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Act I
in which we meet

Schwinger-Keldysh and Kubo-Martin-Schwinger 

and find a useful way to represent them…



SCHWINGER-KELDYSH FORMALISM

✦The Schwinger-Keldysh formalism computes singly out-of-time ordered 
correlation functions in a generic (mixed) state.

Consequentially we work in an enlarged Hilbert space H = HR ⌦ HL with the action (�

denoting the collection of fields)

S

SK

= S[�R]� S[�L] . (2.5)

It will be crucial in the sequel to note the relative sign between the two copies, which

is predicated by the fact that while states are evolved forward (in the Schrödinger picture

say), their conjugates are evolved in reverse under standard unitary Hamiltonian evolution.

In particular, computing correlation functions involves turning on sources for the operators

on both sides with a relative sign, or equivalently working with a Lorentzian inner-product

in the source operator space, viz.,

�S

SK

=

ˆ
d

d

x

p�g (JR OR � JL OL) . (2.6)

This feature is manifest in the definition of the SK path integral Z
SK

given in Eq. (2.1).

2.2 Topological limit

The second defining feature is a specific boundary condition imposed on the double copy

correlators [14]. Usually this is stated as a technical condition that right-right correlators

are all time-ordered, left-left correlators are all anti-time ordered and the left operators are

always ordered to the left of the right operators; see Eq. (2.2). While technically su�cient,

this way of framing is somewhat unwieldy to deal with. For example, it is not immediately

clear how or why such an ordering structure should be preserved under renormalization.

We will thus rephrase this feature in a more useful form for doing e↵ective theory. A

consequence of the time-ordering prescription given above is that a certain class of operators,

viz., the di↵erence operators Odif = OR � OL, in the doubled theory have vanishing self-

correlations.5 This is a manifestation of unitarity in the underlying QFT. In order to see this,

we first note that, according to Eq. (2.6), di↵erence operator correlators are computed by

aligning the sources JR = JL = J . Looking at Eq. (2.1), it is clear that the SK path integral

degenerates in this limit to a trace over initial state Tr (⇢0) if the evolution with arbitrary

sources is unitary.6

Typically it is hard to protect an entire set of correlation functions against correction

without some symmetry principle. We therefore intuit there is underlying topological sym-

metry in play, since the above structure is insensitive to the particularities of the dynamics

of the QFT under consideration.

5 This statement is very familiar in the context of two point functions, where the advanced, retarded and

the symmetric correlator form a complete basis. One can check that this statement extends trivially in the

case of higher point functions, noting that it is a consequence of a simple identity involving time-ordering of

operators [14]. This identity is sometimes called the Veltman’s largest time equation in the context of Cutkosky

cutting rules [15].
6 This shows that SK path integral is the right framework to study unitarity in the evolution of mixed

states. This is to be contrasted with the thermofield double description which studies path integrals of the form

Tr
n

U [JR] ⇢
1
2
0 U†[JL] ⇢

1
2
0

o

and is hence ill-suited for studying single copy unitarity unless it is analytically

continued to a SK path integral.

– 4 –

Consequentially we work in an enlarged Hilbert space H = HR ⌦ HL with the action (�

denoting the collection of fields)

S

SK

= S[�R]� S[�L] . (2.5)

It will be crucial in the sequel to note the relative sign between the two copies, which

is predicated by the fact that while states are evolved forward (in the Schrödinger picture

say), their conjugates are evolved in reverse under standard unitary Hamiltonian evolution.

In particular, computing correlation functions involves turning on sources for the operators

on both sides with a relative sign, or equivalently working with a Lorentzian inner-product

in the source operator space, viz.,

�S

SK

=

ˆ
d

d

x

p�g (JR OR � JL OL) . (2.6)

This feature is manifest in the definition of the SK path integral Z
SK

given in Eq. (2.1).

2.2 Topological limit

The second defining feature is a specific boundary condition imposed on the double copy

correlators [14]. Usually this is stated as a technical condition that right-right correlators

are all time-ordered, left-left correlators are all anti-time ordered and the left operators are

always ordered to the left of the right operators; see Eq. (2.2). While technically su�cient,

this way of framing is somewhat unwieldy to deal with. For example, it is not immediately

clear how or why such an ordering structure should be preserved under renormalization.

We will thus rephrase this feature in a more useful form for doing e↵ective theory. A

consequence of the time-ordering prescription given above is that a certain class of operators,

viz., the di↵erence operators Odif = OR � OL, in the doubled theory have vanishing self-

correlations.5 This is a manifestation of unitarity in the underlying QFT. In order to see this,

we first note that, according to Eq. (2.6), di↵erence operator correlators are computed by

aligning the sources JR = JL = J . Looking at Eq. (2.1), it is clear that the SK path integral

degenerates in this limit to a trace over initial state Tr (⇢0) if the evolution with arbitrary

sources is unitary.6

Typically it is hard to protect an entire set of correlation functions against correction

without some symmetry principle. We therefore intuit there is underlying topological sym-

metry in play, since the above structure is insensitive to the particularities of the dynamics

of the QFT under consideration.

5 This statement is very familiar in the context of two point functions, where the advanced, retarded and

the symmetric correlator form a complete basis. One can check that this statement extends trivially in the

case of higher point functions, noting that it is a consequence of a simple identity involving time-ordering of

operators [14]. This identity is sometimes called the Veltman’s largest time equation in the context of Cutkosky

cutting rules [15].
6 This shows that SK path integral is the right framework to study unitarity in the evolution of mixed

states. This is to be contrasted with the thermofield double description which studies path integrals of the form

Tr
n

U [JR] ⇢
1
2
0 U†[JL] ⇢

1
2
0

o

and is hence ill-suited for studying single copy unitarity unless it is analytically

continued to a SK path integral.

– 4 –

Generating functional

with the hydrodynamic fields being the Goldstone modes for spontaneously broken di↵erence

di↵eomorphism and flavour symmetries. For simplicity, we will only realize three of the eight

classes (including dissipation) in the eightfold classification of [13]. We also will demonstrate

the validity of the second law, by deriving the generalized fluctuation-dissipation result of

Jarzynski [35, 36] and Crooks [37, 38], invoking spontaneous breaking of microscopic time-

reversal as envisaged beautifully in [39–41]. The construction we describe in the main text

explicitly illustrates that the broad principles laid out in [32] su�ce to construct an e↵ective

field theory of dissipative hydrodynamics.

The rest of the paper is organized as follows: in §2 we outline the basic fields and

symmetries, arguing that a superspace functional is the easiest route to our goal. We explain

how these connect to the microscopic perspective in §3 and proceed to exhibit an explicit

construction for dissipative fluids in §4. We then demonstrate how to recover the generalized

fluctuation-dissipation statement in §5 and end with some comments in §6. We only sketch

the basic principles here; full details of the construction will appear elsewhere [42].

Note: Following [32], as this work was in progress, we received [43] who also construct an

action for dissipative hydrodynamics based on principles of SK path integrals.

2 Symmetries in SK description

We begin by examining the fundamental symmetries of a SK path integral. Given an initial

density matrix ⇢̂
initial

of a QFT, we define the SK generating functional

ZSK [JR, JL] ⌘ Tr
n

U [JR] ⇢̂
initial

(U [JL])
†
o

. (2.1)

U [J ] denotes the unitary evolution of the QFT, deformed by a source J . This form of SK

functional immediately leads to a set of essential properties which should be satisfied by any

SK e↵ective theory [32].

Features for generic mixed states: First, when we align the sources JR = JL = J , the

SK functional localizes to ⇢̂
initial

, viz.,

ZSK [JR = JL = J ] ⌘ Tr
n

⇢̂
initial

o

. (2.2)

This is a simple consequence of the unitarity of the underlying QFT. At the level of correlators,

this implies that the di↵erence operators, OR � OL, form a protected topological subsector

of the theory. This statement is equivalent to the largest time equation/cutting rule for the

corresponding correlator in the single copy theory. Thus imposing (2.2) in the low-energy

e↵ective theory ensures the cutting rule structure for its correlators.

This feature can be implemented in the SK e↵ective theory by demanding that when

sources align appropriately, the theory should exhibit topological invariance. Equivalently,

any SK e↵ective theory should be a source-deformed topological theory (TQFT). Such a

TQFT has two nilpotent, mutually anti-commuting, Grassmann odd topological charges
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Time ordered correlations

evolution operators with a suitable sprinkling of both right and left sources JR and JL re-

spectively. Then one can via functional di↵erentiation with respect to these sources computes

the SK correlation functions, which take the schematic form:

Tr
⇣

⇢̂initial T̄
⇣

U †OLU
†OL . . .

⌘

T (UORUOR . . .)
⌘

, (3.5) eq:SKCorr

where T̄ denotes anti-time ordering, T denotes time-ordering and we note that left operators

are ordered to the left of the right operators (thus justifying the terminology). We will have

more to say about the SK time-ordering prescription momentarily.

The SK description should be contrasted against the more familiar Feynman path-integral

description of the QFT

ZFeynman[J ] ⌘ hVaccumt=1| U [J ] |Vaccumt=�1i , (3.6)

which computes time-ordered correlators of the form4

hVaccumt=1| T
⇣

UbOUbO . . .
⌘

|Vaccumt=�1i . (3.7)

As noted in §2 in a non-equilibrium or open quantum system have an inkling of what the

interacting final state of the system would be. The SK construction cleverly avoids this issue,

by reverting back at the end of the day to the initial state. This ensures that the entanglement

built into the initial density matrix ⇢̂initial, and the knowledge of the sources that one has

turned on, su�ces to compute the desired time ordered correlators.

3.2 Schwinger-Keldysh time ordering
sec:torder

check my usage of FO andGO. I think I fixed some erroneous statements, but would appreciate

a second check.

We now introduce a notion of SK time-ordering, which follows the contour ordering

prescription introduced in §2. To allow a general statement, let us first introduce the concept

of mutual Grassmann parity of operators. To so we first introduce the notion of a Grassmann

number for an operator (�1)GO, which is defined to be

(�1)GO =

(

+1 , O : Grassmann even

�1 , O : Grassmann odd
(3.8) eq:GOdef

In addition to the Grassmann number it is also useful to keep track on occasion of the

fermion number, which we denote (�1)FO. We define this as

(�1)FO =

(

+1 , O : bosonic

�1 , O : fermionic
(3.9) eq:FOdef

4 A note on our convention: operators of the original single copy microscopic theory are hatted, while the

doubled operators are denoted explicitly by appropriate subscripts. These operators could be either elementary

fields of the microscopic theory or more generally composite operators built from them.
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�R

�L

density matrix
turning point  

identity operator



THERMAL DENSITY MATRICES & KMS CONDITION

✦Thermal density matrices                            define stationary equilibrium 
configurations. 

✦Correlation functions have analyticity properties which allows for a 
Euclidean (Matsubara) formulation, cf.,

4 Thermal correlation functions in SK formalism

sec:skthemal

Our discussion thus far has focused on an initial density matrix ⇢̂initial which was arbitrary.

The initial state of the quantum system is mainly setting up for us an appropriate entangle-

ment pattern for the degrees of freedom in H. With this information we can only go as far

as the discussion in §3.
However, not all density matrices are created equal, with some being more special than

others. In what follows we will switch our focus on to thermal density matrices which enjoy

some nice properties. To understand these, let us start by considering a QFT at finite

temperature T . Should our theory contain some global symmetries we can also include some

chemical potentials. One thus is considering the state of the system to be a Gibbs density

matrix, which gives the probabilities to find states with a given energy and charge: � or �?

⇢̂T = e�� (bH�µI
bQI) (4.1)

Here bH is the Hamiltonian for the quantum theory and bQ the flavour charge operator. We

have chosen not to normalize the density matrix; the trace over the states then gives us the

thermal partition function

ZT (�, µI ) = Tr (⇢̂T ) (4.2) eq:thermalZ

Usually one discusses thermal field theories in Minkowski spacetime Rd�1,1. One fur-

thermore, makes heavy use of the connection between thermal quantum field theories in

d-spacetime dimensions and classical statistical mechanics in (d� 1) dimensions by realizing

the operator ⇢̂T as performing Hamiltonian evolution in imaginary time tE by an amount set

by the inverse temperature �. The role of the chemical potential then is to twist the charge

fields by an amount set by the charge as they are taken around this imaginary Euclidean

time.10

With this information we are now ready to understand the thermal boundary conditions

implicit in ⇢̂T . For any single-copy operator lying on the initial time slice ⌃M we require

that the Kubo-Martin-Schwinger (KMS) periodicity condition [21, 22], be satisfied.11 The

KMS condition says that bosonic operators are periodic under traversal of the thermal circle

while fermionic operators are anti-periodic. We will now try to capture this information in a

covariant form that will be useful in the sequel.

4.1 Thermal equilibrium in stationary curved spacetimes
sec:styT

However, insofar as thermal equilibrium is concerned, all one requires is that the system be

stationary – one does not require a globally constant temperature or chemical potentials. To

10 In classical statistical mechanics, the operator ⇢̂T serves to determine the transfer matrix and the only

information necessary to determine it are the Boltzmann weights, which give the relative probabilities for the

occurrence of various energy levels.
11 This condition was first discussed independently in papers by Kubo [21] and by Martin-Schwinger [22].

However, the name was coined a bit afterward by Haag et. al., [23] who applied this idea in the context of

defining equilibrium configurations in axiomatic QFT.
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ZT [JR,JL] = Tr
⇣
U [JR] ⇢̂T (U [JL])

†
⌘

✦KMS condition asserts that the correlation functions are analytic in the 
time strip                          .  

✦This can be rephrased as a thermal Ward identity for correlation functions 
which involve operators shifted by a imaginary thermal period.

0 < =(t) < �

t
0

+ i("� �
0

)

t
0

t
0

+ i"
C OR

OL

Figure 3. SK time contour in thermal physics, where the initial state is a thermal state with an
entanglement pattern encoded in a Euclidean partition function. The starting and end points of the
contour are identified. The associated Euclidean (imaginary time) periodicity is set by the inverse
temperature �0. fig:contour3

path integral. Performing a field redefinition we pass onto the average-di↵erence basis:
 

�av

�
dif

!

=

 

1

2

(�R + �L)

�R � �L

!

,

 

Jav

Jdif

!

=

 

1

2

(JR + JL)

JR � JL

!

. (2.12)

The generating functional then becomes

Z[Jav(x),Jdif (x)] = h⌦|TC ei
´ t=1
t=�1 L[�av+

1

2

�

dif
]�L[�av�

1

2

�

dif
]+Jav(x)�dif

+Jdif (x)�av |⌦i .
(2.13)

The main fact we wish to highlight is that the di↵erence source Jdif (x) generates the response

as a functional of the physical average field �av(x), while the average/common source Jav(x)

in turn does the same for the di↵erence or fluctuation field �
dif

(x).

With future applications in mind, we briefly mention the special case of thermal initial

conditions. For systems starting their evolution in a thermal state with inverse temperature

�
0

at time t
0

, the time contour can be illustrated as in Fig. 3. This presentation of the

contour, which is necessary to consistently take into account initial state correlations, is

sometimes referred to as Kadano↵-Baym contour. That is, the thermal state generated by

some Hamiltonian bH
0

is described by an un-normalized initial density matrix ⇢̂T = e��0bH0 .

Such a state readily allows for a Euclidean description in terms of a partition function

ZT (�0) = Tr
⇣

e��0bH0

⌘

. (2.14)

It is then clear that such a Euclidean path integral codifies the correlations (or the entangle-

ment pattern) of the initial state, and it corresponds to a Euclidean segment of evolution in
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TWO SUM RULES

✦  Unitarity of Schwinger-Keldysh path integral implies vanishing difference 
operator correlators:

live in this extended space of states. The main caveat is that not all elements of HR⌦H⇤
L can

be normalized to give a mixed state whereas any non-zero element of H can be normalized

to a pure quantum state; recall that density matrix ⇢̂ of an admissible mixed state should be

(i). Hermitian with non-negative eigenvalues

(ii). should have non-zero but finite trace (which can then be normalized to unity).

We adapt a notation wherein standard operators on H (which are automatically elements

of HR ⌦H⇤
L ) by a hat. On the contrary there will be no hats on SK operators which act on

the entire space HR ⌦ H⇤
L. Operators in the extended system are sometimes referred to as

superoperators. some reference

Let Ô 2 HR ⌦H⇤
L be an operator acting on the state space H: we can then construct two

corresponding superoperators acting on HR ⌦H⇤
L of the form

OR ⌘ bO ⌦ I , OL ⌘ I ⌦ bO (3.1)

As described in §2 often one performs a Keldysh rotation to instead work with the di↵erence

and average operators defined via:

Odif ⌘ OR � OL , Oav ⌘ 1

2
(OR + OL) (3.2) eq:KeldyshDef

We note that, after Keldysh rotation the average sources are associated with di↵erence op-

erators and the di↵erence sources are associated with average operators. This a consequence

of the following relation relating right-left basis to Keldysh basis:

JR OR � JL OL = Jav Odif + Jdif Oav . (3.3) eq:KeldyshJ

One may view the statement as saying that the SK contour imparts a Lorentzian inner product

between the left and right segments, and the passage to the Keldysh basis is akin to choosing

light-cone variables. In any event, varying the SK action with respect to average sources gives

the correlators with di↵erence operators and vice-versa.

We should note here that in much of the literature the Keldysh basis introduced in (3.2)

is called the ‘ra’ basis. The average operators are called the r�operators and the di↵erence

operators are called a-operators. We find this terminology less intuitive. Moreover, when we

discuss thermal correlation functions, for ⇢̂initial being a thermal Gibbs density matrix, we

will encounter the retarded-advanced basis (we use ret � adv to denote them). To forestall

any potential confusion, we propose to refer the Keldysh basis as av � dif operators.

With these preliminaries in place let us define the SK generating functional ZSK which

is defined by the trace over the tensor product Hilbert space HR ⌦H⇤
L

ZSK [JR,JL] ⌘ Tr
⇣

U [JR] ⇢̂initial U
†[JL]

⌘

, (3.4) eq:ZSKdef

where ⇢̂initial is the initial density matrix of the system, U represents the unitary evolution

operator of the QFT, U † is its adjoint. We have allowed ourselves to deform the unitary
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✦  Keldysh (light-cone) basis

It is usual to give a regularizing prescription for what happens when the causal order

is indeterminate. In addition it is natural to demand that whatever the prescription be, it

should continue to obey the identity above (3.14).

Some of the commonly used regularizing prescriptions when the causal order is indeter-

minate are (Check this)

Itō : ⇥A>B = 1, ⇥A<B = 0.

(Fisk-) Stratonovich : ⇥A>B =
1

2
, ⇥A<B =

1

2
.

Hanggi- Klimentovich : ⇥A>B = 0, ⇥A<B = 1.

(3.15)

Since Stratanovich prescription is natural from the viewpoint of Fourier transforms and it is

a CPT invariant regulator, we will employ it in what follows. We then have ⇥A>B = ⇥A<B

everywhere.7

3.4 Keldysh basis correlators
sec:keldysh

We now have all the machinery to give an explicit formula for the Keldysh basis correlators

following [4]. The simplest correlator is the one containing only di↵erence operators and it

vanishes identically, viz.,

hTSK
Y

k

O(k)
dif

i ⌘ hTSK
Y

k

⇣

O(k)
R � O(k)

L

⌘

i ⌘ hTSK
Y

k

O(k)
advi = 0 (3.16) eq:diff0

This is in fact easy to see directly from the definition of the generating function ZSK [JR,JL].

First one notes that the di↵erence operators are sourced by the average sources Jav , which

means that we can w.l.o.g. set JR = JL in the generating function before taking any functional

derivatives. However, ZSK [J ,J ] = Tr (⇢̂initial), owing to the cyclicity of the trace.

Thus we learn that the functional derivative of this result will vanish, simply asserting

that the SK-path integral is unresponsive to a set of average sources, for it collapses to a

statement of initial conditions. It must be emphasized that this fact holds independent of the

dynamics, which after all, is contained in the unitary evolution operator U . The universality

of this statement, points to a fundamental symmetry principle. We will argue later that the

SK path integral behaves like a topological theory when restricted to this sector. In particular,

the di↵erence operators will be shown to be BRST exact, with the symmetry being traceable

back a set of field redefinitions inherent in the doubling from H to HR ⌦H⇤
L.

should we draw an analogy or make a connection with MHV amplitudes?

7 Sometimes for generalized Langevin theory in non-equilibrium physics and often in stochastic mathematics

(including mathematical finance) the Itō prescription is preferred. CPT exchanges Itō and Hanggi- Klimen-

tovich prescriptions and thus the CPT-violating nature of Itō has to then be compensated by CPT-violating

counter terms (as is usual with any symmetry violating regulator). The ghosts we will talk about later in this

text often decouple in the Itō prescription which is the probably the reason it is preferred in fields which do

not want to deal with ghosts.
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Some of the commonly used regularizing prescriptions when the causal order is indeter-

minate are (Check this)

Itō : ⇥A>B = 1, ⇥A<B = 0.

(Fisk-) Stratonovich : ⇥A>B =
1

2
, ⇥A<B =

1

2
.

Hanggi- Klimentovich : ⇥A>B = 0, ⇥A<B = 1.

(3.15)

Since Stratanovich prescription is natural from the viewpoint of Fourier transforms and it is

a CPT invariant regulator, we will employ it in what follows. We then have ⇥A>B = ⇥A<B

everywhere.7

3.4 Keldysh basis correlators
sec:keldysh

We now have all the machinery to give an explicit formula for the Keldysh basis correlators

following [4]. The simplest correlator is the one containing only di↵erence operators and it

vanishes identically, viz.,

hTSK
Y

k

O(k)
dif

i ⌘ hTSK
Y

k

⇣

O(k)
R � O(k)

L

⌘

i ⌘ hTSK
Y

k

O(k)
advi = 0 (3.16) eq:diff0

This is in fact easy to see directly from the definition of the generating function ZSK [JR,JL].

First one notes that the di↵erence operators are sourced by the average sources Jav , which

means that we can w.l.o.g. set JR = JL in the generating function before taking any functional

derivatives. However, ZSK [J ,J ] = Tr (⇢̂initial), owing to the cyclicity of the trace.

Thus we learn that the functional derivative of this result will vanish, simply asserting

that the SK-path integral is unresponsive to a set of average sources, for it collapses to a

statement of initial conditions. It must be emphasized that this fact holds independent of the

dynamics, which after all, is contained in the unitary evolution operator U . The universality

of this statement, points to a fundamental symmetry principle. We will argue later that the

SK path integral behaves like a topological theory when restricted to this sector. In particular,

the di↵erence operators will be shown to be BRST exact, with the symmetry being traceable

back a set of field redefinitions inherent in the doubling from H to HR ⌦H⇤
L.

should we draw an analogy or make a connection with MHV amplitudes?

7 Sometimes for generalized Langevin theory in non-equilibrium physics and often in stochastic mathematics

(including mathematical finance) the Itō prescription is preferred. CPT exchanges Itō and Hanggi- Klimen-

tovich prescriptions and thus the CPT-violating nature of Itō has to then be compensated by CPT-violating

counter terms (as is usual with any symmetry violating regulator). The ghosts we will talk about later in this

text often decouple in the Itō prescription which is the probably the reason it is preferred in fields which do

not want to deal with ghosts.
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✦Furthermore, a largest time and thermal smallest time equations hold.

✦The KMS condition translates into a second sum rule for thermal 
differences:

Weldon ’05KMS conjugate ÕL are equivalent in correlation functions. The SK construction requires that

the correlation functions of di↵erence operators OR � OL vanishes, (3.16). Using OL = ÕL

inside correlation functions one immediately concludes that

hTSK
n
Y

k=1

⇣

O(k)
R � Õ(k)

L

⌘

i = 0 (4.19) eqdiff1

One can check that this statement is compatible with our earlier statement phrased in terms

of two-point functions (4.6). The general statement may of course be derived directly from

there; a clear statement worded in terms of thermal sum rules appears in [19].

4.4 The retarded-advanced basis
sec:retadv

One consequence of the KMS condition which relates operators related by a thermal trans-

lation, is that one expects the set of identities (??) hold in correlation functions. These sum

rules which have been derived for example in [19] can be succinctly stated by working in yet

another basis of operators. This new basis is called the retarded-advanced basis, which is

sometimes also referred to as the RA basis.13 It is defined by the the linear combination of

the SK operators , OR,OL and their KMS shifted counterparts ÕL. Without loss of generality

we make the choice:

Oadv ⌘ OR � OL , Oret ⌘
1

1� (�1)FOe�i��

⇣

OR � (�1)FOe�i�� OL

⌘

. (4.20) eq:RADef

Note that the retarded operator Oret is actually defined with an inverse of �� , so it should

actually be thought of as a solution to the di↵erential equation

i��Oret = OR � (�1)FOe�i�� OL (4.21)

which is solved with some initial condition. We will choose our initial conditions to be

Oret(t = ti) = OR(t = ti) = OL(t = ti) = bO(t = ti)

Oadv(t = ti) = OR(t = ti)� OL(t = ti) = 0 .
(4.22)

It is a common practice to explicitly include the statistics of the operator in question

in the definition. Recall that, for thermal correlation functions we should include the cor-

rect distribution function for bosons or fermions (which follows in turn from the periodicity

conditions). This may be done by introducing another di↵erential operator corresponding to

Bose-Einstein or Fermi-Dirac distribution

f� ⌘ 1

ei�� � (�1)F
. (4.23) eq:fDef

13 As noted after Eq. (3.3), the Keldysh basis itself in some circles is referred to as the ra basis. We

understand that this nomenclature originates from some historical confusion about the connections between

the two bases. We will avoid this confusion altogether by sticking to the usage of ‘retarded-advanced’ basis.
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hTSK
nY

i=1

Oreti = 0

i��Oret = OR � e�i�� OL✦  Adv-Ret basis

The KMS condition demands that the operators e�i �� bO(t) and bO(t) be equivalent within
correlation functions, modulo a statistics factor. Recalling that bosons are periodic and

fermions anti-periodic under rotation by a period �, we can write:

��
bO = 0 , where i�� ⌘ 1� (�1)Fe�i��

, (2.5)

where (�1)F denotes the fermion number operator. We will frequently refer to �� as a

thermal translation operator; it measures deviation from the KMS condition. We also found

it useful to define an operator LKMS which acts through a commutator action on the operator

algebra to implement �� , viz.,
h

LKMS ,
bO
i

±
= ��

bO.4

The KMS condition leads to a set of Ward identities for thermal correlation functions,

which can be understood in terms of a second pair of BRST charges {QKMS ,QKMS}. These
are nilpotent carrying ghost numbers gh(QKMS ) = +1 and gh(QKMS ) = �1. They generate

imaginary time thermal translations and can be thought of as the Grassmann-odd superpart-

ners of LKMS . Rounding o↵ the structure is a fourth Grassmann-even generator Q0

KMS
.

These four KMS charges are easily understood as a super-derivation extending the opera-

tor�� to be compatible with the SK BRST symmetry. Indeed, while the four Grassmann-odd

generators {QSK ,QSK ,QKMS ,QKMS} follow from simple considerations of SK path integrals

and the KMS condition, the remaining operators {Q0

KMS
,LKMS} simply ensure closure of

the thus generated algebra. The action of these charges can be understood easily by basis

rotating the quadruplet in (2.3) to define the retarded and advanced combinations

O
adv

⌘ OR � OL , O
ret

⌘ 1

1� (�1)FO
e

�i��

⇣

OR � (�1)FO
e

�i�� OL

⌘

. (2.6)

In this basis, the action of the fermionic supercharges can be summarized schematically as

O
ret

OG O
G

O
adv

QSK Q

SK

Q

SK �QSK

O
adv

��OG ���O
G

����O
ret

QKMS Q

KMS

Q

KMS
�QKMS

(2.7)

where arrows indicate action via graded commutator, e.g., [QSK ,Oret

]± = OG etc.. We refer

the reader to [1] for derivations and details.

4 Our conventions are described in [1]. In particular, we will often make use of the graded commutator

defined as [A,B]± = AB � (�)AB BA, where (�)AB denotes the mutual Grassmann parity of the entries A

and B respectively.
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THE SCHWINGER-KELDYSH SUPER-QUARTET
In what follows it will be useful to keep track of ghost number for various operators.

The physical operators bO and their SK counterparts have zero ghost number. We will choose

to assign ghost number ±1 to OG and O
G

respectively. Ghost number conservation then

demands a compatible assignment to the supercharges. We make the following choice

gh(OG) = gh(QSK ) = +1 , gh(O
G
) = gh(QSK ) = �1 , (6.5) eq:ghnum

The action of the supercharges can be usefully captured in a diagrammatic form, viz.,

OR,OL

OG O
G

OR � OL

QSK Q
SK

Q
SK �QSK

(6.6) eq:qskaction

with the understanding QSK and QSK maps should be interpreted as a commutator action.

The one peculiarity of our ghost number assignment is that it increases right to left on

this diagram. While we have denoted both OL and OR on the top row, it is clear that both of

then are an overkill, and we could equivalently resort to the Keldysh basis of av-dif operators.

In the Keldysh basis, the action of the supercharges can be checked to take the form

[QSK ,Oav ]± = OG , [QSK ,OG ]± = 0,
⇥

QSK ,OG

⇤

±
= �Odif ,

⇥

QSK ,Odif

⇤

±
= 0 ,

⇥

QSK ,Oav

⇤

±
= O

G
,

⇥

QSK ,OG

⇤

±
= 0,

⇥

QSK ,OG

⇤

±
= Odif ,

⇥

QSK ,Odif

⇤

±
= 0 .

(6.7) eq:QSKdefKeld

The commutation relations make it clear in either case that Odif is both QSK and QSK exact,

thus assuring that their correlation functions vanish. In either presentation, is easy to check

that

Q2
SK

= Q2
SK

=
⇥

QSK ,QSK

⇤

±
= 0 (6.8) eq:qsksq

We note that the ghost operators O
G
and OG occur naturally as the ghosts corresponding to

the right-left symmetric shift generated by the SK supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Qby requiring

that it perform a gauge transformation of the physical fields in along the ghost. With the

ghost number assignment as in (6.5) we have an alignment in the charge assignment of the

BRST operator and the ghost field. The partner anti-ghost field comes with an opposite

ghost charge, to ensure that we have a net vanishing of ghost number for terms that appear

in the action. Equivalently, when we exponentiate the Jacobian arising from the gauge fixing

condition, we have a pair of ghosts with equal and opposite ghost number; only one of them is

chosen to be obtained by gauge transforming the physical fields. Clearly there is an analogous

construction where we should invoke a BRST transformation in the anti-ghost direction, Q̄.
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✦Difference operator correlation functions vanish because they are trivial 
elements of a BRST cohomology. 

✦There exists a pair of Grassmann odd charges which act on the doubled 
operator algebra.  

✦The SK theory is covariantly expressed in terms of a quartet of fields, 
which usual doubled formalism being a gauge  fixed version (ghosts =0).

CGL argue that this should only be interpreted 
as a single supercharge   , but the pair above 
are CPT conjugates (cf., anti-BRST).

�



THE KMS SUPERCHARGES: I

✦The second sum rule suggests an analogous structure should pertain in 
the thermal sector, with new supercharges aligned to the thermal 
translations.

The KMS condition demands that the operators e�i �� bO(t) and bO(t) be equivalent within
correlation functions, modulo a statistics factor. Recalling that bosons are periodic and

fermions anti-periodic under rotation by a period �, we can write:

��
bO = 0 , where i�� ⌘ 1� (�1)Fe�i��

, (2.5)

where (�1)F denotes the fermion number operator. We will frequently refer to �� as a

thermal translation operator; it measures deviation from the KMS condition. We also found

it useful to define an operator LKMS which acts through a commutator action on the operator

algebra to implement �� , viz.,
h

LKMS ,
bO
i

±
= ��

bO.4

The KMS condition leads to a set of Ward identities for thermal correlation functions,

which can be understood in terms of a second pair of BRST charges {QKMS ,QKMS}. These
are nilpotent carrying ghost numbers gh(QKMS ) = +1 and gh(QKMS ) = �1. They generate

imaginary time thermal translations and can be thought of as the Grassmann-odd superpart-

ners of LKMS . Rounding o↵ the structure is a fourth Grassmann-even generator Q0

KMS
.

These four KMS charges are easily understood as a super-derivation extending the opera-

tor�� to be compatible with the SK BRST symmetry. Indeed, while the four Grassmann-odd

generators {QSK ,QSK ,QKMS ,QKMS} follow from simple considerations of SK path integrals

and the KMS condition, the remaining operators {Q0

KMS
,LKMS} simply ensure closure of

the thus generated algebra. The action of these charges can be understood easily by basis

rotating the quadruplet in (2.3) to define the retarded and advanced combinations

O
adv

⌘ OR � OL , O
ret

⌘ 1

1� (�1)FO
e

�i��

⇣

OR � (�1)FO
e

�i�� OL

⌘

. (2.6)

In this basis, the action of the fermionic supercharges can be summarized schematically as

O
ret

OG O
G

O
adv

QSK Q

SK

Q

SK �QSK

O
adv

��OG ���O
G

����O
ret

QKMS Q

KMS

Q

KMS
�QKMS

(2.7)

where arrows indicate action via graded commutator, e.g., [QSK ,Oret

]± = OG etc.. We refer

the reader to [1] for derivations and details.

4 Our conventions are described in [1]. In particular, we will often make use of the graded commutator

defined as [A,B]± = AB � (�)AB BA, where (�)AB denotes the mutual Grassmann parity of the entries A

and B respectively.
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Q2
KMS

= Q2

KMS
=

⇥
QKMS ,QKMS

⇤
±
= 0

[QKMS ,Oret]± =
⇥
QKMS ,Oret

⇤
±
= 0

CGL posit that the KMS condition should be 
viewed as an involution leading to a second 
supercharge    .�̄



THE SK-KMS ALGEBRA

The six operators {QSK ,QSK ,QKMS ,QKMS ,LKMS ,Q0

KMS
} satisfy the following algebra

(which one can deduce from the above diagrams):

Q2

SK
= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
⇥QSK ,QKMS

⇤

±
=

⇥QSK ,QSK

⇤

±
=

⇥QKMS ,QKMS

⇤

±
= 0 ,

⇥QSK ,QKMS

⇤

±
=

⇥QSK ,QKMS

⇤

±
= LKMS , (2.8)

⇥QKMS ,Q0

KMS

⇤

±
=

⇥QKMS ,Q0

KMS

⇤

±
= 0 ,

⇥QSK ,Q0

KMS

⇤

±
= QKMS ,

⇥QSK ,Q0

KMS

⇤

±
= �QKMS .

We refer to this as the SK-KMS superalgebra. The goal of our present discussion is to obtain

insight into this algebraic structure. We will see that the natural language for this exploration

is terms of a graded algebra, with the grading being provided by the ghost number charge.

This leads us then into the study of equivariant cohomological algebras which arise in this

context, and extend the above structure mildly by making the KMS symmetries act locally.

2.2 A superspace description

An extremely convenient way to view the KMS superalgebra (2.8) is to express the operations

directly in superspace. The superspace we need is a simple one with two Grassmann odd

coordinates denoted ✓, ✓̄. We will take them to have equal and opposite ghost number, with

gh(✓) = +1.5

The quadruplet of operators {O
ret

,OG ,OG
,O

adv

} associated with a single-copy operator bO
are encapsulated into a single SK-superfield. Working in the adv-ret basis introduced above,

we define the associated super-operator as:6

O̊ ⌘ O
ret

+ ✓ O
G
+ ✓̄ OG + ✓̄✓ O

adv

. (2.9)

In the previous subsection we have reviewed the BRST charges {QSK ,QSK} and a quadru-

plet of KMS translation generators {QKMS ,QKMS ,LKMS ,Q0

KMS
}. All these act on the oper-

ator algebra via graded commutators. We will now describe the identical structure in terms

of superspace derivations, which act on components of covariant superfields. As will be-

come clear later, superspace provides a very e�cient tool for encoding the relevant algebraic

structures.

• In superspace, the action of {QSK ,QSK} is realized as derivations along the Grassmann-

odd directions; these operators implement super-translations:

QSK �! @

¯

✓

, QSK �! @

✓

, (2.10)

5 We emphasize that the BRST symmetries are cohomological in nature. When we refer to superspace or

supersymmetry we refer to such structures and not to standard supersymmetric field theories. Our superco-

ordinates therefore are Lorentz scalars and carry no Lorentz spin labels.
6 Following [26] we will use an accent “̊ ” to denote superfields. We will elaborate on superspace conventions

further in §4 and §5.1.
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✦The SK and KMS operations (Grassmann odd) form a closed super 
algebra with further two Grassmann even operations 

✦One the even operations is a thermal translation: Lie drag along the 
Euclidean thermal circle. 



SUPERSPACE CHARGES

✦The structure is easily understood by passing onto a superspace 
construction, where the SK charges act as superderivations.

The six operators {QSK ,QSK ,QKMS ,QKMS ,LKMS ,Q0

KMS
} satisfy the following algebra

(which one can deduce from the above diagrams):

Q2

SK
= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
⇥QSK ,QKMS

⇤

±
=

⇥QSK ,QSK

⇤

±
=

⇥QKMS ,QKMS

⇤

±
= 0 ,

⇥QSK ,QKMS

⇤

±
=

⇥QSK ,QKMS

⇤

±
= LKMS , (2.8)

⇥QKMS ,Q0

KMS

⇤

±
=

⇥QKMS ,Q0

KMS

⇤

±
= 0 ,

⇥QSK ,Q0

KMS

⇤

±
= QKMS ,

⇥QSK ,Q0

KMS

⇤

±
= �QKMS .

We refer to this as the SK-KMS superalgebra. The goal of our present discussion is to obtain

insight into this algebraic structure. We will see that the natural language for this exploration

is terms of a graded algebra, with the grading being provided by the ghost number charge.

This leads us then into the study of equivariant cohomological algebras which arise in this

context, and extend the above structure mildly by making the KMS symmetries act locally.

2.2 A superspace description

An extremely convenient way to view the KMS superalgebra (2.8) is to express the operations

directly in superspace. The superspace we need is a simple one with two Grassmann odd

coordinates denoted ✓, ✓̄. We will take them to have equal and opposite ghost number, with

gh(✓) = +1.5

The quadruplet of operators {O
ret

,OG ,OG
,O

adv

} associated with a single-copy operator bO
are encapsulated into a single SK-superfield. Working in the adv-ret basis introduced above,

we define the associated super-operator as:6

O̊ ⌘ O
ret

+ ✓ O
G
+ ✓̄ OG + ✓̄✓ O

adv

. (2.9)

In the previous subsection we have reviewed the BRST charges {QSK ,QSK} and a quadru-

plet of KMS translation generators {QKMS ,QKMS ,LKMS ,Q0

KMS
}. All these act on the oper-

ator algebra via graded commutators. We will now describe the identical structure in terms

of superspace derivations, which act on components of covariant superfields. As will be-

come clear later, superspace provides a very e�cient tool for encoding the relevant algebraic

structures.

• In superspace, the action of {QSK ,QSK} is realized as derivations along the Grassmann-

odd directions; these operators implement super-translations:

QSK �! @

¯

✓

, QSK �! @

✓

, (2.10)

5 We emphasize that the BRST symmetries are cohomological in nature. When we refer to superspace or

supersymmetry we refer to such structures and not to standard supersymmetric field theories. Our superco-

ordinates therefore are Lorentz scalars and carry no Lorentz spin labels.
6 Following [26] we will use an accent “̊ ” to denote superfields. We will elaborate on superspace conventions

further in §4 and §5.1.
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which induce the action of {QSK ,QSK} component-wise on superfields; for example, we

have
h

QSK , O̊
i

±
= @

¯

✓

O̊ = O
G
+ ✓ O

adv

. We refer to [1] for more details.

• Similarly, while we can think of {QKMS ,QKMS ,LKMS ,Q0

KMS
} as acting on superfields

component-wise, it will be convenient to lift each of them to a super-operator. To this

end, we introduce the following quadruplet of thermal translation operators:

I̊KMS
0

= Q0

KMS
+ ✓̄QKMS � ✓QKMS + ✓̄✓LKMS ,

I̊KMS = QKMS + ✓LKMS ,

I̊KMS
= QKMS + ✓̄LKMS ,

L̊KMS = LKMS .

(2.11)

These are defined such that

I̊KMS
0

O̊ = I̊KMS O̊ = I̊KMS
O̊ = 0 . (2.12)

We will see later the rationale behind this choice in terms of constructing gauge invariant

observables.

• This quadruplet of thermal super-translations can be checked to be related by the

following diagram:

I̊KMS
0

I̊KMS �I̊KMS

L̊KMS

@✓̄
@✓

@✓ �@✓̄

(2.13)

Further, these superspace operators are clearly related to our previous parametrization

as

Q0

KMS
' (I̊KMS

0

)| ⌘ IKMS
0

, QKMS ' (I̊KMS)| ⌘ IKMS
,

LKMS ' (L̊KMS)| ⌘ LKMS
, QKMS ' (̊IKMS

)| ⌘ IKMS
,

(2.14)

where the symbol “'” means identification in superspace with the understanding that

the action on superfields is component-wise and the vertical slash | refers to projection

onto ✓ = ✓̄ = 0 subspace.

The analogue of the algebra (2.8) can now be written in terms of superspace di↵erentials
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Act II
in which we meet Weil and Cartan and

learn of equivariance….



EQUIVARIANCE

✦Equivariance = cohomology with gauge symmetry 

✦To understand cohomology on an orbifold           we use the Borel 
construction to work with the contractible universal     bundle      . 

✦Classifying space                          is smooth as group action is free on the 
universal bundle.  

✦eg., 

✦cohomology of              = cohomology of 

✦  Physically think of       as the space of the universal     gauge connections 
and       as the space of gauge orbits. This picture is efficient to write 
superspace Lagrangians. 

✦Cohomology of interest will be the space of invariant horizontal forms.

M/G
G EG

BG = EG/G

S1 = R/Z

M/G (EG ⇥M) /G

EG G
BG

Matthai, Quillen  ’86   
Kalkman ‘93



THE WEIL MODEL

✦Gauge structure can be captured by a Grassmann odd gauge potential 
(fermions = differential forms) and its field strength

3.1.1 The Weil complex

To define the space of forms on E
G

, we employ the so called Weil complex, which involves

the tensor product of the exterior algebra of g⇤ with the symmetric algebra of g⇤. Recall that

the exterior algebra is generated by the wedge product of forms, while the symmetric algebra

is generated by symmetric polynomials with variates being the elements of the underlying

vector space (here g⇤).

From a physical viewpoint (see [15]) it is useful to think of the Weil complex as being

generated by a set of Grassmann-odd ghosts G

i and a Grassmann-even curvature 2-form

called the ghost of ghost �i. We will assign these objects definite ghost number and require

that

gh(Gi) = 1 , gh(�i) = 2 . (3.4)

To define a cohomology we need a nilpotent operator dE

W
acting on forms on E

G

which

we will take to be Grassmann-odd by virtue of its grading (gh(dE

W
) = 1). Since the action on

E
G

is supposed to mimic gauge transformations, we define dE

W
action on G

i

,�

i to be of the

familiar form for a gauge potential and field strength, viz.,

dE

W
G

i +
1

2
f

i

jk

G

j

G

k = �

i

,

dE

W
�

i + f

i

jk

G

j

�

k = 0 .
(3.5)

The dE

W
-cohomology in E

G

is by construction trivial. The only elements of the Weil

complex which are sensitive to the dE

W
action are of the form P(�i) ^n

k=1

G

i

k

, with P(�i)

being symmetric polynomials of the �s. This is of course consistent with the contractibility

of the space.

To define something interesting we need to isolate forms that are non-trivial in the quo-

tient B
G

= E
G

/G. To this end, let us parameterize the space of normals to B
G

, which is

nothing but the space of fibres normal to the gauge orbits. Define then an operator that

projects us along the kth direction along the fibres. This can be achieved by contracting with

the generator of the dual algebra. One can use this concept to introduce a set of Grassmann

odd operators I E

k

which satisfy

�

i

j

+ I E

j

G

i = 0 , I E

j

�

i = 0 . (3.6)

The operator I E

k

is simply an interior contraction in the k

th direction and we have aligned

the basis of forms to it in (3.6).

Readers familiar with these structures might find our choice of signs unconventional. The

group action on the manifold results in a di↵eomorphism by �⇠

µ

k

which is the vector field

corresponding to the generator t

k

. Usually the sign is absorbed into the definition of the

interior contraction and one defines (3.6) with an opposite sign. As explained in footnote

8 we wish to adhere to conventions where the group action would correspond to an active

flavour rotation (for global symmetries). Hence w.l.o.g. we have chosen a less familiar sign

convention, which will keep manifesting itself in various formulae, cf., (3.9) and (3.10).
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Once we have an analog of exterior derivation dE

W
and an interior contraction I E

k

, we can

immediately use them to construct a Lie derivative on E
G

,

LE

j

⌘
h

dE

W
, I E

j

i

±
. (3.7)

Using the definitions we can check that

LE

j

G

i =
h

dE

W
, I E

j

i

±
G

i = f

i

jk

G

k

, LE

j

�

i =
h

dE

W
, I E

j

i

±
�

i = f

i

jk

�

k

. (3.8)

Other useful relations are


h

dE

W
, I E

j

i

±
, I E

k

�

±

= �f

i

jk

I E

i

,



h

dE

W
, I E

j

i

±
,

h

dE

W
, I E

k

i

±

�

±

= �f

i

jk

h

dE

W
, I E

i

i

±
.

(3.9)

The equations (3.5)-(3.9) define the universal algebra on the Weil complex, involving

the exterior derivative dE

W
, contraction I E

i

, curvature form �

i and connection form G

i with

gauge group G. We often like to pull-back nice form-like objects (e.g., characteristic classes

and their descendants such as Chern-Simons forms) from E
G

which have useful geometric or

cohomological interpretation. Such objects are usually made of exterior derivative, curvature

form or connection form in E
G

, and after pullback they can be written in terms of {dE

W
,�

i

, G

i}:
the mathematically precise form of this statement is called the Chern-Weil homomorphism.

More pertinently for our discussion, {dE

W
, I E

i

,LE

i

} form a Lie superalgebra with the three

operators having ghost numbers gh(dE

W
) = 1, gh(I E

i

) = �1 and gh(LE

i

) = 0. Formally this

superalgebra can be expressed through the following relations10 which follow from (3.5)-(3.9):
h

I E

i

, I E

j

i

±
= 0 ,

h

dE

W
, I E

j

i

±
= LE

j

,

h

LE

i

, I E

j

i

±
= �f

k

ij

I E

k

,

h

dE

W
,LE

j

i

±
= 0 ,

h

LE

i

,LE

j

i

±
= �f

k

ij

LE

k

,

⇥

dE

W
, dE

W

⇤

±
= 0 .

(3.10)

We will see in the sequel that the algebra of our SK and KMS supercharges is a suitable

extension of such a structure. In Appendix A we give a few details for extending these

structures to involve explicit gauge parameters ↵ = ↵

i

t

i

.

Once we have this algebraic structure, it is straightforward to write down the non-trivial

elements generating the cohomology of B
G

= E
G

/G. To this end, realize that we would like

no support for objects on B
G

nor have variations in the normal directions to B
G

. Since the

normal directions are the gauge orbits we can simply use Gi to parameterize them. As a result

we seek gauge invariant forms, which would be built purely out of invariant combinations of

the field strengths �i. A formal way of saying this is to define:

10 One can w.l.o.g. extend this algebra to include the ghost number operator Gh as well for each of the

other operators carry definite ghost charge.
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Cartan equations for gauge structure

interior contractions pick out gauge directions

Lie derivations follow from above

Weil superalgebra

✦  invariant horizontal forms are polynomial functions of field strengths.



CARTAN MODEL 

✦One can similarly account for the group action on the manifold by 
working with coordinate vectors and Grassmann fields (for 1-forms). 

✦Since cohomology is in gauge invariant data, helpful to pass to gauge 
covariant language (Kalkman automorphism)

We immediately see that in the new basis any combination of  µ

C
is horizontal. With this

redefinition, the only field not annihilated by I
k

would be the ghost Gi and the horizontality

is easily imposed by considering only combinations with no ghosts G

i. So any function of

the coordinates X

µ, their Grassmann partners  µ

C
, and the field strength �

k, can be taken

in an ansatz for non-trivial elements of the cohomology. One can check further that the Lie

derivatives act in this basis as

L
k

 

µ

C
=  

�

C
@

�

⇠

µ

k

, (3.20)

which we now have to exploit to construct invariant forms.

Note that the action of the cohomology operator dW on p-forms is much more involved.

One can evaluate the action on V

 C
, defined in analogy with (3.16), to arrive at:

dWV

 C
= (dV )

 C
�G

k (£
⇠k
V )

 C
+ �

k (i
⇠k
V )

 C
,

(3.21)

which as before does satisfy L
k

V

 C
= (£

⇠k
V )

 C
as expected once we use (3.9).

As explained before, horizontality reduces to removing the ghost fields Gi, and it is hence

convenient to go one step further and define a new cohomology generator, dC , called the

Cartan charge, which amounts to e↵ectively dropping all the ghost contributions from the

Weil charge dW . Its action on the fields that appear in our ansatz for basic forms, viz.,

{Xµ

, 

µ

C
,�

k} is given as:

dCX
µ ⌘ dWX

µ +G

k

⇠
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This defines the action of dC on the elements of the symmetric algebra. This precludes

the action of dC on G

k (in gauge theories this is the familiar statement that the covariant

derivative dC does not act on gauge potentials). Eventually, however, we wish to employ a

gauge where Gk = 0. In order for this to be consistent with the dC action, we wish to formally

define dC on the full Weil complex and in particular demand dCG
k = 0. We can summarize

this condition consistently with (3.22) as
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which makes explicit that dC = dW on the subspace of basic forms. From this and (3.21) we

conclude that the Cartan charge acts on p-forms in the Cartan basis as
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There is a simple physical interpretation of the new cohomology generator dC : it is a

gauge covariant derivation. If dW represents the ordinary exterior derivative, then dC can

be thought of as a covariant exterior derivative with G

k as the connection. Like any other
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We immediately see that in the new basis any combination of  µ

C
is horizontal. With this

redefinition, the only field not annihilated by I
k

would be the ghost Gi and the horizontality

is easily imposed by considering only combinations with no ghosts G

i. So any function of

the coordinates X

µ, their Grassmann partners  µ

C
, and the field strength �

k, can be taken

in an ansatz for non-trivial elements of the cohomology. One can check further that the Lie

derivatives act in this basis as
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which we now have to exploit to construct invariant forms.

Note that the action of the cohomology operator dW on p-forms is much more involved.
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dWV

 C
= (dV )

 C
�G

k (£
⇠k
V )

 C
+ �

k (i
⇠k
V )

 C
,

(3.21)

which as before does satisfy L
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There is a simple physical interpretation of the new cohomology generator dC : it is a

gauge covariant derivation. If dW represents the ordinary exterior derivative, then dC can

be thought of as a covariant exterior derivative with G

k as the connection. Like any other
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covariant exterior derivative, dC is not nilpotent – in fact, d2
C
generates the group action along

the ‘curvature’ �k:

d2
C
= �

k L
k

� [G,�]k I
k

. (3.25)

While we still have explicit appearances of Gk in the above equations, we can now pass to

the Cartan model of equivariant cohomology. This amounts to restricting to the symmetric

algebra of g⇤ (generated by �

k) instead of the whole Weil complex (generated by {Gk

,�

k}).
E↵ectively, this means restricting to the subspace generated by �

k and setting Gk = 0. Setting

G

k = 0, the above equations yield the following Cartan model expressions:
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This is the statement that the Cartan di↵erential squares to a gauge transformation along

�

k. more precisely, on restricting to this space dC action takes the form:
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, (3.27)

which algebraically encodes the fact that we have a gauge-covariant exterior derivation op-

erator, since d2
C
= �

k ⌦ (L
k

)M ⌘ L
�

. The standard presentation is to follow this route and

define the Cartan model only on the gauge invariant subspace. We find it useful however to

follow the intuition of Kalkman’s construction [34] and define the Cartan model on the tensor

product of the Weil algebra and exterior algebra on M as in (3.23).

Irrespective of the formalism, within a subset of field combinations which are invariant

under G-action, we have d2
C
= 0. The cohomology on this invariant subset is the invariant

cohomology of dC which in turn, gives the equivariant cohomology we are after. This for-

malism with the horizontality condition built in, is called the Cartan model for equivariant

cohomology. By construction, it is equivalent to the original definition through Weil model

and the equivalence can be explicitly shown by Kalkman automorphism mentioned earlier.13

In physical applications, while dealing with sigma models, in addition to the fields above,

we have a G-connection on the worldvolume which we will denote by Ai

a

.14 To complete the

story we need to introduce its superpartner �i
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such that
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We will denote the corresponding field strength by Fi

ab

⌘ @

a
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� @
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. Note that
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annihilates both the worldvolume gauge field and its superpartner, viz.,

I
k
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�

i
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= 0 . (3.29)

13 One may argue that dC is the natural cohomological charge in topologically twisted gauge theories for the

twisting is cognizant of the underlying BRST structure of the gauge theory. Indeed, in explicit constructions

as in the Donaldson-Witten theory [16] one naturally ends up with the Cartan charge via twisting.
14 Our notation for sigma models is the following: we will continue to use lower-case Greek indices to

correspond to the physical spacetime M. We assume that there is some worldvolume with intrinsic coordinates

�a with lower-case Latin indices denoting the tangent space indices from the early part of the alphabet (a, b, · · ·

etc). Hopefully our use of intermediate alphabet Latin alphabets i, j, k, · · · to index the generators of g does

not cause confusion.
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action of Cartan charges on 
target space and field strengths 

The two charges act isomorphically 
on horizontal, invariant forms.

The Cartan charge however squares 
to a gauge transformation



EXTENDED EQUIVARIANCE I

✦One can extend the algebraic constructions to situations with more than 
one differential. We will focus on the case with 2 generators of the 
cohomology and swiftly pass to superspace:

much simpler to explain. The algebraic construction underlying our description is explained

quite clearly in the original discussion of [20]. The superspace discussion we employ below

for motivating this construction was described in [27] building on their earlier work. We also

refer the reader [28] for a useful perspective on the algebraic construction.

Since we have a natural interpretation of the action of dW in superspace, as the derivative

along the super-coordinate ✓̄, it follows that inclusion of a second supercharge necessitates

enlarging the superspace to include another Grassmann-odd direction. We will coordinatize

the second direction by ✓ so that

dW = @

¯

✓

(. . .)| , dW = @

✓

(. . .)| . (5.1)

Thus our superspace has two Grassmann-odd directions and so we upgrade all superfields

to be functions of the Grassmann-even coordinates �

a as well as ✓, ✓̄. We then require by

obvious extension of the notation introduced in §4 that our superfields satisfy:

F̊(z) = F̊|+ ✓ (dWF̊)|+ ✓̄ (dWF̊)|+ ✓̄✓ (dWdWF̊)| (5.2)

where we have upgraded z = {�a

, ✓, ✓̄} and will use upper-case mid-alphabet Latin indices

I, J, · · · to take values in {a, b, · · · } [ {✓, ✓̄}.
Given this superspace we can now proceed to analyzing the gauge sector of the theory, i.e.,

find a useful parameterization of the universal G-bundle E
G

. We will proceed algebraically and

construct local representatives for the Weil and Cartan models. A necessary consequence of

the doubling of the supercharges is that we have many more component fields. In particular,

if we consider the super-gauge field which is the primary character in the construction of

equivariant cohomology, we have a dodecuplet of fields, since the full gauge superfield one-

form can be written as18
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I = Å
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a + Å
✓

d✓ + Å
¯

✓

d✓̄ . (5.3)

Each of the Å
I

admits a superfield expansion as in (5.2) with four components, which alto-

gether gives us the desired dodecuplet.

To understand the structure it is useful to once again introduce the gauge covariant

derivative which allows the definition of the field strength. Firstly, as earlier, we pick the

gauge covariant derivative to act as

D̊
I

= @

I

+ [Å
I

, · ] , (5.4)

which implies that the field strength is given by
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In addition it is also convenient to define the following non-covariant object:
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] . (5.6)

18 To keep notational clutter to a minimum we are suppressing the Lie algebra index in the following.
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Vafa, Witten ’94   
Dijkgraaf, Moore ‘96

✦The Weil model closes on 6 generators: 2 derivations, 3 interior 
contraction, and one Lie derivation

Weil model of N
T

= 2 algebra: With the interior contraction operators at hand we can

generate the Lie derivation L
k

as in (3.7) by commuting with the Weil charges (which as

always act as exterior derivatives). This then generates the NT = 2 extended equivariant

cohomology algebra which we can abstractly write as
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(5.15)

While the last two lines simply describe the sl(2) structure of interior contractions and the

obvious action of Lie derivatives respectively, we find it again quite useful to illustrate the

first four lines (i.e., the cohomology of Weyl charges) in a diagrammatic form:

L
j

I
j

I
j

I0

j

dW
dW

dW �dW

(5.16)

where the action of operators on arrows is understood to be via graded commutators. The

reader can ascertain that the structure of (5.15) closely resembles that of the original con-

struction in (3.10) with the increased supercharges and interior contractions. Generalizations

to higher number of topological supercharges is straightforward and are discussed in [20].

Extended equivariant algebra in superspace: Let us now encode all of the above rela-

tion in a compact superspace notation. We start by defining the super-contraction operators

(in analogy with (4.21)):
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(5.17)
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✦ this should be reminiscent of structures in Act 1….
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EXTENDED EQUIVARIANCE II

✦Package the universal data into a set of gauge superfield 1-form which we 
assume lives on a worldvolume with coordinates      .�a

much simpler to explain. The algebraic construction underlying our description is explained

quite clearly in the original discussion of [20]. The superspace discussion we employ below

for motivating this construction was described in [27] building on their earlier work. We also

refer the reader [28] for a useful perspective on the algebraic construction.

Since we have a natural interpretation of the action of dW in superspace, as the derivative

along the super-coordinate ✓̄, it follows that inclusion of a second supercharge necessitates

enlarging the superspace to include another Grassmann-odd direction. We will coordinatize

the second direction by ✓ so that

dW = @

¯

✓

(. . .)| , dW = @

✓

(. . .)| . (5.1)

Thus our superspace has two Grassmann-odd directions and so we upgrade all superfields

to be functions of the Grassmann-even coordinates �

a as well as ✓, ✓̄. We then require by

obvious extension of the notation introduced in §4 that our superfields satisfy:

F̊(z) = F̊|+ ✓ (dWF̊)|+ ✓̄ (dWF̊)|+ ✓̄✓ (dWdWF̊)| (5.2)

where we have upgraded z = {�a

, ✓, ✓̄} and will use upper-case mid-alphabet Latin indices

I, J, · · · to take values in {a, b, · · · } [ {✓, ✓̄}.
Given this superspace we can now proceed to analyzing the gauge sector of the theory, i.e.,

find a useful parameterization of the universal G-bundle E
G

. We will proceed algebraically and

construct local representatives for the Weil and Cartan models. A necessary consequence of

the doubling of the supercharges is that we have many more component fields. In particular,

if we consider the super-gauge field which is the primary character in the construction of

equivariant cohomology, we have a dodecuplet of fields, since the full gauge superfield one-

form can be written as18

Å = Å
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Each of the Å
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admits a superfield expansion as in (5.2) with four components, which alto-

gether gives us the desired dodecuplet.

To understand the structure it is useful to once again introduce the gauge covariant

derivative which allows the definition of the field strength. Firstly, as earlier, we pick the

gauge covariant derivative to act as

D̊
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I

, Å
J

]
⌘

. (5.5)

In addition it is also convenient to define the following non-covariant object:
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18 To keep notational clutter to a minimum we are suppressing the Lie algebra index in the following.
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Å
J

� (�)IJ @
J

Å
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18 To keep notational clutter to a minimum we are suppressing the Lie algebra index in the following.
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ghost Faddeev-Popov Vafa-Witten ghost Vector

charge ghost triplet of ghost quintet quartet

2 �

1 G ⌘ �

a

0 B �

0 A
a

F
a

-1 Ḡ ⌘̄ �̄

a

-2 �̄

Table 1. Dodecuplet of basic fields in the NT = 2 superalgebra and their respective ghost number
assignments.

5.2 The NT = 2 superalgebra

We are now in a position to describe the so calledNT = 2 superalgebra which generalizes (3.10).

Firstly, realize that we would a-priori expect to have two interior contraction operators I
k

and I
k

which would be required to satisfy (reinstating the Lie algebra index):

I
k
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j = ��

j

k

, I
k

Ḡ

j = ��

j

k

, (5.11)

generalizing (3.6) in an obvious manner. These two interior contraction operators are as

before Grassmann odd and we choose to give them ghost charge gh(I) = �1 and gh(I) = +1

respectively.

However, among the dodecuplet of fields introduced in the gauge superfield Å
I

we also

encounter a third gauge parameter, which we have captured in the gauge non-covariant field

B. We therefore have a third interior contraction operator which we will denote as I0 which

we choose to act non-trivially on the B fields, viz.,
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. (5.12)

We also find that the other two interior contractions act non-trivially on the field B:
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2
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Ḡ

`

, I
k

B

j =
1

2
f

j

k`

G

`

. (5.13)

One can check that these definitions lead to the expected identity

L
i

B

k ⌘ ⇥

dW , I
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dW , I
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⇤

±
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ij
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. (5.14)

The triplet of operators {I, I0

, I} together generate an sl(2) algebra. Our parameteri-

zation of the fields is not quite sl(2) covariant, but this can easily be achieved by a simple

change of basis.19

19 The description of the extended equivariant cohomology algebra in an sl(2) covariant fashion can be

found in [20, 27, 28]. Our choices are dictated by simplifying some of the analysis in the context of physical

applications. For example, in §7 we will argue that dissipative e↵ects arise when the ghost number zero field

in the Vafa-Witten quintet picks up a vacuum expectation value which is easier to implement in the sl(2)

non-covariant presentation; cf., footnote 36.
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✦Cartan charges are gauge-covariant super derivations and obey:

We have the following identities:
h
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±
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(5.18)

which could also be organized in a diagram similar to (5.16). By expanding out these relations

component-wise, we can easily verify the algebra (5.15).

Cartan model of N
T

= 2 algebra: With these definitions of the NT = 2 algebra we can

pass onto the Cartan construction, which eschews the gauge connections, parameterized here

by the Faddeev-Popov triplet {Ḡ, B,G} in favour of the physical fields in the vector quartet

and ghost of ghost quintet respectively. In analogy with Eq. (3.27), we start by defining

Cartan di↵erentials on the full Weil complex:20
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such that dC = D̊
¯

✓

(. . .)| and dC = D̊
✓

(. . .)|. We can now again pass to the Cartan model by

restricting the full Weil complex to the symmetric algebra of g⇤. This amounts to setting

G

k = B

k = G

k

= 0 and the Cartan di↵erentials then simply read

dC = dW + �

k I
k

+ (�0)k I
k

+ ⌘

k I0

k

,

dC = dW + �

k I
k

.

(5.20)

Given the algebra (5.15) we can immediately check that dC and dC are no longer nilpotent,

but rather generate gauge transformations as before along � and � respectively:

d2
C
= �

k L
k

, d
2

C
= �

k L
k

. (5.21)

This can be stated most compactly by passing to superspace, where we have the following

relations:

D̊2

¯

✓

= L̊
˚F✓̄✓̄

, D̊2

✓

= L̊
˚F✓✓

,

h

D̊
¯

✓

, D̊
✓

i

±
= L̊

˚F✓✓̄
. (5.22)

20 These expressions can most easily be derived by demanding the consistency condition dCG
k = dCG

k
=

dCB
k = dCG

k = dCG
k
= dCB

k = 0.
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Act III
where we  attempt a synthesis of SK-KMS with a touch of equivariance…
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where {QSK ,QSK} are understood to act component-wise on the superoperators (which is

equivalent to their acting as {@
¯

✓

, @

✓

}).
Inspection of the SK-KMS superalgebra (6.2) suggests an analogy with the general equiv-

ariant cohomology algebra (5.15). More precisely consider the superspace version involving

the operators (5.17), which reads
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(6.3)

The similarity between (6.2) and (6.3) is quite obvious now. Let us record some salient

features:

• Clearly we should identify the SK BRST charges with the Weil di↵erentials.

• The KMS charges conspire to become the super-interior contractions and super-Lie

derivative operation.

• The first four lines of the algebras obviously agree, while the last lines seems to constrain

the structure constants fk

ij

.

Thus we schematically we have the obvious identifications:

NT = 2 algebra | SK-KMS symmetries

{dW ' @

¯

✓

, dW ' @

✓

} $ {QSK ' @

¯

✓

,QSK ' @
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} ,
{I̊

k

, I̊
k

} $ {I̊KMS
, I̊KMS} ,

{L̊
k

, I̊0

k

} $ {L̊KMS
, I̊KMS

0

} ,

(6.4)

By restriction to ordinary space, it is clear that there is a canonical map between the two

sets of operations, which respects the bigrading structure:

NT = 2 algebra | SK-KMS symmetries

{dW , dW} $ {QSK ,QSK} ,
{I

k

, I
k

} $ {QKMS ,QKMS} ,
{L

k

, I0

k

} $ {LKMS ,Q0

KMS
} .

(6.5)

As we can readily see the KMS supercharges {QKMS ,QKMS} along with the bosonic generator

Q0

KMS
make up the interior contraction operations, while the SK supercharges {QSK ,QSK}
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✦SK charges are akin to Weil differentials, while the KMS charges fill out the 
interior contractions. 

✦The Lie derivation takes operators around the thermal circle.

✦The algebraic structure for arbitrary temperature is complicated by  non-
locality of thermal translations.  

✦Some form of deformation of the group of circle diffeomorphisms…
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✦  Life is simpler at high temperatures when thermal circle is small.

Im(t)

Re(t)

x

i

Figure 2. Illustration of the spacetime picture as it emerges from the proposed KMS gauge invariance.
We upgrade the spacetime manifold on which our quantum system resides to a thermal fibre bundle.
The grey manifold represents a Lorentzian spacetime with a typical Cauchy slice indicated in red.
We assume local thermal equilibrium (as in, e.g., hydrodynamics) at each spacetime point which
guarantees a thermal vector �µ. Geometrically we encode this vector field as a circle fibration with a
thermal circle whose size is set by the local temperature. The KMS transformations we seek implement
equivariance with respect to thermal translations along this local imaginary time circle. Restricting
to a gauge slice corresponds picking a Lorentzian section of this fibration. Note that the size of the
thermal circle is exaggerated; our arguments are clean in the high temperature limit where the size of
the thermal circle is much smaller than the fluctuation scale.

are the standard exterior derivations (the Weil charges). Finally, the Lie derivation can be

naturally identified with LKMS , consistent with our observation that the operator provides a

means of ascertaining the deviation from the exact KMS condition.

Having established this algebra isomorphism, let us address the next question: what

is the SK-KMS algebra equivariant with respect to? We should identify the gauge algebra

to complete the specification of the symmetry of the thermal QFTs. Naively, based on the

vanishing of the structure constants one might conclude that the symmetry algebra is Abelian.

However, before we rush to this conclusion we should be aware that we obtained the SK-KMS

algebra as acting on the operator superalgebra of our quantum system, which is analogous

to M in our discussion of equivariant cohomology. We know from our review in Part II that

the interior contraction operations do not act non-trivially on the topological space M. So it

is not entirely clear at this stage whether we should declare the algebra to be Abelian. More

precisely, the superoperators (6.1) annihilate the usual covariant superfields. E↵ectively, we

appear to have managed to construct the overall algebraic operations without any information

about the underlying gauge structure. Nevertheless, we can recover the requisite information

if we examine the role played by the Lie derivation carefully.

The operator LKMS generates infinitesimal gauge transformations. It acts on Hilbert

space operators O and takes them around the thermal circle; its action is to compute the
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✦Literally implement thermal translations as diffeomorphisms along the 
thermal circle and demand equivariance with this symmetry.

deviation between an operator and its KMS conjugate, for

L̊KMSO̊ = �� O̊ . (6.6)

As described so far we are considering a single traversal of the thermal circle. While we have

also pretended for the most part to be in global thermal equilibrium, as argued in [1] we

will actually be interested in local thermal equilibrium where the temperature changes from

spacetime-point to spacetime-point. In general we can view a non-equilibrium setting with a

local temperature profile, as a thermal circle bundle over the spacetime manifold, cf., Fig. 2

for an illustration.

The picture may be understood as follows. At each spacetime point we have a local

thermal vector �µ which picks out a local inertial frame and whose magnitude gives us the

local temperature (see [23, 24] for details). If the variations are purely spatial, then we

really have a direct product of Lorentzian time with a Euclidean geometry where the thermal

circle is fibred over the spatial sections, as is appropriate for global thermal equilibrium.

More generally, we simply have a non-trivial thermal fibration over the spacetime manifold

where the QFT resides.24 We tend not to view finite temperature non-equilibrium QFT

geometrically as described above, except in equilibrium, but we will argue that this perspective

o↵ers fresh and useful insight.

Given this set-up, the KMS Lie derivation LKMS takes the operators around the fibres

of the thermal fibration. A-priori we only have discrete transformations along this circle.

One can physically view ��O as comparing O(t) against O(t � i�), with the latter as the

consequence of the group action, see (2.5).25 While we initially infer the KMS operations by

action along a single thermal period, we can upgrade the traversal of operators around this

circle to involve a local winding number, i.e., consider bO(t, x) ! bO(t�im(t, x)�, x) for integer

valued m(t, x). The gauge group we seek for the microscopic theory is the one implementing

these discrete thermal translations. Since there is a simple operation of discrete winding it is

not surprising that the gauge algebra is Abelian.

6.2 Low energy implementation of SK-KMS superalgebra

While it would be instructive to explore this discrete KMS structure in greater detail, we

found it simpler to contemplate the limit where the local temperatures are high compared

to other physical scales of interest. This is the case for instance, if we are interested in the

low energy dynamics of quantum systems at frequencies and momenta low compared to the

thermal scale ! T , k T ⌧ 1. In such a limit, the local thermal circle of size � is small since we

24 We make no attempt here to define a pseudo-Riemannian fibre bundle, except to note that we want the

sections to admit Lorentz signature metrics for physical applications.
25 In defining �� we have taken care to incorporate the quantum numbers of O, e.g., spin, flavour etc. by

associating with �� a Lie derivative along a time-like vector field �µ; see [1] for further details. In the Euclidean

formulation of the theory thermal boundary conditions on operators involve twists along the thermal circle

depending on the chemical potential for the flavour charge etc.. The action of �� is cognizant of these facts

and we can think of it as a generalized Lie derivation along the Euclidean thermal circle.
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We summarize these findings by making the following schematic identification:

NT = 2 algebra | SK-KMS symmetries
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2

�� F̊
1

(6.11)

for adjoint superfields F̊
1,2

.

Thus, while the microscopic discrete KMS symmetry ends up Abelian, the continuum

version displays non-Abelian characteristics. This can be intuited from the fact that the

underlying set of transformations are di↵eomorphisms along the thermal circle. At some

heuristic level we should view U(1)T as a deformation of di↵(S1). Relations of the KMS

conditions to deformation quantization have indeed been explored in the past [37–40] without

incorporation of the extended symmetry structure we are exploring here. Note also that as

remarked earlier, the above discussion hides the fact that in general �� compares operators

which are non-locally separated in Euclidean time (see the definition (2.5)). Per se, we

therefore expect that the NT = 2 algebra is realized with a non-local action on the physical

Schwinger-Keldysh theory. These ideas may help us unveil the discrete structure valid outside

the low energy limit.

Returning to our main line of development, we can now take the existence of U(1)T in

the low energy limit to its logical conclusion. The simplest way to proceed is to introduce

a gauge field for the U(1)T symmetry of gauged thermal translations. The construction

of the thermal gauge superfield one-form proceeds exactly as in the general discussion of

equivariant cohomology. That is, we introduce a dodecuplet of fields and arrange them into

gauge field components as in (5.28a)-(5.28c). In the following we will denote the ‘thermal

U(1)T dodecuplet’ by the same letters as in Table 1, but give them a subscript “T” in order

to distinguish them from the general discussion of Part II.27

As an illustration, we can, for example, define now covariant Cartan di↵erentials of the

thermal SK-KMS equivariant theory:

Q ⌘ QSK + �T QKMS + �

0

T
QKMS + ⌘T Q0

KMS
,

Q ⌘ QSK + �

T
QKMS .

(6.12)

This follows from translating the definition of Cartan di↵erentials as in (5.20) to SK-KMS

context using the identifications in (6.5). From their naturalness in the theory of equivariant

cohomology, we would expect these linear combinations to play a role in the physics of SK

theories. As we will see later, this is indeed the case.28

27 It is amusing to note that the authors of [20] presciently labeled the number of topological symmetries

with a subscript T which does allow a dual interpretation as ‘topological’ or ‘thermal’ depending on one’s

inclination.
28 See also Eq. (A.15) of [10], where the operators {Q,Q} have appeared before in this context. For detailed

comparison, note the following di↵erence in convention between here and reference [10]:

[QKMS ]here = i[QKMS ][10] , [Q
KMS

]here = �i[Q
KMS

][10] , [Q0
KMS

]here = i[Q0][10] . (6.13)
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✦This leads to the U(1)T KMS symmetry discovered in during our attempt to 
classify hydro transport.
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✦The gauge covariant Cartan charges (supercovariant derivations) can be 
mapped to the basic building blocks as follows:

We summarize these findings by making the following schematic identification:

NT = 2 algebra | SK-KMS symmetries
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for adjoint superfields F̊
1,2

.

Thus, while the microscopic discrete KMS symmetry ends up Abelian, the continuum

version displays non-Abelian characteristics. This can be intuited from the fact that the

underlying set of transformations are di↵eomorphisms along the thermal circle. At some

heuristic level we should view U(1)T as a deformation of di↵(S1). Relations of the KMS

conditions to deformation quantization have indeed been explored in the past [37–40] without

incorporation of the extended symmetry structure we are exploring here. Note also that as

remarked earlier, the above discussion hides the fact that in general �� compares operators

which are non-locally separated in Euclidean time (see the definition (2.5)). Per se, we

therefore expect that the NT = 2 algebra is realized with a non-local action on the physical

Schwinger-Keldysh theory. These ideas may help us unveil the discrete structure valid outside

the low energy limit.

Returning to our main line of development, we can now take the existence of U(1)T in

the low energy limit to its logical conclusion. The simplest way to proceed is to introduce

a gauge field for the U(1)T symmetry of gauged thermal translations. The construction

of the thermal gauge superfield one-form proceeds exactly as in the general discussion of

equivariant cohomology. That is, we introduce a dodecuplet of fields and arrange them into

gauge field components as in (5.28a)-(5.28c). In the following we will denote the ‘thermal

U(1)T dodecuplet’ by the same letters as in Table 1, but give them a subscript “T” in order

to distinguish them from the general discussion of Part II.27

As an illustration, we can, for example, define now covariant Cartan di↵erentials of the

thermal SK-KMS equivariant theory:

Q ⌘ QSK + �T QKMS + �

0

T
QKMS + ⌘T Q0

KMS
,

Q ⌘ QSK + �

T
QKMS .

(6.12)

This follows from translating the definition of Cartan di↵erentials as in (5.20) to SK-KMS

context using the identifications in (6.5). From their naturalness in the theory of equivariant

cohomology, we would expect these linear combinations to play a role in the physics of SK

theories. As we will see later, this is indeed the case.28

27 It is amusing to note that the authors of [20] presciently labeled the number of topological symmetries

with a subscript T which does allow a dual interpretation as ‘topological’ or ‘thermal’ depending on one’s

inclination.
28 See also Eq. (A.15) of [10], where the operators {Q,Q} have appeared before in this context. For detailed

comparison, note the following di↵erence in convention between here and reference [10]:

[QKMS ]here = i[QKMS ][10] , [Q
KMS

]here = �i[Q
KMS

][10] , [Q0
KMS

]here = i[Q0][10] . (6.13)
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✦The superalgebra structure can then be captured by the anti-commutation 
relation among the Cartan charges as

by working with two gauge covariant Cartan charges Q and Q. Being gauge covariant, they

are not nilpotent, but rather square to a gauge transformation, which in the present case is

captured by LKMS . One finds by manipulating Eq. (A.14)[4]:
14

Q2 = (F̊✓̄✓̄|✓̄=✓=0
)LKMS , Q2

= (F̊✓✓|✓̄=✓=0
)LKMS ,

⇥
Q,Q

⇤
±
= (F̊✓✓̄|✓̄=✓=0

)LKMS (2.5)

As a di↵erential operator LKMS is realized as the operation �� = �i(1� e�i �� ) ⇡ �� , which

implements a translation in the thermal direction, introduced in [4]. The super-field strength

F̊IJ is the one associated with the gauge field of U(1)T.

We can now compare the two algebras: suppose we identify Q and Q of HLR in [4, 7]

with �̄ and �, respectively of [8]. The disadvantage of the equivariant cohomology presentation

is that there are a whole slew of extra ghost fields (the Vafa-Witten quintet of [7]). It has

been argued in [4, 7] that most of the covariant ghost of ghost fields which include F̊✓̄✓̄| and
F̊✓✓| can be gauge fixed to zero, insofar as the macroscopic dynamics of the hydrodynamic

fields is concerned. The only field that plays a non-trivial role is the ghost number zero field

F̊✓✓̄|, which picks up a non-trivial vacuum expectation value in the thermal state, owing to

spontaneous CPT symmetry breaking in a dissipative system. Note that it is an important

ingredient of our approach to recognize the emergent second law and arrow of time in the fluid

system as a consequence of the spontaneous breaking of the microscopic CPT symmetry (see

[51, 52] for a detailed discussion). The U(1)T symmetry provides a dynamical mechanism for

this: we choose the CPT breaking value hF̊✓✓̄|i = �i for the order parameter of dissipation.15

With this understanding, we can simplify (2.5) to16

Q2 = 0 , Q2
= 0 ,

⇥
Q,Q

⇤
±
= �iLKMS 7! i£� (2.6)

In general £� Lie drags operators along the thermal circle17, but on scalars it acts as �a@a.

In the static gauge, where �a=0 = �, �a=I = 0 this is indeed � @t, which then gives a precise

correspondence between the two algebras (2.4) and (2.6).

To put it in a nutshell, despite the di↵ering motivations, the superalgebras used by the

two groups to constrain hydrodynamic e↵ective actions is the same in the high temperature

limit. The main distinction is that (2.4) extends to beyond the high temperature limit and

thus is aware of the detailed quantum statistics.18 HLR have not made a conjecture about the

quantum algebra, though it is easy to speculate that the structure is closely connected to that

obtained by exponentiating the U(1)T algebra introduced in [3] to figure out the finite action

of U(1)T as a group. While we have not been as yet able to prove it, we would be willing to

speculate that the requisite group is the Virasoro-Bott group obtained by exponentiating the

14 The relevant arguments are explained in some detail in Sections 5 and 6 of [7].
15 See, e.g., [5] for a motivation of this choice.
16 There are algebraic subtleties with the interpretation of signs, which are explained in [7].
17 The operator £� refers to the Lie drag operation on worldvolume along the background vector �a.
18 The high temperature limit, as the reader can immediately appreciate is equivalent to the classical limit,

since the quantum statistical distributions, Bose-Einstein or Fermi-Dirac, degenerate to the classical Maxwell-

Boltzmann distribution.
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➤ Assume: dynamically consistent in dissipative systems to set all but the 
zero ghost number element of the Vafa-Witten quintet to zero: hF̊✓✓̄|i = �i

by working with two gauge covariant Cartan charges Q and Q. Being gauge covariant, they

are not nilpotent, but rather square to a gauge transformation, which in the present case is

captured by LKMS . One finds by manipulating Eq. (A.14)[4]:
14
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)LKMS (2.5)

As a di↵erential operator LKMS is realized as the operation �� = �i(1� e�i �� ) ⇡ �� , which

implements a translation in the thermal direction, introduced in [4]. The super-field strength

F̊IJ is the one associated with the gauge field of U(1)T.

We can now compare the two algebras: suppose we identify Q and Q of HLR in [4, 7]

with �̄ and �, respectively of [8]. The disadvantage of the equivariant cohomology presentation

is that there are a whole slew of extra ghost fields (the Vafa-Witten quintet of [7]). It has

been argued in [4, 7] that most of the covariant ghost of ghost fields which include F̊✓̄✓̄| and
F̊✓✓| can be gauge fixed to zero, insofar as the macroscopic dynamics of the hydrodynamic

fields is concerned. The only field that plays a non-trivial role is the ghost number zero field

F̊✓✓̄|, which picks up a non-trivial vacuum expectation value in the thermal state, owing to

spontaneous CPT symmetry breaking in a dissipative system. Note that it is an important

ingredient of our approach to recognize the emergent second law and arrow of time in the fluid

system as a consequence of the spontaneous breaking of the microscopic CPT symmetry (see

[51, 52] for a detailed discussion). The U(1)T symmetry provides a dynamical mechanism for

this: we choose the CPT breaking value hF̊✓✓̄|i = �i for the order parameter of dissipation.15

With this understanding, we can simplify (2.5) to16

Q2 = 0 , Q2
= 0 ,
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±
= �iLKMS 7! i£� (2.6)

In general £� Lie drags operators along the thermal circle17, but on scalars it acts as �a@a.

In the static gauge, where �a=0 = �, �a=I = 0 this is indeed � @t, which then gives a precise

correspondence between the two algebras (2.4) and (2.6).

To put it in a nutshell, despite the di↵ering motivations, the superalgebras used by the

two groups to constrain hydrodynamic e↵ective actions is the same in the high temperature

limit. The main distinction is that (2.4) extends to beyond the high temperature limit and

thus is aware of the detailed quantum statistics.18 HLR have not made a conjecture about the

quantum algebra, though it is easy to speculate that the structure is closely connected to that

obtained by exponentiating the U(1)T algebra introduced in [3] to figure out the finite action

of U(1)T as a group. While we have not been as yet able to prove it, we would be willing to

speculate that the requisite group is the Virasoro-Bott group obtained by exponentiating the

14 The relevant arguments are explained in some detail in Sections 5 and 6 of [7].
15 See, e.g., [5] for a motivation of this choice.
16 There are algebraic subtleties with the interpretation of signs, which are explained in [7].
17 The operator £� refers to the Lie drag operation on worldvolume along the background vector �a.
18 The high temperature limit, as the reader can immediately appreciate is equivalent to the classical limit,

since the quantum statistical distributions, Bose-Einstein or Fermi-Dirac, degenerate to the classical Maxwell-

Boltzmann distribution.
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The final algebra is also the one CGL/GL work with in the high temperature 
limit and appears to be well known in the stat mech literature (Mallick, Moshe, 
Orland 2010). �2 = �̄2 = 0, {�, �̄} = 2 tanh

✓
i

2
�@t

◆
⇡ i�@t



Act IV
in which the Brownian particle is thermally equivariantized…



TOY MODEL: LANGEVIN DYNAMICS

✦  Point particle in external potential subject to external forcing and noise

Consider a Brownian particle which is characterized by a single degree of freedom, its

position x(t). We will assume that this particle is subject to a time independent (conservative)

force, arising from a potential U(x), in addition to the friction it encounters from the fluid

medium it is immersed in. The stochastic Brownian motion is then described by the Langevin

equation:

m

d

2
x

dt

2
+

@U

@x

+ ⌫ ��x = N , (A.1)

where we have normalized various terms with later applications in mind. The following

comments concerning the Langevin equation as a toy model for hydrodynamics are in order:

1. The kinetic term for the particle gives us a part of dynamical response that is adiabatic

and belongs to Class H
S

in the terminology of [5].

2. The second term denotes the static response to the background potential U(x) and

hence is Class H
S

.

3. The third term then incorporates dissipation by introducing a viscous drag parametrized

by the coe�cient ⌫. This is Class D transport.

4. The term on the right hand side finally adds a stochastic noise N which we assume

is independent of x. This did not enter into the considerations of [5] as the noise is

related to presence of dissipation via the fluctuation-dissipation theorem. In writing an

e↵ective action we will require that the noise is always integrated out. The noise term is

assumed to be drawn from a Gaussian ensemble (as appropriate for a linear dissipative

system), which we specify explicitly below, see (A.11).

A.1 Twisted supercharges for the Langevin system

By the logic espoused in the main text, the presence of the dissipative term requires that we

formulate the problem in terms of a SK path integral. Let us first do so by identifying the

degrees of freedom that make up the SK quadruplet. To do so, we first introduce a doubling

of the Brownian particle’s position, by x ! {xR, xL}. It will be useful to a-priori realize that

the Langevin description is naturally adapted to the advanced/retarded basis of fields (as

opposed to the {R, L} Keldysh basis), cf., footnote 14. Introduce therefore the retarded field

x(t) and its advanced field partner f
 

(t) via:26

x ⌘ �i��1
�

(xR � e

�i ��0
xL) , f

 

⌘ xR � xL (A.2)

The definition above can be treated as a classical di↵erential equation for the retarded field

by properly inverting the operator �� subject to the physical initial conditions. We recall

that the operator �� measures the deviation from the KMS condition and thus controls the

26 The Brownian particle is assumed to be bosonic and so (�1)F = 1.
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✦One can write down a SK effective action for this dissipative dynamics 

Martin, Siggia, Rose 1973
x = �i��1

�

⇣
xR � e

�i ��
xL

⌘
, x̃ = xR � xL

LSK =


x̃

@U

@x

+  ̄

@

2
U

@x

2
 

�
�m


x̃

d

2
x

dt

2
+  ̄

d

2
 

dt

2

�
� ⌫

⇥
x̃ ��x�  ̄ �� 

⇤
+ i ⌫ x̃

2
.

✦The dissipative part of the action is controlled by ghosts and is related to 
the fluctuation terms difference fields - fluctuation/dissipation relation.  

✦Convergence of the path integral fixes the sign of dissipative terms. 

✦Simplest realization of the extended equivariant cohomology algebra.



BROWNIAN  BRANES

✦Brownian particle immersed in a fluid undergoes dissipative motion. 

✦Langevin effective action: worldvolume B0-brane theory.

✦Data for the worldvolume theory: thermal equivariant multiplets for target 
space coordinate map and thermal gauge field data. 

X̊ = {X,X , X ̄, X̃}

just write

Å ⌘ Å
t

dt+ Å
✓

d✓ + Å
¯

✓

d✓̄

⌘
�

✓ �

T
+ ✓̄ �

0

T
+ ✓̄✓ ⌘̄

�

d✓ +
�

✓̄ �T � ✓̄✓ ⌘

�

d✓̄ ,

(6.23) eq:AWZ

Likewise the full position supermultiplet (6.20) reduces to the more familiar form (6.9).

In this Wess-Zumino gauge we can easily evaluate the Cartan charge action. We would

write as before

d = dSK + IKMS

¯

✓ �T
� IKMS

¯

✓✓ ⌘

,

d̄ = d̄SK + IKMS

✓ �

T

+ IKMS

¯

✓ �

0
T
+ IKMS

¯

✓✓ ⌘̄

.

(6.24) eq:QClangevin

so that on the position multiplet the action by {Q,Q} is given by

[Q, X]± ⌘ D̊
¯

✓

X̊| = X

 

,

h

Q, X

 

i

±
⌘ D̊

¯

✓

D̊
✓

X̊| = �X̃ + �

0

T
��X ,

[Q, X

 

]± ⌘ D̊
¯

✓

D̊
¯

✓

X̊| = �T��X ,

h

Q, X̃

i

±
⌘ D̊

¯

✓

D̊
✓

D̊
¯

✓

X̊| = �

0

T
��X 

� �T��X
 

+ ⌘��X ,

⇥

Q, X

⇤

±
⌘ D̊

✓

X̊| = X

 

,

h

Q, X

 

i

±
⌘ D̊

✓

D̊
✓

X̊| = �

T
��X ,

⇥

Q, X

 

⇤

±
⌘ D̊

✓

D̊
¯

✓

X̊| = X̃ ,

h

Q, X̃

i

±
⌘ D̊

✓

D̊
✓

D̊
¯

✓

X̊| = �

T
��X 

.

(6.25) eq:PositionCartan

This set of equations was previously written down in [10]. Similarly, (6.22) defines also the

action on the ghost of ghost quintet. Using the identities (5.8) for gauge invariant field

strength components, one can readily verify the following relations:

⇥

Q,�

0

T

⇤

±
⌘ D̊

¯

✓

F̊
✓

¯

✓

| = ⌘ ,

⇥

Q,�

0

T

⇤

±
⌘ D̊

✓

F̊
✓

¯

✓

| = ⌘̄ ,

[Q,�T ]± ⌘ D̊
¯

✓

F̊
¯

✓

¯

✓

| = 0 ,
⇥

Q,�T

⇤

±
⌘ D̊

✓

F̊
¯

✓

¯

✓

| = �⌘ ,

⇥

Q,�

T

⇤

±
⌘ D̊

¯

✓

F̊
✓✓

| = �⌘̄ ,

⇥

Q,�

T

⇤

±
⌘ D̊

✓

F̊
✓✓

| = 0 ,

[Q, ⌘]± ⌘ D̊2

¯

✓

F̊
✓

¯

✓

| = (�,�0

T
)� ,

⇥

Q, ⌘

⇤

±
⌘ D̊

✓

D̊
¯

✓

F̊
✓

¯

✓

| = (�T ,�T
)� ,

[Q, ⌘̄]± ⌘ D̊
¯

✓

D̊
✓

F̊
✓

¯

✓

| = (�
T
,�T)� ,

⇥

Q, ⌘̄

⇤

±
⌘ D̊2

✓

F̊
✓

¯

✓

| = (�
T
,�

0

T
)� .

(6.26) eq:GaugeCartan

[should we perhaps give more details about F
IJ

and its derivatives and Bianchi identity?]

Note that all these transformations ensure that Q2, Q2

,
⇥

Q,Q
⇤

±
are pure gauge, i.e., they

generate time translations with gauge parameters �T , �T
, �0

T
respectively. We have now all

the ingredients to formulate the Schwinger-Keldysh e↵ective theory of Langevin dynamics,

using equivariant language.

6.4 E↵ective action and fluctuation-dissipation
sec:LangActions

Our philosophy is to write down a worldvolume theory of the Brownian particle that explicitly

makes manifest the full N
T

= 2 symmetry. To this end we have already identified the various
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✦MSR action follows as the basic thermal U(1)T  gauge invariant effective 
action of the worldline theory

bracket, which acts to gauge transform all the matter fields. Given a gauge parameter ⇤̊ we

denote a gauge transformation of a matter multiplet X̊ via

(⇤̊, X̊)� = ⇤̊£�X̊ = ⇤̊��X̊ = ⇤̊�
d

dt

X̊ . (6.15) eq:betabrkX

One may view this as the action of the gauge symmetry on the fundamental representation.

We can work out the analog of the adjoint representation by examining the Wess-Zumino

commutator of the successive gauge transformations. The Jacobi identity, for instance, fixes

the action of thermal bracket on adjoint superfields, so that under U(1)T transformation

⇤̊0 7! ⇤̊0 + (⇤̊, ⇤̊0)� with

(⇤̊, ⇤̊0)� = ⇤̊£�⇤̊
0 � ⇤̊0£�⇤̊ . (6.16) eq:adbetabrk

We are now in a position to remedy the lack of explicit action of the U(1)T symmetry

in §6.2 by incorporating the gauge dodecuplet into the construction. We introduce the gauge

superfield superspace one-form as in (5.3) and associated field strength and covariant deriva-

tive. The main change from Eqs. (5.4) and (5.5) is that the gauge algebra is generated by

the thermal bracket (6.16) as appropriate for adjoint-valued gauge fields.

While it is possible to write down the full gauge field one-form, to keep the present

discussion under control we are going to exploit the following fact. The Brownian particle

has a one-dimensional worldline which means that any gauge field associated with it can be

trivially gauge fixed to zero. This implies that we can w.l.o.g. set the temporal component

Å
t

= 0. Then we are only required to deal with the octet of fields in the Å
✓

and Å
¯

✓

superfields.

The structure of the Weil charge action discussed in §5.2 leads to the construction

Å
¯

✓

⌘ GT + ✓̄

⇢

�T � 1

2
(GT , GT)�

�

+ ✓

⇢

BT � 1

2
(GT , GT)�

�

� ✓̄✓

⇢

⌘ + (GT ,�T)� � (GT , BT)� +
1

2
(GT , (GT , GT)�)�

�

Å
✓

⌘ GT + ✓

⇢

�

T
� 1

2
(GT , GT)�

�

+ ✓̄

⇢

�

0

T
�BT � 1

2
(GT , GT)�

�

+ ✓̄✓

⇢

⌘ + (GT ,�
0

T
)� � (GT ,�

0

T
�BT)� +

1

2
(GT , (GT , GT)�)�

�

(6.17) eq:Asuper

In writing the above we have given a subscript T to the gauge multiplets to denote their

origin from the thermal KMS invariance. The thermal bracket acts on the Grassmann-odd

parameters as in (6.16), but with the usual extra sign; to wit,

(Â, B̂)� ⌘ Â�� B̂ � (�)AB B̂�� Â (6.18)

for adjoint operators such as GT , BT , GT ,�T , ⌘,�
0

T
,�

T
, ⌘̄.

With the gauge superfield Å at hand, we can immediately define a gauge invariant field

strength in complete analogy with the field strength in generic extended equivariant coho-

mology, c.f. Eq. (5.5):

F̊
IJ

⌘ (1� 1

2
�

IJ

)
⇣

@

I

Å
J

� (�)IJ@
J

Å
I

+ (Å
I

, Å
J

)�
⌘

. (6.19)
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gauge covariant derivative to act as

D̊
I

= @

I

+ [Å
I

, · ] , (5.4) eq:covDI

which implies that the field strength is given by

F̊
IJ

⌘ (1� 1

2
�

IJ

)
⇣

@

I

Å
J

� (�)IJ @
J

Å
I

+ [Å
I

, Å
J

]
⌘

, (5.5) eq:fdef

In addition it is also convenient to define the following non-covariant object:

B̊
✓

¯

✓

⌘ @

✓

Å
¯

✓

+
1

2
[Å

✓

, Å
¯

✓

] . (5.6)

This will be useful to pick out a particular non-gauge covariant field. Our definition explicitly

breaks the symmetry between ✓ and ✓̄, for under an exchange of these super-coordinates we

have B̊
✓

¯

✓

7! F̊
✓

¯

✓

� B̊
✓

¯

✓

.

The covariant derivatives along the super-coordinates {✓, ✓̄} can be treated as the Cartan

charges: dC = D̊
¯

✓

, dC = D̊
✓

. This enables us to use the field strengths to define the covariant

fields that we will employ to parameterize the extended cohomological structure. As in our

previous discussion, the bottom component of the superfields Å
✓

and Å
¯

✓

will be taken to be

ghost fields (with opposite ghost numbers). The other components of the gauge multiplets

can be filled out in terms of the field strengths. We find it useful to parameterize the super-

components (the ghosts and ghosts for ghosts) in the following fashion. First we pick out the

gauge non-invariant combinations and use them to define the various ghost fields (i.e., ghost

valued connection forms):

Å
¯

✓

| = G , Å
✓

| = Ḡ , B̊
✓

¯

✓

| = B . (5.7) eq:triplet

We will refer to these fields as the Faddeev-Popov ghost triplet.

The remaining five fields which make up the superfields Å
✓

and Å
¯

✓

are captured and

denoted as follows:

F̊
¯

✓

¯

✓

| = � , F̊
✓✓

| = � , F̊
✓

¯

✓

| = �

0

,

D̊
¯

✓

F̊
✓

¯

✓

| = ⌘ , D̊
✓

F̊
✓

¯

✓

| = ⌘ . (5.8) eq:quintet

We will henceforth refer to them as the Vafa-Witten ghost of ghost quintet following [18] where

this structure was first described. Finally, we have four more (vector) fields in the gauge

potential Å
a

, making up the vector quartet which we parameterize in a covariant fashion as

Å
a

| = A
a

, F̊
¯

✓a

| = �

a

, F̊
✓a

| = �

a

, D̊
✓

F̊
¯

✓a

| = F
a

. (5.9) eq:quartet

The ghost charge assignments for these fields can be worked out once we pick a convention

that assigns

gh(✓) = +1 , gh(✓̄) = �1 , (5.10) eq:ghththb
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SB0 =

ˆ
dt d✓ d✓̄

(
m

2

⇣
D̊tX̊

⌘2
� U(X̊)� i ⌫ D̊✓X̊D̊✓̄X̊

)

X̃

X



FLUCTUATION DISSIPATION AS CPT BREAKING

hF̊✓✓̄|i = �i

✦Stochasticity and dissipation arises because of spontaneous CPT 
symmetry breaking. 

✦BRST supersymmetry + spontaneous CPT breaking leads to Jarzynski 
relation which is a generalized fluctuation dissipation relation

✦Useful moral: dissipation = ghost condensation.

SB0 7! SB0 � i hF̊✓✓̄|i� (�G+W ) =) he��W i = e���G

Mallick, Moshe, Orland 2010

✦The CPT symmetry in our construction is implemented as R-parity in 
superspace and its breaking encoded in the vev for the ghost number 
zero field strength:

The combined CPT + U(1)T transformation ends up being 
the transformation used by GL to prove entropy positivity. 

Jarzynski 1997 
Crooks 1999

Gaspard 2012



Act V
in which thermal equivariance allows one to write down 

dissipative fluid dynamics in terms of an effective action,

a topological sigma model….



FLUID DYNAMICS AS A SIGMA MODEL

✦Hydrodynamics: low energy dynamics of conserved currents in near 
equilibrium situations. 

✦The hydrodynamic modes are Goldstone modes for spontaneously 
broken difference diffeomorphisms and difference gauge transformation.

�µ =
uµ

T
, ⇤� =

µ

T
� �↵A↵

✦A Landau-Ginzburg theory of this vector field captures a part of 
hydrodynamic transport (Class L), but getting all of hydrodynamic 
transport requires more ingredients (cf., eightfold classification).

Haehl, Loganayagam, MR 2015

Nickel, Son 2010

✦The order parameter for broken difference diffeomorphisms is a vector 
field, which we identify with the hydrodynamic velocity rescaled by the 
local temperature (the pions of hydrodynamics):



LANDAU-GINZBURG SIGMA MODELS

✦ Class L: effective action is just a sigma model parameterized by a scalar 
functional (free energy density)                         .    

✦ Adiabatic fluids: Invariance under diffeomorphisms and flavour 
transformations forces non-dissipative dynamics. 

✦ Dynamics:  conservation follows from variational of the pullback maps 
with reference thermal vector being fixed.

phys ica l 
fluid

worldvolume 
reference  
configuration

�a

gab

�a�µ

gµ⌫

Xµ Xµ(�a)

L[�a, gab(X)]



THE EIGHTFOLD LAGRANGIAN

✦ More generally the full set of adiabatic transport derives from an 
Lagrangian density

✦ New variables              : former is the SK partner of the worldvolume metric.

✦ The linear couplings to the partners is highly suggestive of structures 
encountered in analysis of linear dissipative systems and topological 
sigma models. 

✦ Take the symmetry seriously and attempt to work out a full theory 
including dissipation.

✦ The one-form is an abelian gauge field which couples to the entropy 
current.

Lwv =
1

2
Tab g̃ab �Na

L Ãa

g̃ab, Ãa

Haehl, Loganayagam, MR 2015

Martin, Siggia, Rose 1973 
Kovtun, Moore, Romatschke 2014



TOPOLOGICAL SIGMA MODELS FOR HYDRODYNAMICS

✦Hydrodynamic modes are equivariant maps from the worldvolume to the 
target space (physical manifold). 

✦  The symmetry being gauged is thermal translations.
{QSK ,QSK}, such that the di↵erence operators are {QSK ,QSK}-exact and SK e↵ective ac-

tion is {QSK ,QSK}-closed, modulo source terms proportional to JR�JL. When JR = JL, this

theory naturally localizes as in (2.2).

It is convenient to implement the topological invariance by working in superspace [44].

We introduce two Grassmann odd coordinates {✓, ✓̄}, identify {QSK ,QSK} ⇠ {@
¯✓, @✓}, and

promote fields to superfields:

Y ! Y̊ = Y + ✓Y
¯ + ✓̄Y + ✓̄ ✓ Ỹ ⌘

YL + YR

2
+ ✓Y

¯ + ✓̄Y + ✓̄ ✓ (YR � YL) . (2.3)

The top (✓̄✓) component of the superfields represent the di↵erence operators while the Y ,Y ¯ 

are the ghost super-partners of Y. Note that they carry the same spin as the field Y but

opposite Grassmann parity. We can always recover the basic field by projection:

Y = Y̊| ⌘ Y̊

�

�

✓=¯✓=0

, Ỹ = @✓@¯✓Y̊| ⌘ @✓@¯✓Y̊
�

�

✓=¯✓=0

. (2.4)

We will henceforth adhere to the convention that the circle˚accent will denote the superfield

corresponding to a field and tilde picks out the di↵erence field in the SK construction.

Denoting spacetime coordinates by {�a
} and superspace coordinates by zI ⌘ {�a, ✓, ✓̄},

we demand invariance under super-reparameterizations zI 7! f I(z) for both (aligned) sources

and fields. Once a TQFT has been constructed in the superspace, we can unalign the sources

by shifting the ✓̄✓ components of the sources thus breaking the topological invariance to get

the required SK e↵ective theory.

The second symmetry we implement is CPT, which implies that the SK path integral is

invariant under the combined CPT transformation of the initial state and the sources. Using

the anti-unitary nature of CPT, we can translate this into a reality condition for the SK path

integral. It should satisfy the identity (where ⇤ represents complex conjugation)

Z

⇤
SK [JL, JR] = ZSK [JR, JL] . (2.5)

This identity follows simply from the definition in (2.1) along with hermiticity of ⇢̂
initial

.

As expected CPT acts anti-unitarily with a complex conjugation; it exchanges the left and

the right sources. Apart from the usual action on �a, CPT exchanges ✓̄ $ ✓ and hence

acts as an R-parity on the superspace. This is necessitated by our requirement that the ✓̄✓

component of the superfields be identified with di↵erence operators. It is further natural

to extend these symmetries by including ghost number conservation with ✓̄ and ✓ having

opposite ghost numbers (wlog ⌥1). The super-reparametrization invariance, CPT invariance

and ghost number conservation form the basic set of symmetries to be imposed on any SK

e↵ective theory.2

2 Thus in particular, these structures should also be present when we consider reduced density matrices for

some spatial region of a QFT as is usually done in the context of entanglement entropy.
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✦  Variables: superfields with top and bottom components being SK 
difference and average fields respectively

Features of near-thermal density matrices: We now move on to symmetries specific

to near-equilibrium situations. For thermal ⇢̂
initial

, SK correlators can be obtained by analyt-

ically continuing Euclidean thermal correlators. Under this continuation, Euclidean thermal

periodicity translates into a set of non-local KMS conditions [45–47]. They characterize the

UV-IR mixing inherent in thermal states, with the scale of non-locality being the thermal

scale. Any e↵ective theory of near-equilibrium fluctuations should e�ciently encode these

conditions non-linearly. This problem is well-studied (but without clear resolution) for non-

relativistic systems in macroscopic fluctuation [25] and mode-coupling theories. The issue

is one of implementing fluctuation-dissipation relations at the non-linear level. One may of

course impose the KMS relations directly on the correlators by hand, but it is unclear how

to maintain them under renormalization.

Inspired by our previous studies of the structural consequences of the second law in

relativistic fluids, we had advocated a solution to this conundrum in terms of an emergent

U(1)T gauge invariance [12, 13, 32]. This KMS symmetry acts on the fields by thermal

translations. In particular:

(a). It ensures the correct localization of the SK path integral satisfying Euclidean period-

icity, by extending the cohomology of {QSK ,QSK} into an equivariant cohomology of

thermal translations.

(b). It gives rise to a macroscopic entropy current thus intimately linking the emergence of

entropy with the microscopic KMS invariance.

In the gravitational description, this statement is then dual to Wald’s construction of black

hole entropy as a Noether charge [48, 49].

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike superfield �a(�). It can be viewed as a vector superfield �̊I(z) with

�̊✓ = �̊
¯✓ = 0 = @✓�̊a = @

¯✓�̊
a. We will consider below only that subset of superdi↵eomor-

phisms which respect this gauge choice for the background thermal supervector �̊I . Similarly

for charged fluids we introduce a thermal twist ⇤�(�) which encodes the chemical potential.3

These background fields play a fundamental role in the gauge theory describing thermal

fluctuations.

The supergauge U(1)T transformations are parameterized by an adjoint superfield ⇤̊.

They act on a general superfield Y̊ by Lie dragging it along ⇤̊�a. Such transformations can

be succinctly represented by introducing a special type of Lie bracket which we christen as a

thermal bracket,

(⇤̊, Y̊)� = ⇤̊£�Y̊ , (2.6)

where £� denotes the Lie-derivative along �a. The infinitesimal gauge transformation is thus

given by

Y̊ 7! Y̊ + (⇤̊, Y̊)� . (2.7)

3 This is the phase entering the thermal periodicity conditions in a particular flavour symmetry gauge.
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Features of near-thermal density matrices: We now move on to symmetries specific

to near-equilibrium situations. For thermal ⇢̂
initial

, SK correlators can be obtained by analyt-

ically continuing Euclidean thermal correlators. Under this continuation, Euclidean thermal

periodicity translates into a set of non-local KMS conditions [45–47]. They characterize the

UV-IR mixing inherent in thermal states, with the scale of non-locality being the thermal

scale. Any e↵ective theory of near-equilibrium fluctuations should e�ciently encode these

conditions non-linearly. This problem is well-studied (but without clear resolution) for non-

relativistic systems in macroscopic fluctuation [25] and mode-coupling theories. The issue

is one of implementing fluctuation-dissipation relations at the non-linear level. One may of

course impose the KMS relations directly on the correlators by hand, but it is unclear how

to maintain them under renormalization.

Inspired by our previous studies of the structural consequences of the second law in

relativistic fluids, we had advocated a solution to this conundrum in terms of an emergent

U(1)T gauge invariance [12, 13, 32]. This KMS symmetry acts on the fields by thermal

translations. In particular:

(a). It ensures the correct localization of the SK path integral satisfying Euclidean period-

icity, by extending the cohomology of {QSK ,QSK} into an equivariant cohomology of

thermal translations.

(b). It gives rise to a macroscopic entropy current thus intimately linking the emergence of

entropy with the microscopic KMS invariance.

In the gravitational description, this statement is then dual to Wald’s construction of black

hole entropy as a Noether charge [48, 49].

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike superfield �a(�). It can be viewed as a vector superfield �̊I(z) with

�̊✓ = �̊
¯✓ = 0 = @✓�̊a = @

¯✓�̊
a. We will consider below only that subset of superdi↵eomor-

phisms which respect this gauge choice for the background thermal supervector �̊I . Similarly

for charged fluids we introduce a thermal twist ⇤�(�) which encodes the chemical potential.3

These background fields play a fundamental role in the gauge theory describing thermal

fluctuations.

The supergauge U(1)T transformations are parameterized by an adjoint superfield ⇤̊.

They act on a general superfield Y̊ by Lie dragging it along ⇤̊�a. Such transformations can

be succinctly represented by introducing a special type of Lie bracket which we christen as a

thermal bracket,

(⇤̊, Y̊)� = ⇤̊£�Y̊ , (2.6)

where £� denotes the Lie-derivative along �a. The infinitesimal gauge transformation is thus

given by

Y̊ 7! Y̊ + (⇤̊, Y̊)� . (2.7)

3 This is the phase entering the thermal periodicity conditions in a particular flavour symmetry gauge.
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✦Thermal translations act via Lie drag along reference thermal vector          .

✦KMS gauge superfield implements thermal equivariance. 



TOPOLOGICAL SIGMA MODELS FOR HYDRODYNAMICS

✦Symmetries we impose are: 

➤  Superdiffeomorphisms in target space and world volume 

➤ CPT symmetry of SK path integrals (                                                ) 

➤ worldvolume ghost number conservation 

➤ KMS gauge invariance

Z⇤
SK [JL,JR] = ZSK [JR,JL]

and similarly for {⇥̊(z), ˚̄⇥(z)}. The worldvolume metric gab gets upgraded to superfields g̊IJ
using the U(1)T covariant D̊IX̊

µ:

g̊IJ(z) = gµ⌫(X̊(z)) D̊IX̊
µ
D̊JX̊

⌫ . (3.2)

Deformations away from the topological limit involve dealigning the sources for the left and

right fields; for the energy-momentum tensor this can be achieved by turning on a di↵erence

source hIJ , i.e.,

g̊IJ(z) ! g̊IJ(z) + ✓̄ ✓ hIJ(�) . (3.3)

Once we have an appropriate superspace Lagrangian, varying it with respect to the source

deformation hab will give us the (worldvolume) fluid dynamical stress tensor Tab
wv

, which can

subsequently be pushed-forward to the physical target space to get Tµ⌫ .

A natural consequence of enhancing the target space fields to superfields is that the target

space di↵eomorphisms, CPT and flavour symmetry get enhanced to

A. Target space super-di↵eomorphisms of {X̊µ, ⇥̊, ˚̄⇥}.

B. Target space CPT acting on {X̊µ, ⇥̊, ˚̄⇥}.

These two symmetries, particular to fluid dynamics, along with the four symmetries enumer-

ated above constitute the complete set of symmetries to describe the macroscopic thermal

fluctuations in fluid dynamics. In what follows, we will exploit a part of the target space

super-di↵eomorphisms to set {⇥̊ = ✓, ˚̄⇥ = ✓̄}. The reader may find the analogy with the

superstring worldsheet theory useful. The picture we portray above is the Ramond-Neveu-

Schwarz formalism for the space filling Brownian brane. As discussed in [32] the worldvolume

TQFT can be similarly constructed for higher codimension Brownian branes, with the Brow-

nian particle (or zero brane) theory leading to a description of Langevin dynamics.

We simply note in passing that the above discussion can be extended to include other

conserved charges. For flavour symmetry with source Aµ in the physical spacetime, the Gold-

stone modes include a flavour group element c(�), which map points on the flavour bundle

of the worldvolume onto the physical flavour bundle. The chemical potential is defined by

pushing-forward the worldvolume thermal twist ⇤�. Moreover, incorporating the desired su-

pertransformations one upgrades c(�) to a superfield c̊(z). This gives a worldvolume pull-back

flavour gauge field Åa defined by the map {X̊µ, c̊} which may further be deformed by dealign-

ing sources (i.e., introduce ↵a(�)). The crucial item to note is the U(1)T transformation on

the flavour superfield, which is given by

(⇤̊, c̊)� = ⇤̊ c̊
⇣

⇤� + �aÅa

⌘

.

Finally, we should append to the list of symmetries A and B, the target space flavour symmetry

acting on c̊.
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✦Dynamical fields are the pull-back maps which induce a worldvolume 
super-metric 

✦ Its  top component is the SK difference metric which couples to the 
physical stress tensor.  

✦Physical fluid dynamics obtained by deforming the topological theory.
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of the worldvolume onto the physical flavour bundle. The chemical potential is defined by

pushing-forward the worldvolume thermal twist ⇤�. Moreover, incorporating the desired su-

pertransformations one upgrades c(�) to a superfield c̊(z). This gives a worldvolume pull-back

flavour gauge field Åa defined by the map {X̊µ, c̊} which may further be deformed by dealign-

ing sources (i.e., introduce ↵a(�)). The crucial item to note is the U(1)T transformation on
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DISSIPATIVE HYDRODYNAMIC ACTIONS

✦  Working in superspace the symmetries suffice to constrain the terms that 
can appear in the worldvolume sigma model

4 Non-linear dissipative fluids

With the basic fields and symmetries in place, we are now in a position to construct an e↵ective

action. The symmetries 1-4 can be manifestly implemented by working in superspace. We

then have focus on the target space symmetries A and B of §3.

We begin by noting that the target space di↵eomorphism invariance forbids a standard

superpotential term, i.e., a function of the fields X̊µ. Consequentially, the simplest allowed

term is a worldvolume scalar density superpotential, L̊ [̊gab,�a], which is a functional of the

pull-back metric superfield g̊IJ . Such terms (up to on-shell equivalence) comprise the Landau-

Ginzburg Class L (HS [HS) in the classification of [13]. They however are adiabatic and do

not capture dissipative dynamics.

To see dissipation, consider the superfields D̊✓g̊ab and D̊

¯✓g̊cd which carry non-zero (and

opposite) ghost number. While neither of them can individually appear in the Lagrangian

given our symmetries 1-4, we can combine them with an intertwining tensor, ⌘̊(ab)(cd), of

vanishing ghost number. In general this intertwiner may be taken to be a tensor valued

di↵erential operator, ⌘̊(ab)(cd) [̊gab,�a, D̊I ] as in [13] but we will focus on simple examples

where it will su�ce to think of it as a worldvolume tensor superfield.

We therefore claim that the following worldvolume superspace action functional captures

dissipative hydrodynamic e↵ective field theories:

S
wv

⌘

ˆ
dd�L

wv

, L

wv

=

ˆ
d✓ d✓̄

p

�̊g

1 + �eÅe

✓

L̊�

i

4
⌘̊(ab)(cd)

D̊✓g̊ab D̊¯✓g̊cd

◆

, (4.1)

where the measure is dictated by U(1)T invariance.8 CPT invariance forces the tensor ⌘(ab)(cd)

to satisfy the generalized Onsager reciprocity relations [50, 51]:

⌘̊(ab)(cd) = [⌘̊(cd)(ab)]CPT , (4.2)

where the superscript CPT on the right hand side denotes taking the CPT conjugate.

Let us first recover the familiar form of the hydrodynamic constitutive relations. To this

end, we begin by defining

T

ab
L ⌘

2
p

�g

�

�gab
[
p

�g L] ,

N

a
L ⌘ �

(1 + �eAe)
p

�g

�

�Aa

⇥

p

�g

(1 + �fAf )
L
⇤

,

(4.3)

8 Note that the extra factor in the measure is just what is expected when working with a U(1)T covariant

pulled-back metric, for

dd�

p
�̊g

1 + �aÅa

= dd�
p

�̊g
det [@aX̊

µ]

det [D̊aX̊µ]
= ddX̊

p
�g .
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✦ In ordinary space we get back the adiabatic lagrangian + dissipation

Lwv =

p
�g

1 + �eAe

⇢
1

2


Tab

L � i

2
⌘(ab)(cd) (F✓✓̄, gcd)�

�
g̃ab �Na

LÃa

+
i

8

⇣
⌘(ab)(cd) + ⌘(cd)(ab)

⌘
g̃ab g̃cd + . . .

�
,

Class LT Lagrangian

Noise fluctuations

✦Again dissipative dynamics spontaneously breaks CPT, KMS field strength 
picks up a vev and ghost condenses.

Kovtun, Moore, Romatschke 2014 
Crossley, Glorioso, Liu 2015



HOLOGRAPHIC FLUIDS

p in L
(1)

, the curvature WR and !2 terms in L
(2)

are the hydrostatic terms (Class HS) which

were first discussed in [8, 9]. The �2 term in L
(2)

is the Landau-Ginzburg Class HS term

described in [13]. These terms combine to form the Class L terms that are present in a neutral

conformal fluid. If we restrict to hydrostatic equilibrium only the Class HS terms are allowed;

everything else vanishes. The SK path integral constructed above localizes to the Euclidean

path integral. The remaining terms involve the intertwining tensor: the contributions from

⌘(ab)(cd)
(1)

and ⌘(ab)(cd)
(2,D)

, which involve tensors symmetric under (ab) $ (cd), are clearly the

dissipative Class D terms. They are purely real, and thus consistent with the requirements

of Onsager reciprocity as demanded by (4.2).

It is instructive to adapt these results for a holographic conformal fluid for which the

transport data is readily available from [54] and [27, 52]. For fluids dual to Einstein gravity,

we have the aforementioned Lagrangian density parameterized by

p(T) = c
e↵

✓

4⇡T

d

◆d

, ⌘ = c
e↵

✓

4⇡T

d

◆d�1

,

 = �
1

= 2 c
e↵

✓

4⇡T

d

◆d�2

, �
2

= 2(� ⌧) , �
3

= 0 ,

⌧ = 2 c
e↵

✓

4⇡T

d

◆d�2



1 +
1

d
Harmonic

✓

2

d
� 1

◆�

,

(4.17)

where c
e↵

is the e↵ective central charge of the QFT.13 This can be succinctly written as a

superspace integral

L
wv

= c
e↵

ˆ
d✓ d✓̄

p

�̊g

1 + �e Åe

⇢

 

4⇡ T̊

d

!d
✓

1�
i d

8⇡
P̊chaP̊bid

D̊✓g̊ab D̊¯✓g̊cd

◆

�

 

4⇡ T̊

d

!d�2

 WR̊

d� 2
+

1

d
Harmonic

✓

2

d
� 1

◆

�̊2 +
1

2
!̊2

��

.

(4.18)

This expression generalizes the bosonic Class L Lagrangian given in [12, 13] for the adiabatic

part of the constitutive relations, cf., equation (14.35) of the latter.

Holographic fluids described by Einstein-Hilbert gravity thus do not give the most general

conformal fluid; as noticed in [13] they miss out on the Class B term (owing to the �
2

relation

derived first in [55]) and pick out the value of �
1

that makes the second order dissipative

contribution vanish. We have conjectured hitherto that this has to do with holographic fluids

being optimal dissipators [12].

It is worth noting that the dissipative transport coe�cients scale with the central charge

c
e↵

. This means that the noise terms are suppressed by a factor of c�1

e↵

. In familiar holographic

systems the dissipative energy-momentum tensor has thus two contributions: a leading O(c
e↵

)

13 For holographic theories it is convenient to normalize ce↵ =
`d�1
AdS

16⇡GN
, so as to get a simple result for the

Bekenstein-Hawking entropy. For SU(N), N = 44d SYM we obtain ce↵ = N2

8⇡2 .
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✦Known second order transport of holographic fluids follows from:

✦How does the bulk gravity theory realize this effective action? 

✦Recent attempts get the ideal fluid part correct, but no clear story 
beyond…

Crossley, Glorioso, Liu, Wang 2015 (incomplete at second order) 
deBoer, Heller, Pinzani-Fokeeva 2015 (ideal)

Nickel, Son 2010 (ideal)



FLUCTUATION-DISSIPATION & JARZYNSKI

✦Presence of a gauge symmetry which couples to entropy current appears 
to be manifestly contradicting second law. 

✦Claim: entropy flows into the physical sector from the ghost sector. 
Appears to work in superspace cleanly…

conclude that the transformation we seek shifts the fluid variables as:

g̃ab 7! g̃ab �
�

F✓¯✓, gab
�

�
, Ãa 7! Ãa +DaF✓¯✓ . (5.3)

Implementing this we see that the worldvolume Lagrangian density transforms with an inho-

mogeneous piece (as expected due to the gauge fixing)

L

wv

7! L

wv

+
�L

wv

�g̃ab
�g̃ab +

�L
wv

�Ãa

�Ãa (5.4)

= L

wv

� F✓¯✓

✓

1

2
T

ab
wv

£� gab �DaN
a

◆

+ boundary terms . (5.5)

The boundary terms above get contributions from the various integrations by parts performed

in doing the transformations and superspace integrals.

We now invoke the expectation value of hF✓¯✓i = �i and write the change in the action

functional S
wv

⌘

´
dd�L

wv

suggestively as

i S
wv

7! i S
wv

� T�1 (Gf �Gi +W ) . (5.6)

We introduced here the free energy di↵erence and total work done by the external source:

Gf �Gi ⌘ �T

ˆ
dd�

p

�g

1 + �eAe
DaN

a = �T

ˆ
⌃E

N

a dd�1Sa

�

�

�

�

�

tf

ti

, (5.7)

W ⌘ T

ˆ
dd�

p

�g

✓

1

2
T

ab
wv

£� gab

◆

, (5.8)

with the assumption that the boundary terms will conspire to cancel out of this analysis.

The integral in Gf �Gi over worldvolume time has been performed such as to localize onto

a hydrostatic integral over the Euclidean base manifold ⌃E with volume element dd�1Sa

evaluated in the equilibrium configurations at initial and final times ti, tf . Note in particular

that this integral is independent of the (generically non-adiabatic) protocol which takes the

system from the initial to the final configuration and it includes contributions from the ghost

superpartners of the fields.

From equation (5.6) we can get the hydrodynamic fluctuation-dissipation result we seek

following [39]. The underlying topological symmetry implies the following Ward identity

he�
W
T
i = e�

1
T(Gf�Gi), (5.9)

i.e., the expectation value of the exponential of the work done is the exponential of the free

energy di↵erence. Using Jensen’s inequality on the above we obtain

hW i � Gf �Gi , (5.10)

which asserts that entropy is produced in the system. In other words the generalized work

relation (5.9) implies the second law of thermodynamics, ensuring that our construction is

consistent with the axioms of hydrodynamics.
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✦The MMO argument goes through in the hydrodynamic effective action 
leading to a derivation of the Jarzynski relation which them implies the 
2nd law using convexity of the exponential function.

✦Note only stochastic fluctuations accounted for thus far. Requires 
understanding of full KMS structure for quantum effects.
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with the assumption that the boundary terms will conspire to cancel out of this analysis.

The integral in Gf �Gi over worldvolume time has been performed such as to localize onto

a hydrostatic integral over the Euclidean base manifold ⌃E with volume element dd�1Sa

evaluated in the equilibrium configurations at initial and final times ti, tf . Note in particular

that this integral is independent of the (generically non-adiabatic) protocol which takes the

system from the initial to the final configuration and it includes contributions from the ghost

superpartners of the fields.

From equation (5.6) we can get the hydrodynamic fluctuation-dissipation result we seek

following [39]. The underlying topological symmetry implies the following Ward identity

he�
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1
T(Gf�Gi), (5.9)

i.e., the expectation value of the exponential of the work done is the exponential of the free

energy di↵erence. Using Jensen’s inequality on the above we obtain

hW i � Gf �Gi , (5.10)

which asserts that entropy is produced in the system. In other words the generalized work

relation (5.9) implies the second law of thermodynamics, ensuring that our construction is
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Epilogue: Of that which is yet to be…



LOOKING AHEAD…

✦  Near-equilibrium dynamics appears to be under control (should however 
write down the eightfold topological sigma model).  What about non-
equilibrium? 

✦Open quantum systems & renormalization  

✦How does thermal equivariance extend to include non-stochastic 
fluctuations? Deformation quantization?  

✦Microscopic unitary which enforces fluctuation-dissipation etc., is upheld 
thanks to the ghost couplings. Lessons for gravity? 

✦What is the analogous story for higher out-of-time-order correlators? 

✦  Are the similar statements for modular evolutions (equivalent in some 
contexts), and if so what does it imply for geometry = entanglement?

Avinash, Jana, Loganayagam, Rudra 2017

Basart, Flato, Lichnerowicz, Sternheimer 1984



A ROADMAP FOR THE FUTURE….

Microscopic Schwinger-Keldysh construction

Macrophysics: cf., 
hydrodynamics

Black hole dynamics

★ doubling of degrees of freedom 
★ entanglement structure  in initial state

★ no doubling! 
★ emergent IR collective fields 
★ entropy & second law of 

thermodynamics

★ emergence of  horizons? 
★ reality of the interior?

Wilso
nian

 IR
 physi

cs ER=EPR

Fluid/Gravity
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