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紆余曲折の物語

発見前夜～黎明期 
□インスタントンはどこで見付かるか 
公式発見への道のり（テーゼ） 
□量子異常が見えた？ 
次々となされる批判（アンチテーゼ） 
□カイラル化学ポテンシャルの功罪 
批判を乗り越えて（アウフヘーベン） 
□量子異常と非平衡の物理
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Jan. 20, 2021 @ 基礎物理学研究所（オンライン）

ＱＣＤと量子異常
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カイラル量子異常
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図 1 電場中で ER と EL がシフトする様子．

∆t =
2π

eE L
(15)

だけ経過したところでエネルギーがひとつぶんシ
フトしてほぼ元の状態に戻り，図 1に示すように
ERに沿って負から正エネルギーに粒子ひとつ，EL

に沿って正から負エネルギーに粒子ひとつずれる．
これは物理的には真空から右巻き粒子 (Q5 =

+1) と左巻き正孔 (同じく Q5 = +1) が対生成
することを意味する．ということはカイラル荷が
∆Q5 = +2 だけ変化する．L が十分に大きくて
∆tが小さければ以上の結果を

∂0Q5 =
2

∆t
=

eE L

π
=

L

π
∂0eA1 (16)

とまとめることができる．一様な電場を考えてい
たから右辺に Lが出たが，これは一般には空間積
分であり，Q5 は j05 を空間積分したものだったことを思い出すと，上式を局所的に表せて

∂µj
µ
5 =

e

2π
εµνFµν (17)

と書ける．ただし ε01 = −ε10 = +1 (それ以外の
成分はゼロ)で Fµν = ∂µAν − ∂νAµ である．実
際，式 (17)を空間積分して表面項を落とせば左辺
は直ちに式 (16)に一致する．右辺はµ = 0，ν = 1

と µ = 1，ν = 0の和をとってやはり式 (16)に一
致することが確認できる．この式 (17)が（1+1次
元系における）カイラル量子異常である．
この議論で重要なポイントは，∆t だけ経過し

た後の状態が，粒子と正孔の対生成を除いて元の
状態に戻っている，ということである．換言する
とエネルギーがひとつぶんシフトしているのだか
ら Diracの海の深い底，すなわち ER(p ∼ −∞)，

図 2 軸性カレント期待値の計算
EL(p ∼ +∞)付近から流入した∆Q5が p ∼ 0付
近で見えていることになる．これが量子異常が運
動量の無限に大きな端から出てくる，つまり紫外
発散から出てくるといわれる所以である．またこ
の議論から，紫外領域から流入する ∆Q5 は紫外
発散の扱い方 (正則化)に依存することもわかる．
ここではコメントのみに留めるが，電荷保存則を
破らない正則化のもとでは式 (17)が従う．
「量子異常は紫外の物理」とは標語的によくい
われることだが，原子核や物性の実験でどこに紫
外発散があるのか? という疑問をときどき耳にす
る．研究会でも，君の計算には紫外発散が見えな
いのに量子異常とはどういうこと? なんて口撃さ
れることも実際結構あります．上述の議論からす
でに明らかなように，量子異常が観測的に見える
のは p ∼ 0，つまり赤外の物理なのである．
量子異常の赤外の性質は 〈jµ5 〉を直接計算するとよくわかる．何事も下手に悩むより手を動かした
方が早いものです．研究の袋小路に入った学生に
もよく，哲学するより計算したら？とアドバイス
しています．図 2の Feynmanグラフに対応する
式を書き下すと，jµ5 の運動量空間 (以下ではチル
ダ付で表す)の期待値は
〈j̃µ5 〉 = −

∫
d2k

(2π)2
tr

[
γµγ5

i
/k
(−ie)γρ

i
/k + /p

]
Ãρ

(18)

最終的に 〈∂µjµ5 〉 が欲しいから運動量空間では
−ipµ〈j̃µ5 〉 を計算すればよい．p は何でもよいが
赤外の性質を見たいから p ∼ 0としよう．k 積分
して p → 0で落ちる項を無視して−ikνÃρ → F̃νρ

と置き換えれば
〈j̃µ5 〉 =

ie

2π

pµ

p2
εαβF̃αβ (19)

が得られ，p2 → 0に赤外の極を持つことがわかる．
数理科学 NO. 693, MARCH 2021 3

【カイラリティ】 
  右巻き粒子数と左巻き粒子数の差

Nielsen-Ninomiya (1983)
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インスタントンとθ真空
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平行電磁場をかけなくても、QCDではグルーオンの 
運動方程式の虚時間古典解が似たような性質を持つ

インスタントン

解の存在と性質は’70年代から知られていたが・・・
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インスタントンとθ真空

7

h✓|✓i ! SQCD = � 1

2g2
trFµ⌫F

µ⌫ +
✓

16⇡2
trFµ⌫ F̃

µ⌫

<latexit sha1_base64="uyO3447RDNiHyyKnSKcI/lUDQd0="></latexit>

θは(何故か分からないが)ゼロとコンシステント

インスタントンは実験で見えるのか？
・理論屋はカイラル対称性の自発的破れの起源 
（質量の起源）はインスタントンだと信じている
・η’の質量が異常に大きい

もっと直接的な実験的証拠は？
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真空を変化させる実験
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真空＝媒質 

実験的に真空 
の性質を変化

相対論的重イオン衝突実験
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真空を変化させる実験
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標準的な場の量子論の教科書によれば・・・

QCDには当てはまらない
凝縮で動的に決まる

!p =
p
p2 +m2

<latexit sha1_base64="uGCqFfAaVDf/OgTctey8e1Bbzbs="></latexit>
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真空を変化させる実験

10

インスタントンに似た物理を調べられる？

・虚時間 → 実時間のトポロジー的遷移？ 
　高温で遷移率が大きくなる 
（QCDスファレロン遷移）

・実時間で真空が急激に変化して、一時的に 
　θと同じ量子数をもつ凝縮が生成される？ 
（Disoriented Chiral Condensate)

McLerran-Mottola-Shaposhnikov (1990)

Bjorken, Pisarski, 
Kharzeev, … (~1990)

T.D. Lee — “Vacuum Engineering”
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公式発見への道のり
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磁場を入れてみよう
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当時は磁場中のクォーク物質の計算はまだマイナーな 
研究課題で、カラー超伝導で議論されていただけ

査読したカラー超伝導の論文で？？？と思うことが 
あって、たまたま廊下でHarmen Warringaと議論

これ、真面目に計算できるのでは？

Fukushima-Warringa,

“Color superconducting matter in a magnetic field”

Phys.Rev.Lett.100, 032007 (2008)
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メジャーでなかった理由
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中性子星の表面磁場

マグネターの表面磁場

. 1012 gauss ⇠ 10�2 MeV2

. 1015 gauss ⇠ 10MeV2

マグネターの中心部
. 1018 gauss ⇠ 104 MeV2 ⇠ m2

⇡

やっとQCDスケールに届いても、密度のエネルギー 
スケールの方が大きく、磁場効果はほとんど効かない
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お前の磁場はネグリジブルだ！
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1020gauss ⇠ GeV2
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相対論的重イオン衝突実験の作る磁場

Larry McLerran

Fig. 1. Illustration of the Chiral Magnetic Effect in a very large homogeneous mag-
netic field. The red arrows denote the direction of momentum, the blue arrows – the
spin of the quarks. (1) Due to the very large magnetic field the up and down quarks
are all in the lowest Landau level and can only move along the direction of the mag-
netic field. Initially there are as many left-handed as right-handed quarks. (2) The
quarks interact with a gauge configuration with nonzero Qw. Assuming Qw = −1,
this will convert a left-handed up/down quark into a right-handed up/down quark
by reversing the direction of momentum. (3) The right-handed up quarks will move
upwards, the right-handed down quarks will move downwards. A charge difference
of Q = 2e will be created between two sides of a plane perpendicular to the magnetic
field.

where qf is the charge in units of e of a quark with flavor f . For Nf = 2 and
Nf = 3 the relation above becomes Q = 2Qw and Q = 8

3
Qw respectively. An

alternative derivation of this result is presented in Appendix B.
Since Eq. (16) was obtained in the most ideal case, i.e. chiral limit and an

extremely large magnetic field, Eq. (16) has to be an upper limit. Therefore
there is a maximum amount of charge that can be separated by a particular
gauge field configuration in a homogeneous background magnetic field; in other
words

|Q| ≤ 2|Qw|
∑

f

|qf |. (17)

In our derivation we ignored the back-reaction due to the electric field
created by the separating charges. We believe that this back-reaction can only
give rise to a small suppression of the effect. This is because the size of the
electric field will be much smaller than eB since there are very few particles
involved. Moreover, in the physical case we are interested in, a heavy ion
collision, the color forces will surely dominate.

Since the separation is independent of color, the mechanism will not create
a net color charge difference. Therefore we can safely ignore a gluonic back-
reaction.

4.2 Moderate Magnetic Field

Now that we considered the ideal situation with an extremely large magnetic
field, let us estimate the amount of charge separated in a moderate homoge-

10

Kharzeev-McLerran-Warringa, 
“The effects of topological charge change in 
heavy ion collisions: Event by event P and 
CP violation”, NPA 803, 227 (2008)
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直感的な描像
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Fig. 1. Illustration of the Chiral Magnetic Effect in a very large homogeneous mag-
netic field. The red arrows denote the direction of momentum, the blue arrows – the
spin of the quarks. (1) Due to the very large magnetic field the up and down quarks
are all in the lowest Landau level and can only move along the direction of the mag-
netic field. Initially there are as many left-handed as right-handed quarks. (2) The
quarks interact with a gauge configuration with nonzero Qw. Assuming Qw = −1,
this will convert a left-handed up/down quark into a right-handed up/down quark
by reversing the direction of momentum. (3) The right-handed up quarks will move
upwards, the right-handed down quarks will move downwards. A charge difference
of Q = 2e will be created between two sides of a plane perpendicular to the magnetic
field.
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Nf = 3 the relation above becomes Q = 2Qw and Q = 8
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4.2 Moderate Magnetic Field

Now that we considered the ideal situation with an extremely large magnetic
field, let us estimate the amount of charge separated in a moderate homoge-

10

Kharzeev-McLerran-Warringa, 
“The effects of topological charge change in 
heavy ion collisions: Event by event P and 
CP violation”, NPA 803, 227 (2008)

most ideal situation in which all quark masses vanish. This should be a good
approximation in the deconfined, chiral symmetry restored phase. First we
consider the case with a very large magnetic field, which means for us that
eB is much larger than the momentum squared of all particles, i.e. eB ! p2.
Then we will study the effect of a moderate field.

4.1 Large magnetic field

Initially we assume that we have a very small number of left and right-handed
fermions. This is because our initial state has little fluctuation in the helic-
ities of particles. This is a reasonable assumption for an initial state typical
of a Color Glass Condensate, where the coupling is weak and the fluctua-
tions should be generated by quantum mechanical tunneling, and therefore
suppressed as exp(−2π/αS) [58,59,42]. At later time, sphaleron–like transi-
tions should be possible since the system becomes an ensemble of classical
configurations with energy typically greater than the barrier [60].

Since the magnetic field is so large, all particles will be found in the lowest
Landau level. Hence their spin is aligned along the magnetic field and they
can also only move along the magnetic field. Quarks with opposite charges
have their spins aligned in different directions. If B points in the z-direction
positively charged right-handed fermions and negatively charged left-handed
fermions will move in the positive z-direction (upwards). At the same time
positively charged left-handed fermions and negatively charged right-handed
fermions will move downwards. We illustrated this situation in Fig. 1.

The fermions will then interact with a gauge field configuration, so that
some of them will change their helicity. After the interaction with the gauge
field configuration has taken place we find that (since we assumed the chiral
limit)

(Nf
L − Nf

R) = 2Qw, (15)

so that if Qw is nonzero we obtain a difference between the number of left
and right-handed fermions that is the same for each flavor. The fermions can
only change helicity by reversing their momenta, since spin flip is energeti-
cally suppressed in a large magnetic field (we assumed eB ! p2). So after
the interaction has taken place all positively charged right-handed fermions
and negatively charged left-handed fermions will still move upwards. At the
same time positively charged left-handed quarks and negatively charged right-
handed quarks will still move downwards. However, now there is a difference
between the number of right-handed and left-handed fermions. As a result an
electromagnetic current is generated along the direction of B. If we assume
that initially all fermions are within a finite volume, this current will induce
a charge difference Qe between opposite sides a plane perpendicular to the
magnetic field. Here e denotes the elementary charge and

Q = 2Qw

∑

f

|qf |, (16)
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カイラリティがトポロジー的なゲージ配位に誘起される

磁場がスピンの向きを揃え電荷の偏りが誘起される

most ideal situation in which all quark masses vanish. This should be a good
approximation in the deconfined, chiral symmetry restored phase. First we
consider the case with a very large magnetic field, which means for us that
eB is much larger than the momentum squared of all particles, i.e. eB ! p2.
Then we will study the effect of a moderate field.

4.1 Large magnetic field

Initially we assume that we have a very small number of left and right-handed
fermions. This is because our initial state has little fluctuation in the helic-
ities of particles. This is a reasonable assumption for an initial state typical
of a Color Glass Condensate, where the coupling is weak and the fluctua-
tions should be generated by quantum mechanical tunneling, and therefore
suppressed as exp(−2π/αS) [58,59,42]. At later time, sphaleron–like transi-
tions should be possible since the system becomes an ensemble of classical
configurations with energy typically greater than the barrier [60].

Since the magnetic field is so large, all particles will be found in the lowest
Landau level. Hence their spin is aligned along the magnetic field and they
can also only move along the magnetic field. Quarks with opposite charges
have their spins aligned in different directions. If B points in the z-direction
positively charged right-handed fermions and negatively charged left-handed
fermions will move in the positive z-direction (upwards). At the same time
positively charged left-handed fermions and negatively charged right-handed
fermions will move downwards. We illustrated this situation in Fig. 1.

The fermions will then interact with a gauge field configuration, so that
some of them will change their helicity. After the interaction with the gauge
field configuration has taken place we find that (since we assumed the chiral
limit)

(Nf
L − Nf

R) = 2Qw, (15)

so that if Qw is nonzero we obtain a difference between the number of left
and right-handed fermions that is the same for each flavor. The fermions can
only change helicity by reversing their momenta, since spin flip is energeti-
cally suppressed in a large magnetic field (we assumed eB ! p2). So after
the interaction has taken place all positively charged right-handed fermions
and negatively charged left-handed fermions will still move upwards. At the
same time positively charged left-handed quarks and negatively charged right-
handed quarks will still move downwards. However, now there is a difference
between the number of right-handed and left-handed fermions. As a result an
electromagnetic current is generated along the direction of B. If we assume
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a charge difference Qe between opposite sides a plane perpendicular to the
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ここまではDCCなど様々な 
理論シナリオのひとつ・・・
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最高に愉快な数日間
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2007年9月にBNLから基研に異動 
2008年の初夏にBNLに 釣りしに 物理を議論しに行く

Harmen Warringa、Dima Kharzeevと議論が始まる

磁場中のもっと場の量子論的な計算はできないか？

「粒子数」はとても扱いにくい 
カラー超伝導では(β平衡の)化学ポテンシャルを使う

カイラリティ → 化学ポテンシャルで大分配関数計算
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最高に愉快な数日間
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毎朝「答えが分かったぞ！」から議論がスタート

我々が最初に気付いた「公式」と「導出法」

K. Fukushima, “Views of the Chiral Magnetic Effect” 
Lect.Notes Phys.871, 241 (2013) 1209.5064 [hep-ph]
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by

Ω =
|eB|
2º

X

s=±

1X

n=0

Æn,s

Z 1

°1

dp3

2º

h
!p,s

+ T
X

±
log(1 + e°Ø(!p,s±µ))

i
, (26)

where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by

!2
p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5

i2
+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@

@A3
= e

d
dp3

, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,

j3 = e
|eB|
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i
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find

j3 = e
|eB|
2º

Z Λ

°Λ

dp3

2º

d
dp3

h
!p,++T

X

±
log(1+e°Ø(!p,+±µ))

i
,

(32)
where

!2
p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals

j3 = e
|eB|
4º2

[!p,±(p3 = Λ)° !p,±(p3 = °Λ)]

= e
|eB|
4º2

[(Λ± µ5)° (Λ® µ5)] =
e2µ5

2º2
B, (34)

where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by

!2
p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5

i2
+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@

@A3
= e

d
dp3

, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find

j3 = e
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(32)
where

!2
p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals

j3 = e
|eB|
4º2

[!p,±(p3 = Λ)° !p,±(p3 = °Λ)]

= e
|eB|
4º2

[(Λ± µ5)° (Λ® µ5)] =
e2µ5

2º2
B, (34)

where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =

h
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3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@

@A3
= e

d
dp3

, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,

j3 = e
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find

j3 = e
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(32)
where

!2
p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals

j3 = e
|eB|
4º2

[!p,±(p3 = Λ)° !p,±(p3 = °Λ)]

= e
|eB|
4º2

[(Λ± µ5)° (Λ® µ5)] =
e2µ5

2º2
B, (34)

where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by

!2
p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5

i2
+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@
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= e

d
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, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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(32)
where
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p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =
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sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
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ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that
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when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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where
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For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =
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3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
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. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that
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when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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where
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For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by

!2
p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5

i2
+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that
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when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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(32)
where

!2
p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =
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sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@

@A3
= e
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, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find

j3 = e
|eB|
2º

Z Λ

°Λ

dp3

2º

d
dp3

h
!p,++T

X

±
log(1+e°Ø(!p,+±µ))

i
,

(32)
where
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For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by

!2
p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that
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when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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where
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For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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the presence of a chiral chemical potential we find that
the thermodynamic potential is given by
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@
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when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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where
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p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an
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where n is a sum over Landau levels, s is a sum over spin
and the dispersion relation is given by
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p,s =

h
sgn(p3)(p2

3 + 2|eB|n)1/2 + sµ5
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+ m2. (27)

The first term in the square brackets may also be written
as p3(1 + 2|eB|n/p2

3)1/2 without the sign function. The
constant Æn,s ensures that the lowest Landau level only
contains one spin component,

Æn,s =

8
<

:

1 n > 0,
±s+ n = 0, eB > 0,
±s° n = 0, eB < 0.

(28)

We also note again that the phase space associated with
Landau levels is quantized in a box with periodic bound-
ary conditions. We omit this to avoid bothersome nota-
tion like beLxLyB/2ºc/LxLy in the phase space factor.

Let us introduce a constant gauge field A3. One might
think that a constant gauge field could be gauged away,
but this is not possible by a gauge transformation satisfy-
ing the periodic boundary condition. The current density
is the derivative of the thermodynamic potential with re-
spect to A3 at the point A3 = 0,

j3 =
@Ω
@A3

ØØØØ
A3=0

. (29)

The thermodynamic potential is still given by Eq. (26),
but the dispersion relation Eq. (27) is now modified by re-
placing p3 by p3+eA3. In order to regularize the ultravio-
let divergences of thermodynamic potential we introduce
a momentum cutoff Λ on the p3 integral. Furthermore we
introduce a cutoff N on the sum over the Landau levels.
After we have introduced this regularization we can pull
the derivative with respect to A3 through the sum and
integral. Then we can use that

@
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= e

d
dp3

, (30)

when acting on an arbitrary function of !p,s. As a result
we find the following expression for the current density,
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where !p,s is now given by Eq. (27) since we used that
A3 has to put to zero after taking the derivative. After
summing over spins the contribution to the integrand of
the Landau Levels with n > 0 is an odd function of p3.
Hence only the lowest Landau level which contains one
spin component contributes to the current. As a result
for eB > 0 we find
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(32)
where
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p,± = (p3 ± µ5)2 + m2. (33)

For eB < 0 one has to replace !p,+ by !p,° in Eq. (32).
Since the integrand is a total derivative, it is easily inte-
grated. The medium part (logarithmic term) drops be-
cause it goes to zero with p3 ! ±1. Only a surface term
remains, which equals

j3 = e
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where we have used that ± corresponds to the sign of
eB. The fact that the current is equal to a surface term
is because it is caused by the electromagnetic anomaly.
This as was argued in the first derivation.

By multiplying the current density Eq. (34) with the
volume one finds the total current Eq. (24). The virtue
in this derivation is that it is manifest that the current
results from the surface integral at infinitely large mo-
mentum, to which any infrared effects of mass, temper-
ature, and µ are irrelevant. The next derivation using
the derivative expansion will give us more understanding
why this result is independent of mass.

D. Derivative expansion of effective action

The last derivation of the current we discuss is by us-
ing a derivative expansion of the effective action as is
performed by D’Hoker and Goldstone [53] (see also [54]).
Let us introduce an axial vector field A5

µ and write the
covariant derivative as Dµ = @µ ° ieAµ ° ieA5

µ∞5. One
can define right- and left-handed vector fields as follows:
AR = Aµ + A5

µ and AL = Aµ ° A5
µ. By performing

the integration over the fermions fields one obtains the
following effective action

Seff = log Det (i /D °m) . (35)

Here Det includes the space-time coordinates as well as
the color and Dirac indices. The current density jµ can
be obtained by taking the functional derivative of this
expression with respect to Aµ. In the presence of an

(μ5のためゲージ量子異常ではない)
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Harmen・自分「運動量の端っこから答えが出て温度にも 
　　　　　　　　質量にもよらない式が出たっ！」

Dima「そうそう、量子異常だからねー、フフフ」

Harmen・自分「あれ？思ったより驚かないな・・・ 
　　　　　　　　答えを知っていたのかな・・・」

(Dima Kharzeevのオフィスに駆け込んで 
興奮して黒板に式を書き殴る二人）
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axial vector field the divergence of a vector current is
anomalous; one has [53]

@µjµ = e
e2

16º2

≥
Fµ∫

L F̃L,µ∫ ° Fµ∫
R F̃R,µ∫

¥
. (36)

One can write down an expansion of the current in terms
of the fields Aµ, A5

µ and their derivatives. The expres-
sion should be Lorentz covariant and U(1) gauge invari-
ant. Furthermore the current should satisfy the anomaly
constraint Eq. (36). To first order in the fields and deriva-
tives one obtains [53],

jµ = ° e2

4º2
≤µ∫ΩæeA5

∫FΩæ. (37)

The current is m-independent. This follows directly from
the anomalous divergence of the vector current, that has
no m-dependent contributions even with inclusion of a
mass term. However, the divergence of the axial vector
current is m-dependent. Therefore the axial vector cur-
rent induced by a magnetic field depends on mass. This
is indeed found in Ref. [44].

We can now use that eA5
0 = µ5 in Eq. (37), so that we

obtain the current density induced by a magnetic field,

j =
e2µ5

2º2
B. (38)

Since the last equation was obtained via a derivative ex-
pansion, the derivation assumes constant magnetic fields.

E. Discussion of derivations

We have argued in Sec. II that A5
µ = @µµ/2Nf up to a

coupling constant. Suppose we have a space-dependent
theta angle µ, for example formed by a domain wall. The
covariant current in Eq. (37) shows that an electric field
will induce a current perpendicular to the electric field on
the domain wall. Moreover, it shows that a magnetic field
will induce charge on the domain wall. The generation
of charge on domain walls or solitons was first discussed
by Goldstone and Wilczek [55]. Callan and Harvey [56]
have studied this mechanism as well in the context of
axionic cosmic strings. They however use pseudoscalar
coupling instead of axial vector coupling, but find a result
for the current which is equivalent to Eq. (37). It was
argued in Refs. [57, 58] that on domain walls formed
in certain semi-conductors currents could be generated
perpendicular to the electric field for the same reason. In
the context of charge separation in heavy-ion collisions,
the generation of charge on µ domain walls was discussed
by Kharzeev and Zhitnitsky [28].

Goldstone and Wilczek [55] have derived their current
using a perturbative one-loop calculation. It is also possi-
ble to compute our current perturbatively. One obtains
a triangle one-loop diagram with two vector couplings
and one axial vector coupling. As is well known, this
diagram contains the anomaly. If one includes the effect

of the chiral chemical potential in the fermion propaga-
tor, the diagram to compute is the photon polarization
tensor.

The axial anomaly generates the topological term
which is a color singlet. So no net color is separated
by the Chiral Magnetic Effect. Hence it is expected that
no additional chromo-electric fields are built up along the
direction of the magnetic field. Therefore a possible glu-
onic back-reaction can be neglected. This can also be
inferred from Eq. (36), since it will not be modified by
the presence of a gluonic background field. As a result,
the expression for the current Eq. (38) is correct even in
the presence of a time-independent gluonic field.

If the Chiral Magnetic Effect operates in a heavy-
ion collision, the current is generated in a finite vol-
ume. Hence charges are separated, so an electric field
will be built up along the direction of the magnetic field.
This could cause a back-reaction. We think that in the
study for the implications in heavy-ion collisions, this
back-reaction can be neglected, since the electric field is
small compared to the magnetic field (it only involves
a few charges, while the magnetic field is created by all
charges). Furthermore the electric force is small com-
pared to the gluonic force.

We have obtained the current for one fermion with
charge e. In the quark-gluon plasma there are 3 relevant
quark flavors, up, down and strange with charges qf =
2/3e,°1/3e and °1/3e which have Nc = 3 colors. The
total current will be the sum of the contributions of the
individual ones, which follow from the previous obtained
expressions by replacing e with qf , summing over flavors
and multiplying by the number of colors. This results in

J = Nc

X

f

qf

jqfΦ
2º

kLzµ5

º
. (39)

IV. CURRENT EXPRESSED IN CHIRAL
CHARGE

As we saw in the previous section, the induced current
is proportional to µ5. The chiral chemical potential µ5

is a parameter which induces an asymmetry between the
number density of right- and left-handed fermions n5 =
nR ° nL. Since the asymmetry is conserved by varying
the magnetic field or the temperature, µ5 will depend on
the magnetic field, temperature, and chemical potential.
In this section we will compute the conserved quantity
n5 as a function of µ5. We then will express µ5 in terms
of n5 in order to obtain the dependence of the induced
current on n5. This allows us to make comparisons of
the magnitude of the Chiral Magnetic Effect in different
situations. Moreover, it allows us to relate the current to
sphaleron dynamics, since the change in N5 is equal to
°2Nf times the winding number of the sphaleron.

In the computation we present here we will neglect the
effect of the gluons. At very large temperatures, this is
correct, since the coupling between gluons and quarks is
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16º2

≥
Fµ∫

L F̃L,µ∫ ° Fµ∫
R F̃R,µ∫

¥
. (36)
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Topological charge changing transitions can induce chirality in the quark-gluon plasma by the
axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to
an external magnetic field. To mimic the effect of the topological charge changing transitions we will
introduce a chiral chemical potential. We will show that an electromagnetic current is generated
along the magnetic field. This is the Chiral Magnetic Effect. We compute the magnitude of this
current as a function of magnetic field, chirality, temperature, and baryon chemical potential.

I. INTRODUCTION

The quark-gluon plasma is a phase of extremely hot
matter consisting of quarks and gluons. Just after the
Big-Bang, the universe itself was in the quark-gluon
plasma phase. The quark-gluon plasma can be created
and studied using collisions of heavy ions. An active ex-
perimental program to investigate the properties of this
hot phase of matter is underway using the Relativistic
Heavy Ion Collider (RHIC) at BNL. In the near future
the quark-gluon plasma will also be studied using the
Large Hadron Collider (LHC) at CERN, the Facility for
Antiproton and Ion Research (FAIR) at GSI, and the
NICA facility at JINR, Dubna.

The behavior of the quark-gluon plasma is described by
Quantum Chromodynamics (QCD). One of the intrigu-
ing predictions of QCD is that in the quark-gluon plasma
phase certain special gluon configurations to which one
can assign a winding number play a role [1, 2]. This
winding number is a topological invariant, which means
that smooth deformations of these configurations do not
change the winding number. Experimental evidence for
the existence of configurations with nonzero winding
number is only indirect from the meson spectrum [3–5].

The configurations with nonzero winding number are
in fact transitions which invoke passing a potential bar-
rier with a height of order the QCD scale ΛQCD over
the strong coupling constant ÆS . Because of the height
of the barrier, the transitions are highly suppressed at
low temperatures since they require tunneling [2]. The
configurations responsible for this tunneling process are
called instantons [2, 4, 6, 7]. At high temperatures in the
quark-gluon plasma phase, it is possible to jump over
the potential barrier. The transitions are therefore not
suppressed anymore and called sphalerons [8–13]. These
configurations were studied in the electroweak theory as
a mechanism for baryogenesis [10, 11, 13, 14], and are
also relevant for QCD [15–17].
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†Electronic address: kharzeev@bnl.gov
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At these high temperatures the configurations with
nonzero winding number can be produced with relatively
high probability [15, 18]. Therefore the quark-gluon
plasma is the best place to find direct experimental evi-
dence for the existence of gauge field configurations with
nonzero winding number.

These configurations do something very distinct to
quarks; they can, depending on the sign of their winding
number, transform left- into right-handed quarks or vice-
versa via the axial anomaly [19] (see also [20, 21]). For
massless quarks, the axial anomaly equates @µjµ

5 to the
topological term. The spatial integration of @µjµ

5 yields
an exact relation for the rate of the chirality change in-
duced by topological configurations, which reads

d(NR °NL)
dt

= °g2Nf

16º2

Z
d3xFµ∫

a F̃ a
µ∫ , (1)

where NR,L denotes the net number of quarks (minus an-
tiquarks) with right/left-handed chirality, Nf the num-
ber of massless flavors, and F̃ a

µ∫ = 1
2≤µ∫∏æF∏æa, with

≤0123 = 1. All the massless flavors equally couple to the
gauge field, hence the proportionality factor Nf arises
in Eq. (1). Let us stress that, in the common conven-
tion, chiral quarks have opposite helicity to antiquarks;
a particle with right-handed chirality has right-handed
helicity, while an anti-particle with right-handed chiral-
ity has left-handed helicity. For instance the helicity of
the antineutrino ∫̄L is right-handed. Here right-handed
helicity means spin and momentum parallel, while left-
handed helicity means spin and momentum anti-parallel.
Therefore the difference NR°NL can also be read as the
total number of quarks plus antiquarks with right-handed
helicity minus the total number of quarks plus antiquarks
with left-handed helicity. For physical gluon configura-
tions (configurations with finite action) the time integral
over the right-hand side of Eq. (1) is equal to minus twice
the winding number of the gluon field configuration. As a
result of the axial anomaly the interactions between these
configurations and the quarks break the parity (P) and
charge-parity (CP) symmetry. Ordinary (perturbative)
interactions between quarks and gluons cannot induce a
difference between the number of right- and left-handed
quarks. A mass term always will tend to wash out such
difference [22].
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右巻き粒子は運動量が 
スピンと平行

左巻き粒子は運動量が 
スピンと反平行

仮に右巻き粒子だけの世界があれば磁場と平行に電流が発生
（量子異常的に微妙な議論だが大丈夫です）
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磁場に沿った方向に 
電荷揺らぎが増大 
（平均をとるので 
　揺らぎのみ観測）

STAR, PRL103, 251601 (2009)
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次々となされる批判
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relative to the reaction plane – in other words, as sketched in Fig. 1, a± quan-
tifies the strength of the charge flow directed perpendicular to the reaction
plane. Unlike v1 and v2, as we will see later, a+ and a− depend on the charge
carried by measured particles. If the CME electric current is directed upward
(downward), we expect a+ > 0 (a− < 0); non-zero values of a+ and a− indicate
the presence of P- and CP-odd effects.

Δφ
1

a
v 2v

Fig. 1. Collision geometry and collective flows decomposed in Eq. (1), of which a±
is sensitive to P- and CP-odd effects.

We can carry out the decomposition (1) for each event and take the ensem-
ble average over all the events. We shall denote this averaging procedure by
〈〈· · ·〉〉 throughout this paper. Because the topological excitations fluctuate not
only locally (point-by-point in space) but also globally (event-by-event), 〈〈a±〉〉
becomes zero and the symmetry is restored in a sense of average. It is nec-
essary, therefore, to measure the correlation functions 〈〈a+a+〉〉, 〈〈a+a−〉〉, and
〈〈a−a−〉〉, which are invariant under P and CP transformations and thus their
ensemble average is non-vanishing.

The experimental observable sensitive to 〈〈a±a±〉〉 was proposed by Voloshin [32]:

〈〈cos(∆φα + ∆φβ)〉〉 ≡
〈〈

1

NαNβ

Nα∑

i=1

Nβ∑

j=1

cos(∆φα,i + ∆φβ,j)

〉〉

. (2)

Here α and β indicate either + or − charge of measured particles, and the
sum goes over all charged hadrons in a given event. This observable has an
important property that becomes clear when one explicitly isolates the terms
Bαβ driven by fluctuating backgrounds [32]:

〈〈cos(∆φα + ∆φβ)〉〉 = 〈〈cos ∆φα cos ∆φβ〉〉 − 〈〈sin ∆φα sin ∆φβ〉〉
=
(
〈〈v1,αv1,β〉〉 + Bin

αβ

)
−
(
〈〈aαaβ〉〉 + Bout

αβ

)
. (3)

If the in-plane Bin
αβ and out-of-plane Bout

αβ backgrounds are the same, they
cancel out and since for a symmetric heavy ion collision in a symmetric rapidity
cut 〈〈v1,αv1,β〉〉 ≈ 0, one can identify the above (3) with −〈〈aαaβ〉〉 that serves
as an order parameter for P- and CP-odd effects. One may argue that the
above (2) has an additional contribution from the elliptic flow for α = β and
i = j or from particles that decay from the same cluster which has an elliptic
flow. Such a contribution is estimated to be a small background [35,55] and
we will neglect this in this work.
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当初はバックグラウンドBは 
キャンセルし、v1の揺らぎも 
無視できると「仮定」された
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Again, using Eq. (33), this means

〈sin(φα) sin(φβ)〉opposite # 〈cos(φα) cos(φβ)〉opposite > 0. (37)

The decomposition of the actual data into the in-plane and out-of-plane
components is shown in Fig. 4. Obviously the correlations for same-charge
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Fig. 4 Correlations in-plane 〈cos(φα) cos(φβ)〉 and out-of-plane 〈sin(φα) sin(φβ)〉 for
same- and opposite-charge pairs in Au+Au collisions as seen in the STAR data.

pairs are predominantly in-plane and back-to-back. This is exactly the op-

posite of what has been predicted by the Chiral Magnetic Effect. This is
illustrated in Fig. 5 were we have sketched the experimental situation for
same-charge pairs based on the STAR data. For pairs with opposite charge,
both in-plane and out-of-plane correlations have the same (positive) sign and
magnitude. This implies that opposite-charged pairs move together equally
likely in the in-plane and out-of-plane directions. This behavior can at least
qualitatively be understood by resonance/cluster decays [36] or local charge
conservation [38].

In addition to the data shown in Fig. 3, STAR has also analyzed the reac-
tion plane dependent correlation function γα,β differentially as a function of
the pair transverse momentum (sum and difference) and rapidity difference.
Both these results are within qualitative expectations for a charge separation
effect due to the CME [34]. Unfortunately, similar differential information is
not available for the reaction plane independent correlation function, δα,β .
Therefore a differential decomposition into in-plane and out-of-plane compo-
nents, as we have done here, unfortunately is not possible at this time. Such
information may help to further constrain possible background effects as well
as predictions from the CME.

Recently, the ALICE collaboration reported [39] the measurement of the
same correlation functions for Pb+Pb collisions at a center of mass energy
of

√
s = 2.76TeV, about ten times that of the STAR measurement. Just like

STAR, ALICE determined the reaction plane dependent correlation function

Bzdak-Koch-Liao (2010)
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現状のまとめ

・重イオン衝突実験でカイラル磁気効果は(まだ) 
　確認されていない。 
・存在が否定されたわけでもない。強磁場の存在 
　は間違いないが、トポロジーの揺らぎが強いか 
　どうか分からず、観測できない可能性もある。 
・同重核を使った実験計画が進行中。(質量数は 
　等しいが電荷が違うので磁場の効果だけを 
　抜き出すことができる。)
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・量子異常なのに化学ポテンシャルに依存？ 
　化学ポテンシャルはゲージ場の第ゼロ成分 

・ゲージ不変なのか？ 
　Chern-Simons流の軸性ゲージ場のところに外場μ5 

・実際の実験のどこに紫外発散が？ 
　量子異常に対応する電流をダイヤグラム計算 
　すると赤外から寄与が出てくる 

・平衡状態のベクトル演算子期待値は本当に電流？ 
　いまから詳しく議論します
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Electromagnetic Response of Weyl Semimetals
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It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic

response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion

term !E !B with space and time dependent axion angle !ðr; tÞ. Here we construct a minimal lattice model

of the Weyl medium and study its electromagnetic response by a combination of analytical and numerical

techniques. We confirm the existence of the anomalous Hall effect expected on the basis of the field theory

treatment. We find, contrary to the latter, that chiral magnetic effect (that is, ground state charge current

induced by the applied magnetic field) is absent in both the semimetal and the insulator phase.

We elucidate the reasons for this discrepancy.

DOI: 10.1103/PhysRevLett.111.027201 PACS numbers: 75.47.$m, 03.65.Vf, 71.90.+q, 73.43.$f

When a three-dimensional topological insulator (TI)
[1–3] undergoes a phase transition into an ordinary band
insulator, its low-energy electronic spectrum at the critical
point consists of an odd number of 3D massless Dirac
points. Such 3D Dirac points have been experimentally
observed in TlBiðS1$xSexÞ2 crystals [4] and in
ðBi1$xInxÞ2Se2 films [5]. In the presence of the time rever-
sal (T ) and inversion (P ) symmetries, the Dirac points are
doubly degenerate and occur at high-symmetry positions in
the Brillouin zone. WhenT or P is broken, however, each
Dirac point can split into a pair of ‘‘Weyl points’’ separated
from one another in momentum k or energy E, as illus-
trated in Fig. 1. The resulting Weyl semimetal constitutes a
new phase of topological quantum matter [6–14] with a
number of fascinating physical properties including pro-
tected surface states and unusual electromagnetic response.

The low energy theory of an isolated Weyl point is given
by the Hamiltonian

hWðkÞ ¼ b0 þ v! ! ðk$ bÞ; (1)

where v is the characteristic velocity, ! a vector of the
Pauli matrices, b0 and b denote the shift in energy and
momentum, respectively. Because all three Pauli matrices
are used up in hWðkÞ, small perturbations can renormalize
the parameters, b0, b, and v, but cannot open a gap. This
explains why Weyl semimetal forms a stable phase [6].
Although the phase has yet to be experimentally observed,
there are a number of proposed candidate systems, includ-
ing pyrochlore iridates [7,8], TI multilayers [9–12], and
magnetically doped TIs [13,14].

The purpose of this Letter is to address the remarkable
electromagnetic properties of Weyl semimetals. According
to the recent theoretical work [15–18], the universal part of
their response is described by the topological ! term,

S! ¼
e2

8"2

Z
dtdr!ðr; tÞE !B; (2)

(using @ ¼ c ¼ 1 units) with the ‘‘axion’’ angle given by

!ðr; tÞ ¼ 2ðb ! r$ b0tÞ: (3)

This unusual response is a consequence of the chiral
anomaly [19–21], well known in the quantum field theory
of Dirac fermions. The physical manifestations of the !
term can be best understood from the associated equations
of motion, which give rise to the following charge density
and current response,

# ¼ e2

2"2 b !B; (4)

j ¼ e2

2"2 ðb'E$ b0BÞ: (5)

Equation (4) and the first term in Eq. (5) encode the
anomalous Hall effect that is expected to occur in a Weyl
semimetal with broken T [7–10]. The second term in
Eq. (5) describes the ‘‘chiral magnetic effect’’ [22],
whereby a ground state dissipationless current proportional
to the applied magnetic fieldB is generated in the bulk of a
Weyl semimetal with broken P .

(a) (b) (c) (d)

FIG. 1 (color online). Low energy spectra in Dirac and Weyl
semimetals. (a) Doubly degenerate massless Dirac cone at the
transition from a TI to a band insulator. Weyl semimetals with
the individual cones shifted in (b) momenta and (c) energy. Panel
(d) illustrates the Weyl insulator which can arise when the
excitonic instability gaps out the spectrum indicated in (c). In
all panels, two components of the 3D crystal momentum k are
shown.
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Figure 3(a) displays ! for the magnetic field configura-
tion Bðx; yÞ ¼ !½"ðx% L=4Þ % "ðxþ L=4Þ'"ðyÞ, i.e., two
flux tubes separated by L=2 along the x direction. In accord
with Eq. (4), charge accumulates near the flux tubes,
although !ðx; yÞ is somewhat broadened compared to
Bðx; yÞ. We expect the total accumulated charge per layer
"Q to be proportional to the total flux,

"Q ¼ e

#

!
bz
2$z

"
!

!0
; (9)

where we have restored the physical units. Figure 3(b)
shows that this proportionality holds very accurately
when the flux through an elementary plaquette is small
compared to !0. (When the flux approaches !0=2, we no
longer expect Eq. (9) to hold because of the lattice effects.)
We have also tested the effect of a nonzero Dirac mass,
mD ¼ %% 6t, and nonzero b0 on the anomalous Hall
effect. These terms compete with bz and for m2

D þ b20 >
b2z , one expects the Hall effect to disappear [17,18]. This is
indeed what we observe in Figs. 3(c) and 3(d). We have
performed similar calculations for other field profiles
Bðx; yÞ reaching identical conclusions for the anomalous
Hall effect.

We now address the chiral magnetic effect, predicted to
occur when b0 ! 0. We consider the same sample geome-
try as above, but now with uniform field B ¼ ẑB. In order
to account for possible contribution of the surface states,
we study systems with both periodic and open boundary
conditions along x. To find the current response, we intro-
duce a uniform vector potential Az along the z direction

(in addition to Ax and Ay required to encode the applied
magnetic field). The second-quantized Hamiltonian then
reads

H ðAzÞ ¼
X

kz

H&'ðkz % eAzÞcykz&ckz'; (10)

where &, ' represent all the site, orbital, and spin indices.
The current operator is given by

J z ¼
@H ðAzÞ
@Az

########Az!0
¼ %e

X

kz

@H&'ðkzÞ
@kz

cykz&ckz': (11)

This leads to the current expectation value

Jz ¼ %e
X

n;kz

$
(n;kz

########
@HðkzÞ
@kz

########(n;kz

%
nF½%nðkzÞ'; (12)

where nF indicates the Fermi-Dirac distribution and %nðkzÞ
the energy eigenvalues of HðkzÞ. We note that Eq. (12)
remains valid in the presence of the exciton condensate as
long as it is treated in the standard mean field theory.
We have evaluated Jz from Eq. (12) for various system

sizes, boundary conditions, field strengths, and parameter
values corresponding to energy- and momentum-shifted
Weyl semimetals and insulators. In all cases, we found
Jz ¼ 0 to within the numerical accuracy of our computa-
tions, typically 6–8 orders of magnitude smaller than CME
expected on the basis of Eq. (5).
For an insulator, vanishing of Jz comes of course as

no surprise. At T ¼ 0 and using the fact that
@kzh(n;kz j(n;kzi ¼ 0, one can rewrite Eq. (12) as

Jz ¼ %e
X

n2occ

Z
BZ

dkz
2#

@%nðkzÞ
@kz

; (13)

which vanishes owing to the periodicity of %nðkzÞ on the
Brillouin zone. More generally, for a system at nonzero
temperature and when partially filled bands are present, we
can rewrite Eq. (12) as

Jz ¼ %e
X

n

Z
BZ

dkz
2#

@%nðkzÞ
@kz

nF½%nðkzÞ'; (14)

where the sum over n extends over all bands. By trans-
forming the kz integral in Eq. (14) into an integral over the
energy, it is easy to see that it identically vanishes for any
continuous energy dispersion %nðkzÞ that is periodic on the
Brillouin zone and for any distribution function that only
depends on energy. This reflects the well-known fact that
one must establish a nonequilibrium distribution of elec-
trons to drive current in a metal, e.g., by applying an
electric field. Given these arguments, we conclude that,
as a matter of principle, CME cannot occur in a crystalline
solid, at least when interactions are unimportant and the
description within the independent electron approximation
remains valid.

(a) (b)

(c) (d)

FIG. 3 (color online). (a) Charge density "!ðx; yÞ accumulated
in the vicinity of the flux tubes ! ¼ 0:01!0 in the Weyl semi-
metal. (b) Total accumulated charge per layer "Q near one of the
flux tubes, in units of e=2# for indicated values of bz. Dashed
lines represent the expectation based on Eq. (9). We use $ ¼
$z ¼ t ¼ 0:5, % ¼ 3:0, L ¼ 14, and Lz ¼ 160 independent val-
ues of kz. Panels (c), (d) show the charge accumulations as a
function of bz in the presence of nonzero Dirac mass and b0.
Parameters as above except b0 ¼ 0:1, 0.2, 0.3 in (c) and % ¼ 3:0,
2.9, 2.8, 2.7 for the curves in (d) from left to right.
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・結晶の周期性（量子異常はキャンセルする） 
・ゼロ点振動が入っていない

・平衡状態では電流は存在しない

計算そのものはQCDには当てはまらない 
平衡状態に関するステートメントは正しい 
QCDも例外ではないはず

μ5の発明は理論を進展させたが同時に混乱も起こした
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μ5に物理の非平衡性が集約されている！
平衡状態(時間依存性がない)ではμ5はゼロになる

時空に依存するθ項

3

R+R
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L
−

L+

µ5−µ5

ω

p3

FIG. 1: Spectrum of massless Dirac fermions with right- and
left-handed chirality in the presence of an chiral chemical po-
tential µ5. The subscript ± denotes the eigenvalue of the
spin in the z-direction. The chiral chemical potential induces
a nonzero density of right-handed particles and left-handed
anti-particles.

grangian density the following term is added

µ5√̄∞0∞5√. (2)

The energy spectrum of the free Dirac equation in the
presence of a chiral chemical potential is for massless
modes (with px = py = 0 for simplicity),

!R± = ±p3 ° µ5, (3)
!L± = ®p3 + µ5. (4)

Here ± represents the spin in the z-direction and R, L the
chirality. The momentum in the z-direction is given by
p3; let us stress that in our notation p3 does not denote
the third component of a four-vector with metric conven-
tion. We have displayed the massless energy spectrum in
Fig. 1. In the massless limit one can distinguish modes
with right-handed chirality from modes with left-handed
chirality. It should be mentioned that p3 is restricted to
be positive for the R+ and L° particle modes so that
the helicity is positive for R+ and negative for L°, re-
spectively, and p3 is negative for the R° and L+ particle
modes (see Fig. 1). If the chiral chemical potential is
positive some of the right-handed particle modes will be-
come occupied while some of the left-handed anti-particle
modes will be filled as well. A net chirality is created in
this way.

The chiral chemical potential lifts the degeneracy be-
tween modes with right- and left-handed chirality. A dif-
ference between the total number of particles plus anti-
particles with right-handed and left-handed helicity is
created. The magnetic field will lift the degeneracy in
spin depending on the charge of the particle. Hence par-
ticles with right-handed helicity will tend to move op-
posite to anti-particles with right-handed helicity. As a
result an electromagnetic current is generated along the
magnetic field, which is the Chiral Magnetic Effect [29]
(see also Refs. [29, 30] for a pictorial representation of the

Chiral Magnetic Effect). We will compute this induced
electromagnetic current in the next section.

The effect of a finite amount of topological charge
change can also be mimicked by an effective theta an-
gle, which could depend on space-time (see for example
[27, 28, 48]). One adds to the Lagrangian of QCD the
following term,

g2

32º2
µ(x, t)Fµ∫

a F̃ a
µ∫ . (5)

By performing an axial U(1) rotation this term can be
transformed into the following fermionic contribution

1
2Nf

@µµ √̄∞µ∞5√. (6)

Identifying this with Eq. (2) we see that µ5 = @0µ/2Nf .
We can also identify µ5 with the time component of an
axial vector field A5

µ. The effective theta angle results
in a difference between the rates of changing left-handed
into right-handed and changing right-handed into left-
handed particles. The chiral chemical potential, how-
ever, is a more static quantity; it is the energy neces-
sary to put a right-handed quark on its Fermi surface
or to remove a left-handed quark from its Fermi surface.
It describes the difference between the number of right-
and left-handed fermions. An effective theta angle to
describe spontaneous P and CP-violating processes has
been discussed often in the literature (for examples see
Refs. [27, 28, 48, 49]). The chiral chemical potential
has on the other hand only been used in a few papers
[15, 46, 50, 51].

Let us finally point out that the chiral chemical poten-
tial has no sign problem, i.e. the fermionic determinant
with µ5 is real and positive. In the presence of a chi-
ral chemical potential the fermionic determinant reads in
Euclidean space-time,

detM(µ5) ¥ det
°
/D + µ5∞

0
E∞5 + m

¢
, (7)

where /D = ∞µ
EDµ. Here we have chosen a representation

in which all ∞E matrices are Hermitian, ∞0
E = ∞0, ∞i

E =
i∞i. Since /D and ∞0

E∞5 are anti-Hermitian the eigenvalues
ofM(µ5) are of the form i∏n+m, where ∏n 2 R. Because
∞5 anticommutes with /D + µ5∞0

E∞5, all eigenvalues come
in pairs, which means that if i∏n + m is an eigenvalue,
also °i∏n + m is an eigenvalue. Since the determinant
is the product of all eigenvalues we see that the deter-
minant is the product over all n of ∏2

n + m2. Hence the
determinant is real and also positive semi-definite. This
is very interesting because it allows for a lattice QCD
simulation of chirally asymmetric systems. The lattice
QCD can then simulate the Chiral Magnetic Effect by
introducing a space-dependent phase on the link variable
which amounts to the external magnetic field.

III. COMPUTATION OF INDUCED CURRENT

In this section we will show if a magnetic field is ap-
plied to a system with an asymmetry between the number

軸性U(1)回転してθ項を消すと
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FIG. 1: Spectrum of massless Dirac fermions with right- and
left-handed chirality in the presence of an chiral chemical po-
tential µ5. The subscript ± denotes the eigenvalue of the
spin in the z-direction. The chiral chemical potential induces
a nonzero density of right-handed particles and left-handed
anti-particles.

grangian density the following term is added

µ5√̄∞0∞5√. (2)

The energy spectrum of the free Dirac equation in the
presence of a chiral chemical potential is for massless
modes (with px = py = 0 for simplicity),

!R± = ±p3 ° µ5, (3)
!L± = ®p3 + µ5. (4)

Here ± represents the spin in the z-direction and R, L the
chirality. The momentum in the z-direction is given by
p3; let us stress that in our notation p3 does not denote
the third component of a four-vector with metric conven-
tion. We have displayed the massless energy spectrum in
Fig. 1. In the massless limit one can distinguish modes
with right-handed chirality from modes with left-handed
chirality. It should be mentioned that p3 is restricted to
be positive for the R+ and L° particle modes so that
the helicity is positive for R+ and negative for L°, re-
spectively, and p3 is negative for the R° and L+ particle
modes (see Fig. 1). If the chiral chemical potential is
positive some of the right-handed particle modes will be-
come occupied while some of the left-handed anti-particle
modes will be filled as well. A net chirality is created in
this way.

The chiral chemical potential lifts the degeneracy be-
tween modes with right- and left-handed chirality. A dif-
ference between the total number of particles plus anti-
particles with right-handed and left-handed helicity is
created. The magnetic field will lift the degeneracy in
spin depending on the charge of the particle. Hence par-
ticles with right-handed helicity will tend to move op-
posite to anti-particles with right-handed helicity. As a
result an electromagnetic current is generated along the
magnetic field, which is the Chiral Magnetic Effect [29]
(see also Refs. [29, 30] for a pictorial representation of the

Chiral Magnetic Effect). We will compute this induced
electromagnetic current in the next section.

The effect of a finite amount of topological charge
change can also be mimicked by an effective theta an-
gle, which could depend on space-time (see for example
[27, 28, 48]). One adds to the Lagrangian of QCD the
following term,

g2

32º2
µ(x, t)Fµ∫

a F̃ a
µ∫ . (5)

By performing an axial U(1) rotation this term can be
transformed into the following fermionic contribution

1
2Nf

@µµ √̄∞µ∞5√. (6)

Identifying this with Eq. (2) we see that µ5 = @0µ/2Nf .
We can also identify µ5 with the time component of an
axial vector field A5

µ. The effective theta angle results
in a difference between the rates of changing left-handed
into right-handed and changing right-handed into left-
handed particles. The chiral chemical potential, how-
ever, is a more static quantity; it is the energy neces-
sary to put a right-handed quark on its Fermi surface
or to remove a left-handed quark from its Fermi surface.
It describes the difference between the number of right-
and left-handed fermions. An effective theta angle to
describe spontaneous P and CP-violating processes has
been discussed often in the literature (for examples see
Refs. [27, 28, 48, 49]). The chiral chemical potential
has on the other hand only been used in a few papers
[15, 46, 50, 51].

Let us finally point out that the chiral chemical poten-
tial has no sign problem, i.e. the fermionic determinant
with µ5 is real and positive. In the presence of a chi-
ral chemical potential the fermionic determinant reads in
Euclidean space-time,

detM(µ5) ¥ det
°
/D + µ5∞

0
E∞5 + m
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, (7)

where /D = ∞µ
EDµ. Here we have chosen a representation

in which all ∞E matrices are Hermitian, ∞0
E = ∞0, ∞i

E =
i∞i. Since /D and ∞0

E∞5 are anti-Hermitian the eigenvalues
ofM(µ5) are of the form i∏n+m, where ∏n 2 R. Because
∞5 anticommutes with /D + µ5∞0

E∞5, all eigenvalues come
in pairs, which means that if i∏n + m is an eigenvalue,
also °i∏n + m is an eigenvalue. Since the determinant
is the product of all eigenvalues we see that the deter-
minant is the product over all n of ∏2

n + m2. Hence the
determinant is real and also positive semi-definite. This
is very interesting because it allows for a lattice QCD
simulation of chirally asymmetric systems. The lattice
QCD can then simulate the Chiral Magnetic Effect by
introducing a space-dependent phase on the link variable
which amounts to the external magnetic field.

III. COMPUTATION OF INDUCED CURRENT

In this section we will show if a magnetic field is ap-
plied to a system with an asymmetry between the number

これよりμ5の正体はθの時間微分であると分かる

μ5が有限であれば平衡状態ではない！
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Fukushima-Kharzeev-Warringa,

“Real-time dynamics of the 
Chiral Magnetic Effect”

Phys.Rev.Lett.104, 212001 (2010)

互いに平行なカラー電磁場のもとで粒子対生成 
カイラリティの生成 
垂直な磁場方向にCME電流が生成

μ5はどこにも入っていない、電場による非平衡性
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B

E
Ohm’s Law

Hall Current

CME
簡単化してエッセンスだけ 
取り出してみると・・・

この簡単な設定で問題を解ける？
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jHall = j0 ' v · ne = nec
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ローレンツブーストによる(古典)ホール効果の導出
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ != 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
B′

z

Ez
ey + cosh2 η

2E′

z

Ez
ez

)

sgn(qE′

z).

(3)
We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2

z + B′2
z ). Because both F = 1

4
FµνFµν =

1

2
(B2

y +B2
z −E2

z ) =
1

2
(B′2

z −E′2
z ) and H = − 1

4
Fµν F̃µν =

EzBz = E′

zB
′

z are Lorentz invariant, one finds a ≡ |E′

z | =
(
√
F2 +H2−F)1/2, and b ≡ |B′

z| = (
√
F2 +H2+F)1/2.

Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By

π2

ab2sgn(EzBz)

a2 + b2
coth

(

πb

a

)

exp

(

−
m2π

|qa|

)

(4)
where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation

1

|q|
∂tjy
∂tn5

=
2q2Byb coth (πb/a)

q2(a2 + b2 +B2
y) +

1

4
g2(E2

z + B2
z)
. (5)

ξ = 10

ξ = 1

ξ = 0.1

|q|By/|gEz|

1

|q|

∂tjy

∂tn5

1086420
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy % gEz, gBz, we have

b & |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a & | g
2qEz|

and b & | g
2qBz| so that

∂tjy &
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz

Ez
π

)

exp

(

−
2m2π

|gEz|

)

. (6)

2

By

z

y x
Ez
Bz

FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
εzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q〈ψ̄γµψ〉 in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])

Γ =
q2E′

zB
′

z

4π2
coth

(

B′

z

E′
z

π

)

exp

(

−
m2π

|qE′
z|

)

. (1)

The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m %= 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z & E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′

z & E′

z in Eq. (1) gives

Γ sgn(E′

zB
′

z) ≈
q2

4π2
E′

zB
′

z exp

(

−
m2π

|qE′
z|

)

= 1

2
∂t′n

′

5, (2)

which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =

K’ で見たときのSchwinger 対生成率

ブーストして(K’’)回転する(K)

3

z

y

z

y

⊗ η θ

#j′

#B′′

#E′′

#j′′#E′

#B′ jy

θ

y

z
#E

#B

K ′ K ′′ K

#j

FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ != 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
B′

z

Ez
ey + cosh2 η

2E′

z

Ez
ez

)

sgn(qE′

z).

(3)
We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2

z + B′2
z ). Because both F = 1

4
FµνFµν =

1

2
(B2

y +B2
z −E2

z ) =
1

2
(B′2

z −E′2
z ) and H = − 1

4
Fµν F̃µν =

EzBz = E′

zB
′

z are Lorentz invariant, one finds a ≡ |E′

z | =
(
√
F2 +H2−F)1/2, and b ≡ |B′

z| = (
√
F2 +H2+F)1/2.

Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By

π2

ab2sgn(EzBz)

a2 + b2
coth

(

πb

a

)

exp

(

−
m2π

|qa|

)

(4)
where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation

1

|q|
∂tjy
∂tn5

=
2q2Byb coth (πb/a)

q2(a2 + b2 +B2
y) +

1

4
g2(E2

z + B2
z)
. (5)

ξ = 10

ξ = 1

ξ = 0.1

|q|By/|gEz|

1

|q|

∂tjy

∂tn5

1086420

1

0.8

0.6

0.4

0.2

0

FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy % gEz, gBz, we have

b & |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a & | g
2qEz|

and b & | g
2qBz| so that

∂tjy &
q2By

2π2

gEzB2
z

B2
z + E2

z

coth

(

Bz

Ez
π

)

exp

(

−
2m2π

|gEz|

)

. (6)

⇠ EB

for |qB| � |qE| � m2
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Axial Ward identity and the Schwinger mechanism
— Applications to the dynamical chiral magnetic e↵ect and condensates —

Patrick Copinger, Kenji Fukushima, and Shi Pu
Department of Physics, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

We elucidate the mass dependence on chirality production under parity breaking electromagnetic

fields, which resolves some controversies. For strong magnetic field the pair production from the

Schwinger mechanism increments the chirality. The pair production rate is exponentially suppressed

with mass according to the Schwinger formula, while the mass dependence of chirality production

appears in a pesudo-scalar condensate in the axial Ward identity. We point out that in standard

quantum field theoretical calculus the axial anomaly is canceled by the pseudo-scalar condensate for

any mass. In a dynamical formulation with in- and out-states, we show that the axial Ward identity

leads to the chirality production rate consistent with the Schwinger formula. We illuminate that such

a formulation with in- and out-states clarifies the chiral magnetic e↵ect in and out of equilibrium

correctly, and we discuss further applications to dynamical condensates and fluctuations.

Introduction: Chirality is a topical keyword for re-
search on anomalous phenomena in physics and related
subjects. In the high-energy physics context in which the
fermion mass is often neglected, the chirality and the he-
licity are identifiable, which has also motivated a modern
redefinition of chirality in chemistry [1].

The most notable feature of chirality in relativis-
tic fermionic systems is the realization of the quantum
anomaly. Since relativistic fermionic dispersion relations
are realized in not only 2D but 3D materials, as in the
Weyl and Dirac semimetals [2–5], it is of paramount im-
portance to probe the chiral anomaly in laboratory ex-
periments, not only in quantum chromodynamics (QCD)
but also in optical environments. One proposed signa-
ture for the chiral anomaly is the negative magnetoresis-
tance [6], which signals for the chiral anomaly through
the chiral magnetic e↵ect [7]. For the first experimental
detection as well as simplified theoretical arguments, see
Ref. [8], and for the resummed field-theoretical calcula-
tion of the negative magnetoresistance, see Ref. [9].

In all ideas to access the chiral anomaly, the gener-
ation of finite chirality imbalance is indispensable. The
simplest optical setup is, as discussed in Ref. [10], parallel
electric and magnetic fields. Then, the chirality produc-
tion rate is related to the Schwinger mechanism as used
in Refs. [10, 11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas
in the real-time numerical simulations [13, 14].

Even though the parallel electromagnetic fields are
such simple, there are still some controversies especially
on di↵erent manifestations of the chiral anomaly in and
out of equilibrium. In this Letter we clarify these con-
troversies by addressing the following two closely related
problems, namely:

• The e↵ect of fermion mass m; it is quite often
assumed that the mass dependent term can be
dropped from the axial Ward identity if m = 0,

but this is not always justified.

• Static and dynamical observables; the m depen-
dence is totally di↵erent depending on how to take
the expectation value in the presence of electric
fields.

Answering these questions will naturally lead us to the
correct picture of chiral dynamics. Moreover, we will
notice that our present considerations open a novel class
of future theory problems.

An enigma: We choose constant and parallel elec-
tric E and magnetic B fields in the 3-axis direction.
Then, the celebrated formula for the Schwinger mech-
anism reads,

! =
e
2
EB

4⇡2
coth

✓
B

E
⇡

◆
exp

✓
�
⇡m

2

eE

◆
(1)

for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

p
eB

being the largest mass scale in a system), the spin direc-
tion is completely aligned along B, so that particles have
definite chirality in such a reduced (1+1)-dimensional
system. The right-handed (R) particles increase and the
left-handed (L) particles decrease creating L antiparticles
under E, as sketched in Fig. 1.
A pair of R and L̄ production thus changes the chirality

by two, leading to a relation as used in Ref. [10],

!
B�E
�!

e
2
EB

4⇡2
exp

✓
�
⇡m

2

eE

◆
=

1

2
@tn5 , (2)

where n5 is the chiral charge density, that is an expecta-
tion value of j05 .
The right-hand side, @tn5, is dictated by the ax-

ial Ward identity, i.e., @µj
µ
5 = �

e2

16⇡2 ✏
µ⌫↵�

Fµ⌫F↵� �

2m ̄i�5 on the operator level, where ✏µ⌫↵�Fµ⌫F↵� =
�8EB for parallel E and B in the present setup. After

粒子対生成によるカイラリティ生成

カイラル量子異常関係式
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@tn5 =
e2EB

2⇡2
+ 2mh ̄i�5 i

<latexit sha1_base64="Afrt9hck11/IHtnclpp/Mq/J1XY="></latexit>



Jan. 20, 2021 @ 基礎物理学研究所（オンライン）

近似してるんじゃない？

37

Shi Pu Patrick Copinger

を計算しよう！

→ (できました！) → (量子異常が消えました！)

@µj
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Axial Ward Identity and the Schwinger Mechanism:
Applications to the Real-Time Chiral Magnetic Effect and Condensates
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We elucidate chirality production under parity breaking constant electromagnetic fields, with which we
clarify qualitative differences in and out of equilibrium. For a strong magnetic field the pair production
from the Schwinger mechanism increments the chirality. The pair production rate is exponentially
suppressed with mass according to the Schwinger formula, while the mass dependence of chirality
production in the axial Ward identity appears in the pseudoscalar term only. We demonstrate that, in a real-
time formulation with in and out states, the axial Ward identity with an in-in expectation value leads to a
chirality production rate consistent with the Schwinger formula, while the axial anomaly with an in-out
expectation value is canceled by the pseudoscalar condensate for any mass. We illuminate that such an in-
and out-state formulation clarifies subtleties in the chiral magnetic effect in and out of equilibrium, and we
discuss further applications to real-time condensates.

DOI: 10.1103/PhysRevLett.121.261602

Introduction.—Chirality is a topical keyword for anoma-
lous phenomena in physics and related subjects. In the
context of high-energy physics in which the fermion mass
is often neglected, the chirality and the helicity are
identifiable, which has also motivated a modern redefini-
tion of chirality in chemistry [1].
The most notable feature of chirality in relativistic

fermionic systems is the realization of the quantumanomaly.
Since relativistic fermionic dispersion relations are realized
in not only 2D but also 3D materials, as in the Weyl and
Dirac semimetals [2–5], it is of paramount importance to
probe the chiral anomaly in laboratory experiments, with
optical environments as well as in quantum chromodynam-
ics (QCD). One proposed signature for the chiral anomaly is
the negative magnetoresistance [6], which is a signal of
chiral anomaly through the chiralmagnetic effect [7]. For the
first experimental detection based on simple theoretical
arguments, see Ref. [8], and for the resummed field-
theoretical calculation of the negative magnetoresistance,
see Ref. [9].
In all ideas to access the chiral anomaly, the generation of

finite chirality imbalance is indispensable. The simplest
optical setup is, as discussed in Ref. [10], parallel electric
and magnetic fields. Then, the chirality production rate is

related to the Schwinger mechanism as used in
Refs. [10,11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas in
real-time numerical simulations [13,14].
Even though the parallel electromagnetic fields are

simple to treat, there are still some controversies especially
on different manifestations of the chiral anomaly in and out
of equilibrium. In this Letter we clarify these controversies
by addressing the following two closely related problems,
namely: (i) The effect of fermion mass m; it is quite often
assumed that the mass dependent term can be dropped from
the axial Ward identity if m ¼ 0, but this is not always
justified. (ii) Real-time and Euclidean observables; the m
dependence is totally different depending on how to take
the expectation value in the presence of electric fields.
Answering these questions will naturally lead us to a

clear picture of chiral dynamics. Moreover, we will see that
our present considerations have many applications to be
studied in the future.
An enigma.—We choose constant and parallel electric E

and magnetic B fields in the three-axis direction. Then, the
celebrated formula for the Schwinger mechanism reads,

ω ¼ e2EB
4π2

coth
!
B
E
π

"
exp

!
−
πm2

eE

"
ð1Þ

for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

ffiffiffiffiffiffi
eB

p

being the largest mass scale in a system), the spin direction
is completely aligned along B, so that particles have
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・物性実験でカイラル磁気効果が見えた（？） 
　電気伝導度の磁場依存性（日高義将さん）
・実時間の運動学的方程式による定式化（山本直希さん） 
　超新星爆発メカニズムへの応用 
　初期宇宙(primordial magnetic field)への応用
・強磁場中のQCD/QED計算手法の開発（服部恒一さん）
・相対論的流体方程式でのカイラル量子異常（本郷優さん）
・非一様な電磁場中での粒子生成の問題（田屋英俊さん）
・円偏光電磁場によるカイラル量子異常（岡隆史さん）
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