (5)
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FIG. 1: White hole signal wavelength (unspecified units) as
a function of z. Notice the characteristic flattening at large
distance: the youth of the hole compensate for the redshift.

The received signal is going to be corrected by standard
cosmological redshift. However, signals coming form far-
ther away were originated earlier, namely younger, and
therefore less massive, holes, giving a peculiar decrease
of the emitted wavelength with distance. The received
wavelength, taking into account both the expansion of
the universe and the change of time available for the
black hole to bounce, can be obtained folding (1) into the
relation between redshift and proper time. This gives

�obs ⇠ 2Gm

c2
(1 + z) ⇥ (6)

vuut H�1
0

6 k⌦ 1/2
⇤

sinh�1

"✓
⌦⇤

⌦M

◆1/2

(z + 1)�3/2

#
.

where we have reinserted the Newton constant G and
the speed of light c while H0,⌦⇤ and ⌦M are the Hubble
constant, and the cosmological-constant and matter den-
sities. Interestingly this is a very slowly varying function
of the redshift. The redshift slightly over-compesates for
the e↵ect of the hole’s age. The signal varies by less
than an order of magnitude for redshifts up to the de-
coupling time (z=1100). See Figure 1. If the redshift of
the source can be estimated by using dispersion measures
(or by identifying a host galaxy) this would be a smoking
gun evidence for the phenomenon.

Do we have detectors for these signals? There are de-
tectors operating at such wavelengths, beginning by the
recently launched Herschel instrument. The 200 micron
range can be observed both by PACS and SPIRE. The
former employs four detector arrays, two bolometer ar-
rays and two Ge:Ga photoconductor arrays. The lat-
ter is a camera associated with a low to medium resolu-
tion spectrometer complementing PACS. It comprises an
imaging photometer and a Fourier Transform Spectrom-
eter (FTS), both of which use bolometer detector arrays.
The predicted signal falls in between PACS and SPIRE
sensitivity zones. There is also a very high resolution het-
erodyne spectrometer, HIFI, onboard Herschel, but this
is not an imaging instrument, it observes a single pixel
on the sky at a time.

However, the bolometer technology makes detecting

short white-hole bursts di�cult. Cosmic rays cross the
detectors very often and induce glitches that are removed
from the data. Were physical IR bursts due to bounc-
ing black hole registered by the instrument, they would
most probably have been flagged and deleted, mimicking
a mere cosmic ray noise.
There might be room for improvement. It is not im-

possible that the time structure of the bounce could lead
to a characteristic time-scale of the event larger than
the response time of the bolometer. In that case, a
specific analysis should allow for a dedicated search of
such events. We leave this study for a future work as
it requires astrophysical considerations beyond this first
investigation. An isotropic angular distribution of the
bursts, signifying their cosmological origin, could also
be considered as evidence for the model. In case many
events were measured, it would be important to ensure
that there is no correlation with the mean cosmic-ray flux
(varying with the solar activity) at the satellite location.
Let us turn to something that has been observed.

III. FAST RADIO BURSTS

Fast Radio Bursts are intense isolated astrophysical
radio signals with a duration of milliseconds. A small
number of these were initially detected only at the Parkes
radio telescope [39–41]. Observations from the Arecibo
Observatory have confirmed the detection [42]. The fre-
quency of these signals is in the order of 1.3 GHz, namely
a wavelength of

�observed ⇠ 20 cm. (7)

These signals are believed to be of extragalactic origin,
mostly because the observed delay of the signal arrival
time with frequency agrees quite well with the dispersion
due to a ionized medium, expected from a distant source.
The total energy emitted in the radio by a source is esti-
mated to be of the order 1038 erg. The progenitors and
physical nature of the Fast Radio Bursts are currently
unknown [42].
There are three orders of magnitude between the pre-

dicted signal (5) and the observed signal (7). But the
black-to-white hole transition model is still very rough. It
disregards rotation, dissipative phenomena, anisotropies,
and other phenomena, and these could account for the
discrepancy.
In particular, astrophysical black holes rotate: one may

expect the centrifugal force to lower the attraction and
bring the lifetime of the hole down. In turn, this should
allow larger black holes to be exploding today, and signals
of larger wavelength. Furthermore, we have not taken the
astrophysics of the explosion into account. (The total
energy (3) available in the black hole according to the
theory is largely su�cient –9 orders of magnitude larger–
than the total energy emitted in the radio estimated by
the astronomers.)

Planck stars

BH-WH 
solutions
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Many incarnations of the idea… let’s pick the two most recent ones

GW? A generic prediction of regular black hole solutions like this 
seems to be the presence of a non-classical region beyond 

the trapping horizon. Can we test it by accurate 
measurement of BH mergers? (e.g. modified ringdown?)

Radio Burst?



Black hole echoes from near horizon structure

This implies that generically one should expect Late echoes 
after merging from near horizon Planck scale structure e.g. 

firewall, fuzzball. Afshordi 2016 claims detection in LIGO 
events at 2.9σ but more statistics needed…
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FIG. 1: Spacetime depiction of gravitational wave
echoes from a membrane/firewall on the stretched

horizon, following a black hole merger event.

tance only a↵ects the time of the echoes at 2� 3% level.
While �t

echo

is determined by linear physics, the time
between the main merger event and the first echo could
be further a↵ected by non-linear physics during merger,
i.e. t

echo

� t

merger

= �t

echo

+ O(M) (see Fig. 1), or
equivalently:

t

echo

� t

merger

�t

echo

= 1±O(1%), (1)

where �t

echo

is predicted from the final (redshifted) mass
and spin measurements for each event.

Quite surprisingly, we find statistical evidence for these
delayed echoes in LIGO events: GW150914, GW151226,
and LVT151012 at a combined significance of 2.9�. We
shall first describe our theoretical framework for the
echoes, and then our statistical methodology and results.

Echo time-delays: At the linear order, per-
turbed black holes are described by quasi-normal modes
(QNM’s) which satisfy the boundary conditions of purely
outgoing waves at infinity and purely ingoing waves at the
horizon. The transition (from ingoing to outgoing) takes
place continuously at the peak of the angular momentum
potential barrier of the black hole.

In our case, the ingoing modes of the ringdown re-
flect back from the membrane (e.g., fuzzball or firewall)
near horizon and passes back through the potential bar-
rier. Part of the wave goes to infinity with a time delay.
We call this the 1st echo (see Fig. 1). This time delay
corresponds to twice the tortoise coordinate distance be-
tween the peak of the angular momentum barrier (r

max

)
and the membrane (which diverges logarithmically if the
membrane approaches the horizon) . The remaining part
of the 1st echo returns back towards the membrane and
the process repeats itself. Assuming Dirichlet boundary
conditions at the membrane (discussed above), the re-

flected waves must be phase inverted, i.e. even echoes
have opposite phase with respect to the odd ones.
For a Kerr black hole with dimensionless spin param-

eter a, this implies:

�t

echo

= 2⇥ r⇤|rmax

r
+

+�r = 2⇥
Z r

max

r
+

+�r

r

2 + a

2
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2
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2

dr

= 2r
max

� 2r
+

� 2�r + 2
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2

+
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2
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2
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+
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ln(
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+
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)

�2
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2

� + a

2

M

2

r

+

� r�
ln(
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max

� r�
r

+

� r� +�r

),

(2)

where r± = M(1 ± p
1� a

2), and �r is the coordinate
distance of the membrane and the (would-be) horizon.
The peak of the angular momentum barrier, r

max

, is
given by the roots of a sixth-order polynomial [20]:

2r̂4
max

(r̂
max

� 3)2

+4r̂2
max

[(1� µ

2)r̂2
max

� 2r̂
max

� 3(1� µ

2)]a2

+(1� µ

2)[(2� µ

2)r̂2
max

+ 2(2 + µ

2)r̂
max

+(2� µ

2)]a4 = 0, (3)

where µ = m/(l + 1

2

) and r̂

max

= r

max

/M . For the
dominant QNM, r

max

< 3M and (l,m) = (2, 2) resulting
in µ = 0.8.
We further posit that the location of the membrane

should be near a Planck proper length from the horizon.
This assumption is required to explain the observed den-
sity of cosmological dark energy within the gravitational
aether proposal [10], but is also expected from generic
quantum gravity scalings, such as the brick wall model
[21], or trans-Planckian e↵ects [22, 23]. This implies:

Z r
+

+�r

r
+

p
grrdr|✓=0

⇠ lp ' 1.62⇥ 10�33 cm, (4)

which fixes the location of the membrane:

�r|✓=0

=

p
1� a

2

l

2

p

4M(1 +
p
1� a

2)
(5)

With this set-up, we note that �t

echo

'
8M log(M/lp)

⇥
1 +O(a2)

⇤
is comparable to the scram-

bling time: the time over which the black hole state is
expected to thermalize [8, 9, 24, 25].
Using the measurements of the final black hole (red-

shifted) mass and spin by the LIGO collaboration, we
can constrain �t

echo

for each merger event. Assuming
gaussian errors, we find (see the appendix):

�t

echo,I(sec) =

8
<

:

0.2925± 0.00916 I = GW150914
0.1013± 0.01152 I = GW151226
0.1778± 0.02789 I = LVT151012

(6)

Data and the Echo template: In this analysis, we
use three datasets for each event. One is the theoretical

Echoes from the Abyss!
• Late echoes from Planckian 

structure near horizon

Cardoso, et al. 16
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How to find the echoes?

• BH mass+spin predict the 
time-delay for Planck-scale 
echoes 

• Toy model for echo template

Echo Template

Abedi, Dykaar, & NA 2016, 2017

Cardoso et al. PRD94, 2016 
Afshordi et al 2016, 2017

Key point: If we consider a microscopic correction at the horizon 
scale (l ≪ M), then the main contribution to the time delay comes near 
the radius of the star and scales with the Log of (M/l). So for l~MP and 
LIGO observed BH

Objects with near horizon structure sat at l ≪ M are characterised by 
peaks in the effective potential felt by perturbations.

the logarithmic dependence implies that even Planckian 
corrections (l ≈MP= 2 × 10−33 cm) appear relatively soon after 
the main burst of radiation, so they might leave an observable 
imprint in the GW signal observed at late times.



Extra DimensionsModels with dimensional changes

Many searches at LHC

e.g. black hole production of  
lepton + jet at LHC in n=6 

ADD large ED scenarios,
𝑚𝑡ℎ = 𝑚𝐷

𝑚𝐷 > 5.3 𝑇𝑒𝑉

ATLAS, 1311.2006

Large extra dimensions
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Is gravity quantized?
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Lorentz violation

Lorentz deformation
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Dimension

Summary

So far no evidence of large extra 
dimensions at LHC or micro-gravity 

experiments
short scale precision tests of gravity confirm the inverse square law down to 56  μm
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δ = 2 large extra dimensions predict α = 4 for compactification

on a torus, which leads to the bound R < 218 µm. For δ > 2,

R is too small for deviations, due to extra dimensional gravity

to be detected in mechanical experiments.

Figure 1: Constraints on deviations from New-
ton’s gravitational force law. The allowed region
is below the dark solid lines. From Ref. 23.
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to TeV strength, which results in a different phenomenology

than in the case of large extra dimensions.

Extensions of this basic model allow for the SM fields to

propagate in the bulk [19,20] since R is small. In this case, the

masses of the bulk fermion, gauge, and graviton KK states are

related. A third parameter, associated with the fermion bulk

mass, is introduced and governs the 4d phenomenology.

An alternate possibility is RS2 [6]; here the SM fields are

assumed to live on the brane at y = 0, where the graviton

zero mode is concentrated, and the second brane is taken off to

infinity R → ∞. In this case, there is no mass gap in the bulk

KK modes, and their coupling to the SM fields on the y = 0

brane is much weaker than 1/MPl. The collider constraints are

investigated in Ref. 21, and cosmological constraints in Ref. 22.

Although this setup no longer provides a reformulation of the

hierarchy problem, it allows for a modification of gravity, poten-

tially giving signals in sub-mm gravitational force experiments.

III. Experimental constraints

Tests of the Gravitational Force Law

Deviations from the 4d inverse-square gravitational force

law may be observable in the case of large flat (ADD) extra

dimensions, or in the RS2 scenario. Gravity would obey Gauss’

Law in 3 + δ spatial dimensions for distances r < R with

V3+1+δ(r) =
−1

8π(2π)δ(MD)δ+2

m1m2

rδ+1
, (8)

while observing the usual (M
2
Plr)

−1 gravitational potential for

distances r > R. The experimental bounds on such devia-

tions [23] are displayed in Fig. 1, which shows the constraints

on the general form for the gravitational potential

V (r) = −GN
m1m2

r

(
1 + αe−r/λ

)
. (9)
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short scale precision tests of gravity confirm the inverse square law down to 56  μm
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Horava-Lifshitz gravity(Horava 0902.3657)  

Causal dynamical triangulations (Ambjorn et. al. hep-th/0505113)  

Relative locality (GAC et. al. 1311.3135)  

Loop quantum gravity (Modesto, 0812.2214, but not in GFT Calcagni 1311.3340)  

Causal Sets (Belenchia, Benincasa, Marcianò and Modesto, Phys. Rev. D 93, no. 4, 044017 (2016).  
(but see also Eichhorn, Mizera 1311.2530)  

Dimensional reduction has further been argued from WDW equation (Carlip 1009.1136) and general 
grounds (‘t Hooft 9310026) 

What about testing dimensional 
reduction in QG? 

evidence from

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

δ = 2 large extra dimensions predict α = 4 for compactification

on a torus, which leads to the bound R < 218 µm. For δ > 2,

R is too small for deviations, due to extra dimensional gravity

to be detected in mechanical experiments.

Figure 1: Constraints on deviations from New-
ton’s gravitational force law. The allowed region
is below the dark solid lines. From Ref. 23.
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to TeV strength, which results in a different phenomenology

than in the case of large extra dimensions.

Extensions of this basic model allow for the SM fields to

propagate in the bulk [19,20] since R is small. In this case, the

masses of the bulk fermion, gauge, and graviton KK states are

related. A third parameter, associated with the fermion bulk

mass, is introduced and governs the 4d phenomenology.

An alternate possibility is RS2 [6]; here the SM fields are

assumed to live on the brane at y = 0, where the graviton

zero mode is concentrated, and the second brane is taken off to

infinity R → ∞. In this case, there is no mass gap in the bulk

KK modes, and their coupling to the SM fields on the y = 0

brane is much weaker than 1/MPl. The collider constraints are

investigated in Ref. 21, and cosmological constraints in Ref. 22.

Although this setup no longer provides a reformulation of the

hierarchy problem, it allows for a modification of gravity, poten-

tially giving signals in sub-mm gravitational force experiments.

III. Experimental constraints

Tests of the Gravitational Force Law

Deviations from the 4d inverse-square gravitational force

law may be observable in the case of large flat (ADD) extra

dimensions, or in the RS2 scenario. Gravity would obey Gauss’

Law in 3 + δ spatial dimensions for distances r < R with

V3+1+δ(r) =
−1

8π(2π)δ(MD)δ+2

m1m2

rδ+1
, (8)

while observing the usual (M
2
Plr)

−1 gravitational potential for

distances r > R. The experimental bounds on such devia-

tions [23] are displayed in Fig. 1, which shows the constraints

on the general form for the gravitational potential

V (r) = −GN
m1m2

r

(
1 + αe−r/λ

)
. (9)
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Dimensional reduction has further been argued from WDW equation (Carlip 1009.1136) and general 
grounds (‘t Hooft 9310026) 

What about testing dimensional 
reduction in QG? 

evidence from

However, it looks like we need to get back to the very early universe to test this.  
We need a better strategy…
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Fifty shades of non-locality?



Non-locality as an alternative to symmetry 
breaking?

What about other mesoscopic physics without Lorentz violation? 

We do have concrete QG models of emergent gravity like Causal Sets or String Field Theory or Loop 
Quantum Gravity which generically seem to predict exact Lorentz invariance below the Planck scale 

in spite of (fundamental or quantum) discreteness at the price to introduce non-local EFT. 
Conjecture: Discreetness + Lorentz Invariance = Non-Locality

These theories involve a very subtle phenomenology very hard to constraint, still they do show novelties. 
Differently from UV Lorentz breaking physics it will be here a matter of PRECISION instead of HIGH ENERGIES…

Several forms of non-locality

Νon-local kinetic terms 
Non-local interactions 
DSR-like non-locality 

Disordered locality in LQG 
…



Non-local D’Alambertians
⇤ ! f(⇤)

Generic expectation if you want to introduce length or energy scale in flat spacetime 
KG equation without giving up Lorentz invariance.

⇤⇢ ⇡ ⇤+
↵
p
⇢
⇤2 +

�
p
⇢
⇤2 ln

✓
�

⇢
⇤2

◆
+ . . .Causal Set Theory

Concrete examples of kinematical non-locality 
respectively with non-analytic or analytic function. 
Also in CAUSET clear example that a correct continuous limit implies averaging and  

String Field Theory ⇤ ! (⇤+m2
) exp

⇤+m2

⇤2 ⇤ = 1/`nl

Belenchia, Benincasa, SL and Martin-Martinez, 
  ``Transmission of Information in Non-Local Field Theories,''  arXiv:1707.0165

`nl � `discr

⇢ = 1/`4nl



Non-local D’Alambertians

A typical signature of non-analytical non-local propagators are violations of the Huygen 
principle: The propagator of massless particles can have support inside the light cone in 3+1

Opportunity for Phenomenology
R. H. Jonsson, E. Martin-Martinez, and A. Kempf, Phys.Rev.Lett. 114, 110505 (2015).
Ana Blasco, Luis J. Garay, Mercedes Martin-Benito, Eduardo Martin-Martinez. Phys.Rev.Lett. 114 (2015) 14, 141103 
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KG equation without giving up Lorentz invariance.
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respectively with non-analytic or analytic function. 
Also in CAUSET clear example that a correct continuous limit implies averaging and  

String Field Theory ⇤ ! (⇤+m2
) exp

⇤+m2

⇤2 ⇤ = 1/`nl

Possibly very relevant for  
relativistic quantum information tests as detectors can influence 

each other at timelike separations
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FIG. 1. Di↵erent causal relationships between Alice and
Bob’s detectors switching periods. These cases are explicitly
specified in Table I. Recall that ⌘i⌫ ⌘ ⌘(Ti⌫), ⌘f⌫ ⌘ ⌘(Tf⌫).

z1 =
min (⌘fA +R, ⌘fB)

R
, z2 =

max (⌘iA +R, ⌘iB)

R
.

(11)

For simplicity, in Eqs. (7)-(8) we have already par-
ticularized the study to the case of zero-gap detectors,
⌦⌫ = 0. This choice is arbitrary and has no e↵ect on
our main results. Moreover, it is not uncommon to find
relevant atomic transitions between degenerate (or quasi-
degenerate) atomic energy levels, for example, atomic
electron spin-flip transitions.

Channel capacity.— Let us now compute the capac-
ity of a communication channel between an early Uni-
verse observer, Alice, and a late-time observer, Bob. To
obtain a lower bound to the capacity, we use a simple
communication protocol: Alice encodes “1” by coupling
her detector A to the field, and “0” by not coupling it.
Later, Bob switches on his detector B and measures its
state. If B is excited, Bob interprets a “1”, and a “0”
otherwise. The capacity of this binary asymmetric chan-
nel (i.e., the number of bits per use of the channel that
Alice transmits to Bob with this protocol) was proven to
be non-zero [5], no matter the level of noise, and it is

TABLE I. Cases of causal relationships. See Fig. 1.

Case Conditions
1 ⌘fB  ⌘iA +R

2 ⌘iB < ⌘iA +R < ⌘fB  ⌘fA +R

3 ⌘iB � ⌘iA +R, ⌘fB  ⌘fA +R

4 ⌘fB > ⌘fA +R > ⌘iB � ⌘iA +R

5 ⌘iB � ⌘fA +R

6 ⌘iB < ⌘iA +R, ⌘fB > ⌘fA +R
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FIG. 2. Channel capacity (in bits) and its �-term as func-
tions of (a) the spatial separation between Alice and Bob, for
TfA � TiA = TfB � TiB = �, TiA = �/30, and TiB = 10�,
(b) the temporal separation between Alice and Bob. In (b),
we vary TiB while keeping TfA � TiA = TfB � TiB = �
constant and we fix TiA = �/30 and R = �/10. Di↵erent
regions are labelled according to the case numbers of Fig. 1
and Table I. Since both detectors remain switched on during
the same amount of proper time, only cases 1 to 5 occur. The
violation of strong Huygens can be seen in region 5 (timelike
separation).

given, at leading order, by

C ' �2
A�

2
B

2

ln 2

✓
S2

4|↵B ||�B |
◆2

+O(�6
⌫). (12)

Figures 2a and 2b show the behavior of the channel ca-
pacity C. For comparison, we also display the channel
capacity in the conformally coupled case, C�. We have
selected initial detector states that, in our case, maxi-
mize the channel capacity (i.e. |↵A| = |�A| = 1/

p
2,

arg(↵A)� arg(�A) = ⇡, arg(↵B)� arg(�B) = ⇡/2).
Let us first analyze how the ability of Alice to signal

Bob depends on their time separation. From the �-term
of Eq. (6) we see that the information transmitted by
‘rays of light’ decays with the distance between A and B,
becoming negligible for long times. This yields the unsur-

Belenchia, Benincasa, SL and Martin-Martinez, 
  ``Transmission of Information in Non-Local Field Theories,''  arXiv:1707.0165

`nl � `discr

⇢ = 1/`4nl



Testing non-local EFT with optomechanical oscillators

Double Wheel Oscillator - DWO

New version of DWO with torsional joints in the central part that it is
used in the experiment.

1 - Front view of DWO (SEM image) with the central coating 2 - Back view DWO (SEM image) with the insulation
wheel

(INFN Gruppo Collegato Trento) HUMOR 05-07-2012 17 / 29

Heisenberg Uncertainty Measured with Opto-mechanical Resonators
HUMOR

actually find a length scale to which compare the non-locality one. Indeed
we would like to have

✏ =
l2
nl

�
,

where � is some length scale. One could think about the linear size of the
system or even the DeBroglie wavelength. However there is actually another
scale in the system that is the frequency of the oscillator. One could then
construct

m!

~ ⌘ 1

�
,

that moreover is the variance of the ground state of the oscillator. Then one
could identify

✏ =
m!

~⇤2

as the small dimensionless parameter in which doing the expansion.
NOTE:One could be tempted to do an expansion and a similar analysis

also in the free case, i.e. without a potential. In that case I don’t know what
paremeter could be identify for an expansion. This maybe is good, since in
that case we know that an expansion, with the corresponding truncation of
the operator will only introduce spurious corrections given the fact that a
solution of the local equation is solution also of the non-local one.

2.0.1 Some numbers

~ ⇡ 10�34Kgm2

s
Suppose

m = 1µg = 10�9Kg

and
! ⇡ 5 · 104Hz.

Then our parameter will be

✏ ⇡ 5 · 1029l2
nl

that means
✏⌧ 1, l

nl

⌧
p

2 · 10�14m

This is clearly reasonable since it means that the expansion is justified for a
non-locality scale below the fermi4.

4That however is the raw extimate of the causal set non-locality by Rafael. Note that
here we are not taking into account that model.

5

Designed to determine evolution of  <x>, <p> and variances. 

A. Belenchia, D. Benincasa, SL, F. Marin, F. Marino, A. Ortolan. 
Phys.Rev.Lett. 116 (2016) no.16, 161303  

Phys.Rev. D95 (2017) no.2, 026012

in the local limit (assuming a1 = 1).
In the SFT inspired case we explicitly have the non-local Schroedinger

operator
1X

n=0

1

n!

✓
�2m

~2

◆
n 1

⇤2(n�1)

| {z }
a

n

1

⇤2
Sn+1 ⌘ S

NL

. (5)

1.1 Quantum harmonic oscillator

We are interested1 in studying the following equation

(S
NL

� V ) �(t, x) = 0. (6)

Given the di�culty of resolving such an equation exactly we could try a
perturbative approach. In particular I will consider the following ansaz for
the ground state wave function

� = �0 + ✏�1, (7)

where �0 is the ground state for the local case and �1 is a perturbatively
small correction correction to it. Here the parameter that I am considering
as small2 is ✏ = 1

⇤2 . Given now the form of the non-local operator our
equation at the order ✏ gives

(S � V )�1 = �D�0| {z }
J (t,x)

, (8)

whereD =
P1

n=1 a
n

Sn+1. Now we have to solve the local Schodinger equation
for an harmonic oscillator with a source term dependent on the non-local
operator, the local ground state, space and time. For solving this we should
be able to use the Green function method, i.e.

�1(t, x) =

Z 1

�1
dx0

Z
t

�1
dt0

1

~K(x, t; x0, t0)J (x0, t0), (9)

where I am using the notation that can be found on Wikipedia for the Green
function of the quantum harmonic oscillator. Note the causal aspect of the

1In the following I will perform the calculations in 2D.
2Actually this is a dimensional parameter. Is it ok to use it as small parameter in the

perturbative expansion? Note that this is the non-locality scale that we were assuming
playing the game of the small parameter last time.
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E.g. let’s consider its non-relativistic limit of a non-local KG with analytic f( ). 
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So we get

Where can we test this?

In order to solve this, one needs to adopt 
a perturbative expansion around a 

“local” Sch. solution

With ϵ the small dimensionless 
parameter for this problem.
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And at the lowest order we can solve
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Spontaneous squeezing from non-locality
Let’s consider Wigner quasi probability distribution for a coherent state of our quantum harmonic oscillator,

and confront its evolution for a coherent state (easier to experimental realise than the ground state) in the case of

S and S+εS2

The Coherent state Wigner function 
shows a periodic almost perfect 

squeezing.

Very difficult to produce 

spontaneously…

P (x, p; t)
1

⇡

Z 1

�1
dy �(x+ y, t)⇤�(x� y, t) e2ipy

Current best bounds on the non-locality scale by comparing nonlocal relativistic EFTs to the 8 TeV LHC data lnl≤ 10−19m 

Forecast: with experiment in preparation (in absence of periodic squeezing) imply lnl≤ 10−29m !
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Wrapping up
Broken or deformed Symmetries 

• SUSY- So far no evidence at LHC 
• Lorentz - Ok Matter but n=4 needs GZK, more to do 

on Gravitational sector. Good perspectives 
• Translations - Done 
• GUP-Deformed Relativity?  

We need to understand it better!

Dimensions 
• Extra dimensions - No evidence at LHC 
• Dimensional reduction in QG - Only early Universe 

test? We need better ideas.

Modified gravitational 
dynamics 

• Bouncing Universes 
• Regular Black holes. 

Much work in progress especially on GW

Locality 

• QG induced non-locality 
Much work in progress.  
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