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講演内容
宇宙の大規模構造にもとづく観測的宇宙論の舞台裏

（裏事情？）

観測的宇宙論と宇宙の大規模構造

受賞の対象となった研究の紹介

まとめと展望



観測的宇宙論
• 宇宙の成り立ち・進化を、観測に立脚してボトムアップ的

に理論体系化する宇宙論の研究分野

•  さまざまな観測による精査を経て、無矛盾な宇宙像を築く
（c.f.  素粒子宇宙論）

宇宙の大規模構造

宇宙マイクロ波背景放射 (CMB) の非等方性

主導的な役割を果たしてきた観測が

今回はこちら



宇宙の大規模構造
宇宙論的スケールにわたって存在する質量分布の非一様性

•質量分布の大半は冷たい暗黒物質（Cold Dark Matter, CDM）

メガパーセク(Mpc) ～ギガパーセク(Gpc)

※ 1 Mpc＝10^6 pc ~300万光年

•原始密度ゆらぎを種に、宇宙膨張の影響下で
重力不安定性により構造が発達・進化

（→宇宙論の情報を豊富に含む）

銀河赤方偏移サーベイによる銀河の３次元地図をもとに
研究が進められている（最近は重力レンズなどもある）

標準的シナリオでは



銀河赤方偏移サーベイ

スローンデジタル
スカイサーベイ 

(ニューメキシコ)

すばる望遠鏡 

(ハワイ)

8.2m2.5m 光学望遠鏡で銀河１個１個
を分光（スペクトル）観測
→ 銀河の赤方偏移 z を決定

SDSS SkyServer

遠方銀河 Ca,H&K OIII HβNa Mg 

波長

z = ��/�

（奥行きの ‘距離’ 指標に）

～ 大規模構造を探る窓 ～



http://www.mpa-garching.mpg.de/131601/hl201506

黄：SDSS-II main
赤：SDSS-II LRG
白：SDSS-III CMASS

スローンデジタルスカイサーベイ
(SDSS) の銀河カタログ

赤方偏移

地球
(観測者)

※ 途中段階のもの

カタログから断面
を切り取ったもの

約60億年前



http://www.mpa-garching.mpg.de/131601/hl201506

黄：SDSS-II main
赤：SDSS-II LRG
白：SDSS-III CMASS

スローンデジタルスカイサーベイ
(SDSS) の銀河カタログ

赤方偏移

地球
(観測者)

※ 途中段階のもの

カタログから断面
を切り取ったもの

約60億年前
CfA サーベイ

de Lapparent, Geller & Huchra (’86)

1100個の明るい銀河



銀河分布の３次元地図

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies
赤方偏移



宇宙の進化史
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宇宙論的情報
質量分布のランダムな空間パターンの統計的性質から

•原始密度ゆらぎの性質

宇宙論パラメーター
•宇宙のエネルギー組成・宇宙膨張則に関する

ダークエネルギーの性質（状態方程式）
ニュートリノ質量和の制限

インフレーションモデルの制限

宇宙論スケールでの重力のテスト
CMBから得られない情報も含む
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Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C⃝ 2012 The Authors, MNRAS 427, 3435–3467
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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精密宇宙論観測の到来

LSST (2022+)

eBOSS
(2014~)

BOSS
(~2014)

DESI 
(2018+)

SuMIRe
(2014~)

HETDEX 
(2015+)

WFIRST 
(2024+)

EUCLID 
(2020)

FastSound 
(2012~2014)

Hyper-Suprime Cam
Prime Focus Spectrograph

DES (2013~)

すばる望遠鏡による宇宙論観測

望遠鏡を占有化し、これまで以上に深く広域にサーベイを行う



精密宇宙論における不安
大規模観測により観測データの統計精度は飛躍的に向上7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
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B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33

Tegmark et al. (’06) Anderson et al. (’12)
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観測・理論双方の系統誤差が結論に影響を与える可能性

質のよい統計データで新しい宇宙論が拓ける可能性
その一方、

（その影響を考慮すべき、理論テンプレートに取り込むべき）

（波数）

Ve� = 2.2 Gpc3Ve� � 0.7 Gpc3 Ve� � 10 Gpc3



理論と観測をつなぐ

銀河バイアス

非線形重力進化

赤方偏移空間ゆがみ

線形理論
パブリックなCMBボルツマンコードに
よる高精度・高速計算 (camb, class,…)

質量密度ゆらぎ : � � �m

�m

� 1

観測銀河の個数密度ゆらぎ : �gal �
ngal

ngal
� 1

Kodama & 
Sasaki (’84)

非線形な
系統的効果



１０年前までは、

(Tegmark et al.’06)

For systematics testing and numerical purposes, we also
analyze a variety of subvolumes in the LRG sample. We
split the sample into three radial slices, labeled NEAR
(0:155< z< 0:300), MID (0:300< z < 0:380), and FAR
(0:380< z< 0:474), containing roughly equal numbers of
galaxies, as illustrated in Fig. 2. Their galaxy-weighted
mean redshifts are 0.235, 0.342, and 0.421, respectively.
We also split the sample into the seven angular regions
illustrated in Fig. 3, each again containing roughly the
same number of galaxies.

It is worth emphasizing that the LRGs constitute a
remarkably clean and uniform galaxy sample, containing
the same type of galaxy (luminous early-types) at all red-
shifts. Not only is it nearly complete ( !n!r̂" # 1 as men-
tioned above), but it is close to volume-limited for
z & 0:38 [36,49], i.e., for our NEAR and MID slices.

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numerical
improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step is
to adjust the galaxy redshifts slightly to compress so-called
fingers-of-god (FOGs), virialized galaxy clusters that ap-
pear elongated along the line-of-sight in redshift space; we
do this with several different thresholds and return to how
this affects the results in Sec. IV F 2. The LRGs are not just
brightest cluster galaxies; about 20% of them appear to
reside in a dark matter halo with one or more other LRG’s.
The second step is to expand the three-dimensional galaxy
density field in N three-dimensional functions termed
PKL-eigenmodes, whose variance and covariance retain
essentially all the information about the k < 0:2h=Mpc
power spectrum from the galaxy catalog. We use N $
42 000 modes for the LRG sample and 4000 modes for
the main sample, reflecting their very different effective
volumes. The third step is estimating the power spectrum
from quadratic combinations of these PKL mode coeffi-
cients by a matrix-based process analogous to the standard

procedure for measuring CMB power spectra from pixel-
ized CMB maps. The second and third steps are mathe-
matically straightforward but, as mentioned, numerically
demanding for large N.

A. Basic results

The measured real-space power spectra are shown in
Fig. 4 for the LRG and MAIN samples and are listed in
Table I. When interpreting them, two points should be
borne in mind:

(1) The data points (a.k.a. band power measurements)
probe a weighted average of the true power spec-
trum P!k" defined by the window functions shown in
Fig. 5. Each point is plotted at the median k-value of
its window with a horizontal bar ranging from the
20th to the 80th percentile.

(2) The errors on the points, indicated by the vertical
bars, are uncorrelated, even though the horizontal
bars overlap. Other power spectrum estimation
methods (see Appendix A 1) effectively produce a
smoothed version of what we are plotting, with error
bars that are smaller but highly correlated.

Our Fourier convention is such that the dimensionless
power "2 of [77] is given by "2!k" $ 4!!k=2!"3P!k".

 

FIG. 3 (color online). The angular distribution of our LRGs is
shown in Hammer-Aitoff projection in celestial coordinates,
with the seven colors/greys indicating the seven angular sub-
samples that we analyze.

 

FIG. 4 (color online). Measured power spectra for the full
LRG and main galaxy samples. Errors are uncorrelated and
full window functions are shown in Fig. 5. The solid curves
correspond to the linear-theory #CDM fits to WMAP3 alone
from Table 5 of [7], normalized to galaxy bias b $ 1:9 (top) and
b $ 1:1 (bottom) relative to the z $ 0 matter power. The dashed
curves include the nonlinear correction of [29] for A $ 1:4, with
Qnl $ 30 for the LRGs and Qnl $ 4:6 for the main galaxies; see
Eq. (4). The onset of nonlinear corrections is clearly visible for
k * 0:09h=Mpc (vertical line).

COSMOLOGICAL CONSTRAINTS FROM . . . PHYSICAL REVIEW D 74, 123507 (2006)

123507-5

宇宙論パラメーター解析に
用いられた理論テンプレート

z=0.35

線形理論
変てこ理論
テンプレート

引用件数 1000以上

SDSS LRG

SDSS Main

これからの精密観測では許されない

線形理論

eral reasons for this that have been extensively studied in
the literature:

(1) Nonlinear evolution alters the broad shape of the
matter power spectrum on small scales.

(2) Nonlinear evolution washes out baryon wiggles on
small scales.

(3) The power spectrum of the dark matter halos in
which the galaxies reside differs from that of the
underlying matter power spectrum in both ampli-
tude and shape, causing bias.

(4) Multiple galaxies can share the same dark matter
halo, enhancing small-scale bias.

We fit these complications using a model involving the
three ‘‘nuisance parameters’’ !b;Qnl; k"# as illustrated in
Fig. 9. Following [29,88], we model our measured galaxy
power spectrum as

 Pg!k# $ Pdewiggled!k#b2 1%Qnlk2

1% 1:4k
; (4)

where the first factor on the right hand side accounts for the
nonlinear suppression of baryon wiggles and the last factor
accounts for a combination of the nonlinear change of the
global matter power spectrum shape and scale-dependent
bias of the galaxies relative to the dark matter. For
Pdewiggled!k# we adopt the prescription [88]

 Pdewiggled!k# $ W!k#P!k# % &1'W!k#(Pnowiggle!k#; (5)

where W!k# ) e'!k=k"#
2=2 and Pnowiggle!k# denotes the ‘‘no

wiggle’’ power spectrum defined in [89] and illustrated in
Fig. 9. In other words, Pdewiggled!k# is simply a weighted
average of the linear power spectrum and the wiggle-free

 

FIG. 7 (color online). Same as Fig. 4, but multiplied by k and
plotted with a linear vertical axis to more clearly illustrate
departures from a simple power law.

 

FIG. 9 (color online). Power spectrum modeling. The best-fit
WMAP3 model from Table 5 of [7] is shown with a linear bias
b $ 1:89 (dotted curve), after applying the nonlinear bias cor-
rection with Q $ 31 (the more wiggly solid curve), and after
also applying the wiggle suppression of [88] (the less wiggly
solid curve), which has no effect on very large scales and
asymptotes to the ‘‘no wiggle’’ spectrum of [89] (dashed curve)
on very small scales. The data points are the LRG measurements
from Fig. 7.

 

FIG. 8 (color online). Constraints on the redshift-space dis-
tortion parameters ! and rgv. The contours show the 1, 2, and 3"
constraints from the observed LRG clustering anisotropy, with
the circular dot indicating the best-fit values. The diamond shows
the completely independent !-estimate inferred from our analy-
sis of the WMAP3 and LRG power spectra (it puts no constraints
on rgv, but has been plotted at rgv $ 1).

MAX TEGMARK et al. PHYSICAL REVIEW D 74, 123507 (2006)
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FIG. 9 (color online). Power spectrum modeling. The best-fit
WMAP3 model from Table 5 of [7] is shown with a linear bias
b $ 1:89 (dotted curve), after applying the nonlinear bias cor-
rection with Q $ 31 (the more wiggly solid curve), and after
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on very small scales. The data points are the LRG measurements
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受賞の対象となった業績

✓ 摂動論的計算手法の開発・発展

✓ 銀河サーベイの理論テンプレートの作成・観測への応用

宇宙の大規模構造の重力進化計算に対する

•再和法による摂動計算の精度向上・高速

•修正重力理論での計算方法

•赤方偏移空間ゆがみの理論モデル

•ニュートリノに質量がある場合の取り扱い



大規模構造研究の理論ツール
線形理論を越えて、冷たい暗黒物質が優勢
の宇宙の構造形成を取り扱う代表的手法

(その派生・発展版にフィッティング公式、ハローモデルなど)

摂動論による解析計算

�pi

dt
= �Gm2

a

N�

j �=i

�xi � �xj

|�xi � �xj |3

�pi = ma2 d�xi

dt

(i = 1, 2, · · · , N)

宇宙論的N体シミュレーション

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2–0:3h Mpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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パワースペクトルの非線形重力進化
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
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z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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大規模構造の摂動論

Juszkiewicz (’81), Vishniac (’83), Goroff et al. 
(’86), Suto & Sasaki (’91), Makino, Sasaki & 

Suto (’92), Jain & Bertschinger (’94), ...

冷たい暗黒物質(CDM) + バリオン    圧力ゼロの渦なし流体
(single-stream approx.)

弱い重力 → ニュートン重力
�

standard PT 
|�|� 1

� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

ゆらぎの波長 << ハッブル半径



摂動計算をちょっとだけ

2

II. SOLVING PERTURBATION THEORY KERNELS NUMERICALLY

To solve Eqs. (6) and (7), we expand the quantities δ and θ as

δ(k; t) = δ(1)(k; t) + δ(2)(k; t) + · · · , θ(k; t) = θ(1)(k; t) + θ(2)(k; t) + · · · , (8)

Since we are particularly interested in the late-time evolution dominated by the growing mode2, the solutions for
perturbations are expressed as

δ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · , kn; t) δ0(k1) · · · δ0(kn),

θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛

⎜⎜⎜⎜⎝

a
d

da
1

3
2

(
H0

H(a)

)2 Ωm,0

a3
−

(
csk

aH

)2

a
d

da
+

{
2 +

Ḣ

H2
+

(
cvk

aH

)2
}

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (7), and we will
summarize below up to the third order:

A. Source functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1, k2) G1(k1)G1(k2) (13)

The source functions given above are symmetric with respect to the exchange of arguments, i.e., S2(k1, k2) =
S2(k2, k1), T2(k1, k2) = T2(k2, k1). Thus, numerically solving Eq. (11), we obtain the symmetrized PT kernel
for F2 and G2.

2 In the presence of effective stress tensor, the late-time evolution may not necessarily be dominated by the growing mode, however, we
here consider the case that the EFTofLSS corrections are small.
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a3
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aH
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a
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da
+

{
2 +

Ḣ

H2
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⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (7), and we will
summarize below up to the third order:

A. Source functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1, k2) G1(k1)G1(k2) (13)

The source functions given above are symmetric with respect to the exchange of arguments, i.e., S2(k1, k2) =
S2(k2, k1), T2(k1, k2) = T2(k2, k1). Thus, numerically solving Eq. (11), we obtain the symmetrized PT kernel
for F2 and G2.

2 In the presence of effective stress tensor, the late-time evolution may not necessarily be dominated by the growing mode, however, we
here consider the case that the EFTofLSS corrections are small.
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Quasinonlinear Theory of Cosmological Self-Gravitating Systems
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Uji Research Center, Yukawa Institute for Theoretical Physics, Kyoto University, Uji 6l I, Japan
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Nonlinear eflects of self-gravitating systems in cosmology are considered on the basis of perturbation
theory. In particular, we examine several cases in which evolution of the power spectrum of density fluc-
tuations can be analytically calculated. In some cases, nonlinearity suppresses the growth of fluctuations
relative to linear theory, and the power transfer via nonlinear mode coupling is sensitive to the specific
shape of the underlying fluctuation spectrum. The result is in good agreement with recent numerical
simulations.
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effect, artificial two-body relaxation, and so on. Hence,
it is of great value to check the numerical simulation and
its validity by other analytical methods. In this paper,
we present a quasinonlinear perturbation analysis, fol-
lowing the formalism developed by Juszkiewicz and
Vishniac, to see the weakly nonlinear effect on the
cosmological density fluctuations. We found that the
higher-order perturbations can be analytically integrated
for power-law-type spectra of density fluctuations. The
results clearly illustrate the role of primordial spectrum
shape on the subsequent nonlinear evolution of cosmo-
logical gravitating systems, as suggested by the earlier
numerical works. '
Expand the density fluctuations as a perturbation

series:

P(k, t) =Pt t (k)(t/I; )4"+ [Pp2(k)+P~3(k)](t/t;) s"+
After a lengthy, but straightforward calculation, we found that Eq. (15) in Ref. 4 can be written as

3 f oo 3 +7 —10P22(k ) = P t t (kr) dr dx P ~ t [K(1+r —2rx ) 'I']98(2tr) & o " —~ (1+r —2rx)
(2)

4 3 2 3 2 1+rP„(k)= drPtt(kr) —158+100r —42r + (r —1) (7r +2)ln252(2tr)2 "o r2 3 1 —r

The dynamics of self-gravitating systems is of funda-
mental importance in astrophysics. In particular, non-
linear growth of cosmological density Auctuations is the
first and main physical process in the formation and evo-
lution of the large-scale structure in the Universe. If the
present cosmic structure originated from quantum fluc-
tuations in the inAationary epoch, their statistical proper-
ties are fairly well specified: random Gaussian density
field with scale-invariant power spectrum [P(k) ~k].
Although linear theory quantitatively describes the sub-
sequent evolution of Auctuations, there is no established
method to follow their nonlinear evolution. Convention-
ally, N-body simulations have been employed to explore
the nonlinear evolution of the cosmic structure. In this
numerical approach, Suto' and later Suginohara et al.
found that the nonlinear growth rate sensitively depends
on the overall shape of the Auctuation spectrum. It is &(k, t)—=8)(k, t)+&z(k, t)+&3(k, t)+
not clear, however, to what extent the simulations faith-
fully describe the actual large-scale structure formation where the expressions for the above perturbations can be
in the Universe, owing to the possible discretization

~

found in Ref. 4. To second order, the spectrum reduces
to

~6'(k, t)
~

= ~Bt(k, t) ~
+2Re[8~*(k,t)82(k, t) l+ ~Bq(k, t) ~

+2Re[8~*(k, t)63(k, t)1+
The linear perturbation 6'~ is assumed to be given by a random Gaussian field. For simplicity, we consider the
Einstein-de Sitter model. Then the second term in Eq. (1) vanishes after taking the ensemble average, and the power
spectrum of density fluctuations in weakly nonlinear regime reduces to

The above result is quite general in the sense that we do not make any particular assumption on the way of nonlinear
power transfer, except that the higher-order terms are negligible.
First, consider the power-law fluctuation spectrum with a cutoff' at large wave number:

A(k/k, )", for 0 &k &k, ,
() for k)k (3)

In this case, expressions (2) can be analytically integrated. Since we are mainly interested in the weakly nonlinear re-
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Equations of self-gravitating systems in the Universe are solved by expanding as perturbation series in
Fourier space. The formulas for the higher-order terms are given for density and velocity fields. We ap-
ply the formulas to several analytically integrable models whose linear density power spectra obey a sin-
gle power law, and asymptotically approach the prediction of the cold-dark-matter scenario. We explic-
itly give the nonlinear gravitational evolution for the fields and its dependence on the initial spectrum.
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I. INTRODUCTION

Gravitation is definitely the simplest and nevertheless
most fundamental source responsible for generating com-
plexity and diversity in astrophysical structures. In par-
ticular, the standard theory of structure formation in the
universe, the gravitational instability picture, cannot be
completed without the proper understanding of the phys-
ics of nonlinear self-gravitating systems. The linear
theory of the gravitational instability picture has been ex-
tensively worked out and has reached a satisfactory level
(e.g., Refs. [1]and [2]). On the other hand, the nonlinear
theory of gravitational evolution is far from complete.
Of course, this is not without reason; gravitational evo-

lution in cosmology is intrinsically a fully three-
dimensional phenomenon and involves a literally astro-
nomical number of degrees of freedom. %'ith the strong
nonlinearity inherent to the gravitational interaction,
these make any general assessment of the problem practi-
cally impossible. A recent breakthrough was brought
about by the rapid progress in computational resources.
The currently available supercomputers enable one to in-
vestigate numerically the fully nonlinear gravitational
evolution in fairly realistic conditions (e.g., Refs. [3-7]).
On the other hand, it is usually not so easy, if not impos-
sible, to elucidate the underlying physics from a limited
number of numerical experiments which can cover a tiny
fraction of the realistic parameter space. In this respect
analytical results, including the spherical infall model,
the stable clustering solutions, and the Zel'dovich solu-
tion (e.g., Ref. [1]},play complementary roles in the fur-
ther understanding of gravitational physics, even if they
are applicable only to a quite restrictive situation. In this
paper we aim at presenting another complementary ap-
proach to the nonlinear gravitational clustering. Our
analysis is based on the higher-order perturbative formal-

ism developed by Juszkiewicz [8], and then by Vishniac
[9] and Juszkiewicz, Sonoda, and Barrow [10]. Extending
the work by Suto and Saski [11],who found analytically
tractable models within the above formalism, we will give
a detailed description of the second-order nonlinear evo-
lution of a gravitating cosmological fluid.

II. FORMALISM AND DERIVATION
OF THE SECOND-ORDER PERTURBATIONS

A. Basic formalism

Throughout the present analysis, we adopt a matter-
dominated, spatially flat universe, i.e., the Einstein-de
Sitter model, for simplicity. Since the characteristic scale
in which we are interested corresponds to that of the
large-scale structure in the present day, we focus our at-
tention on the gravitational evolution of structure in
subhorizon scales. Then the gravitating system is de-
scribed by the Newtonian equations

—5(x, t)+—V [v(x, t)[1+5(x,t)]]=0,1

a (2.1a)

t} 1 a—v(x, t }+—[v(x, t }V]v(x, t ) + v(x, t)—Bt ' a a

V tp(x, t)=4trGa po(t)5(x, t)
2

3 a a 5(x, t) .2 a

+ Vtp(x, t }=0—,1

a (2.1b)

(2.1c)

In the above expressions, x is the comoving coordinate,
5(x, t) is the density contrast, v(x, t)=ax is the peculiar
velocity, q&(x, t) is the peculiar gravitational potential,
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定性的にしかシミュレーション
のふるまいと一致しない！？

Jain & Bertchinger (’94)

当時のシミュレーションは、摂動
論が適用できる領域で十分な精度・

解像度がなかった
ボックスサイズ：100Mpc

粒子数：1443

また、そんな大スケールの観測もなかった
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バリオン音響振動
• 宇宙晴れ上がり前のバリオン-光子流体の痕跡

(⇔ 宇宙マイクロ波背景放射に現れる音響振動)

• 振動スケール は「標準ものさし」になる
→ 遠方宇宙の宇宙膨張診断（加速膨張の起源に迫る手がかり）

���� z 

遠方銀河 宇宙マイクロ波背景放射

 z (=0~3)角径距離  z=1100

宇宙膨張の変化は距離と
赤方偏移の関係に影響

音響振動スケール



日本でも宇宙論観測を

FastSound プロジェクト (2012年~2016年)

すばる望遠鏡を準占有化することで本格的な宇宙論の
サーベイ観測を行う機運が生じた

SuMIRe プロジェクト (2014年~)

周りにも興味を持つ学生が集まりだした（当時、東大所属）

サイエンス検討会
→「 観測の精度が上がるなら理論の精度も何とかしないと」



摂動論の再生

Jeong & Komatsu (’06)

これはおもしろそうだ！
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Fig. 2.— (Top) Dimensionless power spectrum, ∆2(k). The
solid and dashed lines show perturbation theory calculations and
N-body simulations, respectively. The dotted lines show the pre-
dictions from halo approach (Smith et al. 2003). The dot-dashed
lines show the linear power spectrum. (Bottom) Residuals. The
errorbars show the N-body data divided by the perturbation the-
ory predictions minus one, while the solid curves show the halo
model calculations given in (Smith et al. 2003) divided by the per-
turbation theory predictions minus one. The perturbation theory
predictions agree with simulations to better than 1% accuracy for
∆2(k) ! 0.4.

the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial = 27, 34, 42, and 50 for 512,
256, 128, and 64 h−1 Mpc simulations, respectively. In
Appendix A we show more on the convergence test (see
Fig. A1).

4. RESULTS

Figure 1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6
(from top to bottom) from simulations (dashed lines), PT
(solid lines), and linear theory (dot-dashed lines). The
PT predictions agree with simulations so well that it is
actually difficult to see the difference between PT and
simulations in Figure 1. The simulations are significantly
above the linear theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z)
[Eq. (2)] in Figure 2. We find that the PT predictions
(thin solid lines) agree with simulations (thick solid lines)
to better than 1% accuracy for ∆2(k, z) ! 0.4. On the
other hand, the latest predictions from halo approach

Fig. 3.— Non-linearity in baryonic acoustic oscillations. All
of the power spectra have been divided by a smooth power
spectrum without baryonic oscillations from equation (29) of
(Eisenstein & Hu 1998). The errorbars show N-body simulations,
while the solid lines show perturbation theory calculations. The
dot-dashed lines show the linear theory predictions. Perturbation
theory describes non-linear distortion on baryonic oscillations very
accurately at z > 1. Note that different redshift bins are not inde-
pendent, as they have grown from the same initial conditions. The
N-body data at k < 0.24 and k > 0.24 h Mpc−1 are from 512 and
256 h−1 Mpc box simulations, respectively.

(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ≃ 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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lines show the linear power spectrum. (Bottom) Residuals. The
errorbars show the N-body data divided by the perturbation the-
ory predictions minus one, while the solid curves show the halo
model calculations given in (Smith et al. 2003) divided by the per-
turbation theory predictions minus one. The perturbation theory
predictions agree with simulations to better than 1% accuracy for
∆2(k) ! 0.4.

the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial = 27, 34, 42, and 50 for 512,
256, 128, and 64 h−1 Mpc simulations, respectively. In
Appendix A we show more on the convergence test (see
Fig. A1).

4. RESULTS

Figure 1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6
(from top to bottom) from simulations (dashed lines), PT
(solid lines), and linear theory (dot-dashed lines). The
PT predictions agree with simulations so well that it is
actually difficult to see the difference between PT and
simulations in Figure 1. The simulations are significantly
above the linear theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z)
[Eq. (2)] in Figure 2. We find that the PT predictions
(thin solid lines) agree with simulations (thick solid lines)
to better than 1% accuracy for ∆2(k, z) ! 0.4. On the
other hand, the latest predictions from halo approach

Fig. 3.— Non-linearity in baryonic acoustic oscillations. All
of the power spectra have been divided by a smooth power
spectrum without baryonic oscillations from equation (29) of
(Eisenstein & Hu 1998). The errorbars show N-body simulations,
while the solid lines show perturbation theory calculations. The
dot-dashed lines show the linear theory predictions. Perturbation
theory describes non-linear distortion on baryonic oscillations very
accurately at z > 1. Note that different redshift bins are not inde-
pendent, as they have grown from the same initial conditions. The
N-body data at k < 0.24 and k > 0.24 h Mpc−1 are from 512 and
256 h−1 Mpc box simulations, respectively.

(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ≃ 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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Here, the functions F and G as well as their recursion
relations are given in (Jain & Bertschinger 1994). As the
linear density field, δ1, is a Gaussian random field, the
ensemble average of odd powers of δ1 vanishes. There-
fore, the next-to-leading order correction to P (k) is

P (k, τ) = a2(τ)P11(k) + a4(τ)[2P13(k) + P22(k)], (10)
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While F (s)
2 (k1,k2) should be modified for different cos-

mological models, the difference vanishes when k1 ∥ k2.
The biggest correction comes from the configurations

with k1 ⊥ k2, for which [F (s)
2 (ΛCDM)/F (s)

2 (EdS)]2 ≃
1.006 and ! 1.001 at z = 0 and z ≥ 1, respec-

tively. Here, F (s)
2 (EdS) is given by equation (12), while

F (s)
2 (ΛCDM) contains corrections due to Ωm ̸= 1 and

ΩΛ ̸= 0 (Matsubara 1995; Scoccimarro et al. 1998), and
we used Ωm = 0.27 and ΩΛ = 0.73 at present. The in-
formation about different background cosmology is thus
almost entirely encoded in the linear growth factor. We
extend the results obtained above to arbitrary cosmo-
logical models by simply replacing a(τ) in equation (10)
with an appropriate linear growth factor, D(z),

P (k, z) = D2(z)P11(k) + D4(z)[2P13(k) + P22(k)]. (14)

We shall use equation (11)–(14) to compute P (k, z).

3. N-BODY SIMULATIONS AND ANALYSIS METHOD

We use the TVD (Ryu et al. 1993) code to simu-
late the evolution of δ(x, τ). The TVD code uses
the Particle-Mesh scheme for gravity, and the Total-
Variation-Diminishing (TVD) scheme for hydrodynam-
ics, although we do not use hydrodynamics in our cal-
culations. To increase the dynamic range of the de-
rived power spectrum and check for convergence of the
results, we use four box sizes, Lbox = 512, 256, 128,
and 64 h−1 Mpc, with the same number of particles,
N = 2563. (We use 5123 meshes for doing FFT.) We
use the following cosmological parameters: Ωm = 0.27,
Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8, and ns = 1.
We output the simulation data at z = 6, 5, 4, 3, 2 and 1
for 512, 256 and 128 h−1 Mpc, while only at z = 6, 5, 4
and 3 for 64 h−1 Mpc.

We suppress sampling variance of the estimated P (k, z)
by averaging P (k, z) from 60, 60, 20, and 15 indepen-
dent realizations of 512, 256, 128, and 64 h−1 Mpc sim-
ulations, respectively. We calculate the density field on

Fig. 1.— Power spectrum at z = 1, 2, 3, 4, 5 and 6 (from top
to bottom), derived from N-body simulations (dashed lines), per-
turbation theory (solid lines), and linear theory (dot-dashed lines).
We plot the simulation data from 512, 256, 128, and 64 h−1 Mpc
simulations at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1,
0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1, respectively.
Note that we did not run 64 h−1 Mpc simulations at z = 1 or 2.

5123 mesh points from the particle distribution by the
Cloud-In-Cell (CIC) mass distribution scheme. We then
Fourier transform the density field and average |δk(τ)|2

within k − ∆k/2 ≤ |k| < k + ∆k/2 over the angle to
estimate P (k, z). Here, ∆k = 2π/Lbox. Finally, we cor-
rect the estimated P (k) for loss of power due to the CIC
pixelization effect using the window function calculated
from 100 realizations of random particle distributions.

We use the COSMICS package (Bertschinger 1995) to
calculate the linear transfer function (with linger) and
generate the input linear matter power spectrum and
initial conditions (with grafic). We have increased the
number of sampling points for the transfer function in
k space from the default value of COSMICS, as the de-
fault sampling rate is too low to sample the baryonic
acoustic oscillations accurately. (The default rate re-
sulted in an artificial numerical smoothing of the oscil-
lations.) We locate initial particles on the regular grid
(i.e., we do not randomize the initial particle distribu-
tion), and give each particle the initial velocity field us-
ing the Zel’dovich approximation. This procedure sup-
presses shot noise in the derived power spectrum, which
arises from randomness of particle distribution. We have
checked this by comparing P (k, z) from the initial con-
dition to the input linear spectrum. However, some shot
noise would arise as density fluctuations grow over time.
While it is difficult to calculate the magnitude of shot
noise from the structure formation, we estimate it by
comparing P (k, z) from large-box simulations with that
from small-box simulations. We do not find any evi-
dence for shot noise at z ≥ 1; thus, we do not sub-
tract shot noise from the estimated P (k, z). To be
conservative, we use 512, 256, 128, and 64 h−1 Mpc
simulations to obtain P (k, z) at k ≤ 0.24 h Mpc−1,
0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1,
and 1.4 < k ≤ 5 h Mpc−1, respectively, to avoid the
residual CIC pixelization effect and potential contami-
nations from unaccounted shot noise terms as well as ar-
tificial “transients” from initial conditions generated by
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late the evolution of δ(x, τ). The TVD code uses
the Particle-Mesh scheme for gravity, and the Total-
Variation-Diminishing (TVD) scheme for hydrodynam-
ics, although we do not use hydrodynamics in our cal-
culations. To increase the dynamic range of the de-
rived power spectrum and check for convergence of the
results, we use four box sizes, Lbox = 512, 256, 128,
and 64 h−1 Mpc, with the same number of particles,
N = 2563. (We use 5123 meshes for doing FFT.) We
use the following cosmological parameters: Ωm = 0.27,
Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8, and ns = 1.
We output the simulation data at z = 6, 5, 4, 3, 2 and 1
for 512, 256 and 128 h−1 Mpc, while only at z = 6, 5, 4
and 3 for 64 h−1 Mpc.
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by averaging P (k, z) from 60, 60, 20, and 15 indepen-
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Fig. 1.— Power spectrum at z = 1, 2, 3, 4, 5 and 6 (from top
to bottom), derived from N-body simulations (dashed lines), per-
turbation theory (solid lines), and linear theory (dot-dashed lines).
We plot the simulation data from 512, 256, 128, and 64 h−1 Mpc
simulations at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1,
0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1, respectively.
Note that we did not run 64 h−1 Mpc simulations at z = 1 or 2.

5123 mesh points from the particle distribution by the
Cloud-In-Cell (CIC) mass distribution scheme. We then
Fourier transform the density field and average |δk(τ)|2

within k − ∆k/2 ≤ |k| < k + ∆k/2 over the angle to
estimate P (k, z). Here, ∆k = 2π/Lbox. Finally, we cor-
rect the estimated P (k) for loss of power due to the CIC
pixelization effect using the window function calculated
from 100 realizations of random particle distributions.

We use the COSMICS package (Bertschinger 1995) to
calculate the linear transfer function (with linger) and
generate the input linear matter power spectrum and
initial conditions (with grafic). We have increased the
number of sampling points for the transfer function in
k space from the default value of COSMICS, as the de-
fault sampling rate is too low to sample the baryonic
acoustic oscillations accurately. (The default rate re-
sulted in an artificial numerical smoothing of the oscil-
lations.) We locate initial particles on the regular grid
(i.e., we do not randomize the initial particle distribu-
tion), and give each particle the initial velocity field us-
ing the Zel’dovich approximation. This procedure sup-
presses shot noise in the derived power spectrum, which
arises from randomness of particle distribution. We have
checked this by comparing P (k, z) from the initial con-
dition to the input linear spectrum. However, some shot
noise would arise as density fluctuations grow over time.
While it is difficult to calculate the magnitude of shot
noise from the structure formation, we estimate it by
comparing P (k, z) from large-box simulations with that
from small-box simulations. We do not find any evi-
dence for shot noise at z ≥ 1; thus, we do not sub-
tract shot noise from the estimated P (k, z). To be
conservative, we use 512, 256, 128, and 64 h−1 Mpc
simulations to obtain P (k, z) at k ≤ 0.24 h Mpc−1,
0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1,
and 1.4 < k ≤ 5 h Mpc−1, respectively, to avoid the
residual CIC pixelization effect and potential contami-
nations from unaccounted shot noise terms as well as ar-
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ABSTRACT

We apply a nonlinear statistical method in turbulence to the cosmological perturbation theory and derive a closed
set of evolution equations for matter power spectra. The resultant closure equations consistently recover the one-loop
results of standard perturbation theory, and beyond that, it is still capable of treating the nonlinear evolution of matter
power spectra. We find the exact integral expressions for the solutions of closure equations. These analytic expressions
coincide with the renormalized one-loop results presented by Crocce and Scoccimarro apart from the vertex renormal-
ization. By constructing the nonlinear propagator, we analytically evaluate the nonlinear matter power spectra based
on the first-order Born approximation of the integral expressions and compare it with those of the renormalized per-
turbation theory.

Subject headinggs: cosmology: theory — dark matter — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

Cosmology now enters the era of precision cosmology.With large data set from the precisionmeasurements of the cosmicmicrowave
background anisotropies as well as the matter density fluctuations in the large-scale structure, the standard cosmological model has been
fully established (e.g., Spergel et al. 2007; Tegmark et al. 2006). The associated cosmological parameters are well determinedwith errors
at the 10% level. With the improved sensitivity and higher precision of future observations, the modern picture of the universe will be
further reinforced, and one can even explore a tiny signature of new physics beyond the standard cosmological model.

In fact, several ambitious missions for galaxy redshift surveys are planed in order to reveal the nature of dark energy (e.g., Albrecht et al.
2006; Peacock et al. 2006 and references therein). Among these, theWide-field Fiber-fedMulti-Object Spectrograph (WFMOS)may be
one of the best facilities capable of achieving the percent-level measurement of baryon acoustic oscillations (BAOs) imprinted in the
matter power spectrum (Meiksin et al. 1999). The recent observations from the Sloan Digital Sky Survey (SDSS) and TwoDegree Field
Galaxy Redshift Survey (2dFGRS) showed that the characteristic scale of BAOs can be used as the cosmic standard ruler to determine
the distance-redshift relation of high-redshift galaxies (Cole et al. 2005; Eisenstein et al. 2005; Hütsi 2006; Percival et al. 2007). Since
the distance-redshift relation is sensitive to the cosmic expansion history, details of the accelerated expansion can be clarified from the ac-
curate measurement of BAOs (Seo & Eisenstein 2003). With percent-level measurement of the characteristic scale of BAOs, the deter-
mination of the dark energy equation of state, parameterized byw ! Pde /!de, will achieve a few percent accuracy, where Pde and !de are
the pressure and the energy density of dark energy, respectively.

On the other hand, pursuit of the nature of dark energy highlights various fundamental problems which are potentially crucial for the
accurate determination of the dark energy equation of state. For example, the observation of BAOs requires a high-precision theoretical
template for the matter power spectrum in the relevant wavenumber, k "0:1 0:3 h Mpc#1. To achieve the required accuracy in the de-
termination of w, several systematic effects must be incorporated into the theoretical predictions. Among known systematic effects, the
nonlinear gravitational clustering is one of themost fundamental building blocks in the theory of structure formation. The recentN-body
simulations showed that the nonlinear growth of matter distribution significantly alters the shape of the power spectrum and the acoustic
signature of BAOs tends to be erased, where the linear theory prediction of matter power spectrum is no longer valid (e.g., Meiksin et al.
1999; Seo & Eisenstein 2005). To tackle the issue, the perturbation theory for gravitational clustering has been revived and has been ap-
plied to the study of BAOs (e.g., Suto & Sasaki 1991;Makino et al. 1992; Jain&Bertschinger 1994; Scoccimarro & Frieman 1996; Jeong
& Komatsu 2006; Nishimichi et al. 2008). The inclusion of leading-order correction to the nonlinear clustering effect somehow im-
proves a performance and reproduces the N-body results very well (Jeong & Komatsu 2006). At lower redshifts z < 2, however, the
next-to-leading-order effect becomes important and the theoretical prediction with the leading-order correction is insufficient to repro-
duce the N-body simulations.

Going beyond the perturbation theory, existing theoretical tools dealing with the nonlinear gravitational clustering are the N-body
simulation and the fitting formula for the matter power spectrum (e.g., Peacock & Dodds 1994; Smith et al. 2003), as well as the phe-
nomenological approach based on the halo model (see Cooray & Sheth 2002 for a review). Currently, however, none of the reliable
methods to ensure the percent-level precision exist. While the N-body simulation has the potential to provide a high-precision predic-
tion, at present, one cannot blindly trust the N-body results unless a reliable and comparable counterpart is established and is fully rec-
onciled with N-body results. In this respect, development of new analytical methods beyond the perturbation theory is necessary and
essential for progress on precision cosmology.

In this paper, we present a nonlinear statistical method to predict the time evolution of the matter power spectrum. Very recently,
several works have appeared on the statistical treatment going beyond the perturbation theory (Valageas 2004, 2007a; Crocce &
Scoccimarro 2006a, 2006b;McDonald 2007;Matarrese& Pietroni 2007; Izumi& Soda 2007). Based on the field theoretical approach, the
perturbation theory has been reformulated by improving the summation of the naive perturbative expansion. The so-called renormalized
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Figure 2: Tree-level and one-loop power spectrum.
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Figure 2: Tree-level and one-loop power spectrum.
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326 T. Nishimichi et al. [Vol. 61,

Fig. 3. Same as figure 2, but we correct the effect of the finite volume. We truncate the expansion of equation (11) at the first term. The error bars show
equation (13).

Fig. 4. Same as figure 2, but we correct the effect of finite volume, including the second term of equation (11). We also show the 1% limit wavenumbers,
klim

1% , for LIN, SPT, and RPT/CLA by vertical arrows (from left to right).

a limitation of the error bars at large scales up to some
wavenumbers (we determine the range of convergence in
the next subsection). Among the four theoretical predic-
tions, linear theory deviates at the smallest wavenumber.
The range of the agreement in SPT is wider than in linear
theory, because SPT includes the leading-order contribution
of nonlinear growth. RPT and CLA seem to agree well
with N -body simulations compared with SPT, although all
of the three nonlinear models include their own leading-order
nonlinear corrections. This difference in the agreement ranges
corresponds to their different convergence properties; RPT and

CLA possess the property of converging at the scales where the
nonlinearity is very weak.
5.2. Convergence Regime in Wavenumber

We are now able to quantitatively estimate the convergence
regime of wavenumbers where the theories and N -body simu-
lations agree. We define two characteristic wavenumbers, klim

1%

and klim
3% , such that the results of N -body simulations and theo-

retical predictions agree within a limitation of 1% at k < klim
1%

and within a limitation of 3% at k < klim
3% . We confirmed that if

we add 1% (3%) Gaussian errors on the power spectra binned
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けっこういける！

N-body and improved PT results, i.e., ½!N-bodyðrÞ $
!PTðrÞ%=!PTðrÞ.

After the correction of finite-mode sampling, the error
bars in N-body simulations are greatly reduced, and the
deviation of the N-body results from linear-theory predic-
tions (depicted as dotted lines) is clearly seen. As decreas-
ing the redshift, the baryon acoustic peaks become smeared
and the position of the peak are slightly shifted to a smaller
scale. These trends can be accurately described by the
leading-order calculation of improved PT, and the agree-
ment between the N-body results and the predictions is
excellent. The fractional error in amplitude is well within a
few percent, except for a large separation beyond the
location of baryon acoustic peak, where the accuracy of
the N-body results tends to worsen due to the limited
simulation boxsize. Note that the corrections coming
from the higher-order Born approximation do not alter
the behaviors at r > 30h$1 Mpc, and their amplitudes
are negligibly small compared to the error bars of the
N-body simulations. Thus, the leading-order prediction
seems robust for describing the baryon acoustic peak.

It has been recently suggested by several authors that the
smearing effect on baryon acoustic peak is mostly attrib-
uted to the random motion of mass distribution [56], and it
is approximately described by the convolution of the

Gaussian smoothing function (e.g., [35,57]). In the lan-
guage of improved PT, this effect corresponds to the dis-
appearance of the memory of the initial condition, which is
encoded in the nonlinear propagator. Strictly speaking, the
asymptotic behavior of the nonlinear propagator is not a
Gaussian form in closure approximation, although the
damping behavior manifestly exhibits in the approximate
solution of nonlinear propagator. Hence, the prediction for
the two-point correlation function seems robust against the
high-k behavior of the nonlinear propagator.
Finally, it should be noted that the standard PT predic-

tion fails to converge the integral in Eq. (4.4), because of
the high-k behavior of the power spectrum. This is true
even when including the higher-order correction of two-
loop order. Thus, the successful results of improved PT
prediction may be regarded as an outcome of nonperturba-
tive property.

C. Results in redshift space

In practical observation with galaxy redshift surveys, the
observed galaxy distribution is inevitably distorted due to
the peculiar velocity of each galaxy. The so-called redshift-
space distortion is known to alter the shape of the power
spectrum in two different ways (e.g., [58]). One is the

FIG. 7 (color online). Comparison between N-body results and improved PT predictions in the case adopting WMAP5 cosmological
parameters. From top to bottom, the results at z ¼ 3, 2, 1, and 0.5 are shown. The improved PT predictions plotted here include the
corrections up to the second-order Born approximation of the mode-coupling term, PMC2. Left: ratio of power spectrum to the
smoothed reference spectra PðkÞ=Pno-wiggleðkÞ. Solid and dotted lines are improved PT and linear-theory predictions, respectively.

Right: difference between N-body and improved PT results normalized by the no-wiggle formula ½PN-bodyðkÞ $ PPTðkÞ%=Pno-wiggleðkÞ.
In each panel, vertical arrows represent the wave number k1% for the leading-order predictions of standard and improved PT (from left
to right).
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高次のオーダーまで入れるとさらに適用範囲が広がった

AT, Nishimichi, Saito & Hiramatsu (’09)

mentary to the N-body simulations. To clarify the useful-
ness of this approach, a more quantitative comparison
between N-body simulations and our numerical treatment
is needed. We will discuss this issue in a future work.

B. Perturbative calculation

In this subsection, we turn to focus on the perturbative
treatment of the closure equations, by which all the quan-
tities in nonlinear terms are replaced with the linear-order
ones. As we mentioned, this treatment automatically re-
produces the one-loop results of SPT. Owing to the nu-
merical treatment, we can address weakly nonlinear
evolution even when the analytical calculations are no
longer possible. In Sec. VB 1, we discuss the one-loop
power spectra in dark energy models, and address the
validity of the analytical treatment based on the Einstein-
de Sitter approximation. In Sec. VB 2, we examine a class
of modified gravity models with linear Poisson equation,
where the effective Newton constant manifestly depends
on scale. We demonstrate how the modification of the
gravitational-force law affects the power spectra in weakly
nonlinear regime.

1. Dark energy models

The one-loop SPT has recently attracted renewed inter-
est for an accurate modeling of large-scale structure. In
particular, a precise measurement of baryon acoustic os-
cillations made by ongoing and/or upcoming galaxy sur-
veys to probe the nature of late-time cosmic acceleration
provide a strong motivation to use the one-loop SPT for an
accurate template of matter power spectrum (e.g.,
Refs. [16,24–26]). In these experiments, the required ac-
curacy for theoretical template reaches at a percent level.

In the analytic treatment of one-loop power spectra, the
Einstein-de Sitter (EdS) approximation has been fre-
quently used in the literature (e.g., Ref. [14] and references
therein). Under the approximation, the higher-order solu-
tions of perturbation are approximately described by the
linear growth factor DðzÞ, and the resultant power spectra
are schematically expressed as

Pabðk; zÞ ¼ D2ðzÞPL
abðkÞ þD4ðzÞP1%loop

ab ðkÞ þ & & & : (35)

Note that for dark energy models in general relativity, the
EdS approximation is mathematically equivalent to solving
the closure equations just replacing the matrix !ab in the

operators "̂ab and #̂abcd with

!EdS
ab ð!Þ ¼ 0 %1

% 3
2 f

2 f
2 %

d lnf
d!

! "
; (36)

with the function f defined by f ' d lnD=d!.
Here, we consider two specific examples of dark energy

models characterized by the equation-of-state parameter
wde as [27,28]

wdeðaÞ ¼ w0 þ wað1% aÞ; (37)

and [29]

wdeðaÞ ¼ w0w1

!
aq þ aqs

w1a
q þ w0a

q
s

"
: (38)

Comparing the numerical results of closure equations with
the analytical calculations, we discuss the validity of EdS
approximation.
Figure 4 shows the one-loop spectra P11ðkÞ (left) and

P22ðkÞ (right) at z ¼ 0:5 and 3, for dark energy model with
slowly varying wde [Eq. (37)]. The model parameters w0

and wa were appropriately chosen within the currently
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FIG. 3 (color online). Time evolution of matter power spectra, P11ðkÞ, evaluated at z ¼ 3, 1 and 0.5 from left to right panels. The
vertical axis is normalized by the linear growth rate, DðzÞ. The solid lines represent the numerical solution of the Eqs. (15)–(17). The
dashed and dotted lines are the analytic results including the corrections up to the first- and second-order Born approximation,
respectively [13]. The squares with error bars indicate the N-body simulations taken from Ref. [17].
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mentary to the N-body simulations. To clarify the useful-
ness of this approach, a more quantitative comparison
between N-body simulations and our numerical treatment
is needed. We will discuss this issue in a future work.

B. Perturbative calculation

In this subsection, we turn to focus on the perturbative
treatment of the closure equations, by which all the quan-
tities in nonlinear terms are replaced with the linear-order
ones. As we mentioned, this treatment automatically re-
produces the one-loop results of SPT. Owing to the nu-
merical treatment, we can address weakly nonlinear
evolution even when the analytical calculations are no
longer possible. In Sec. VB 1, we discuss the one-loop
power spectra in dark energy models, and address the
validity of the analytical treatment based on the Einstein-
de Sitter approximation. In Sec. VB 2, we examine a class
of modified gravity models with linear Poisson equation,
where the effective Newton constant manifestly depends
on scale. We demonstrate how the modification of the
gravitational-force law affects the power spectra in weakly
nonlinear regime.

1. Dark energy models

The one-loop SPT has recently attracted renewed inter-
est for an accurate modeling of large-scale structure. In
particular, a precise measurement of baryon acoustic os-
cillations made by ongoing and/or upcoming galaxy sur-
veys to probe the nature of late-time cosmic acceleration
provide a strong motivation to use the one-loop SPT for an
accurate template of matter power spectrum (e.g.,
Refs. [16,24–26]). In these experiments, the required ac-
curacy for theoretical template reaches at a percent level.

In the analytic treatment of one-loop power spectra, the
Einstein-de Sitter (EdS) approximation has been fre-
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mentary to the N-body simulations. To clarify the useful-
ness of this approach, a more quantitative comparison
between N-body simulations and our numerical treatment
is needed. We will discuss this issue in a future work.

B. Perturbative calculation

In this subsection, we turn to focus on the perturbative
treatment of the closure equations, by which all the quan-
tities in nonlinear terms are replaced with the linear-order
ones. As we mentioned, this treatment automatically re-
produces the one-loop results of SPT. Owing to the nu-
merical treatment, we can address weakly nonlinear
evolution even when the analytical calculations are no
longer possible. In Sec. VB 1, we discuss the one-loop
power spectra in dark energy models, and address the
validity of the analytical treatment based on the Einstein-
de Sitter approximation. In Sec. VB 2, we examine a class
of modified gravity models with linear Poisson equation,
where the effective Newton constant manifestly depends
on scale. We demonstrate how the modification of the
gravitational-force law affects the power spectra in weakly
nonlinear regime.
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BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies

c� 0000 RAS, MNRAS 000, 1–15
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赤方偏移空間歪みの理論モデル
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effect through (e.g., [18, 52, 53])
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The quantities DA,fid and Hfid are the fiducial values
of the angular diameter distance and Hubble parameter
adopted in the N-body simulations. For a given set of
cosmological parameters, the redshift-space power spec-
trum P (S) is calculated from Eq. (18), but we here treat
the quantity f as free parameter in addition to the ve-
locity dispersion σv. Further, to mimic a practical data
analysis using galaxy power spectrum, we introduce the
bias parameter b, assuming the linear deterministic rela-
tion, i.e., δsim = b δm [69]. Then, fitting the monopole
and quadrupole power spectra of Eq. (25) to those of the
N-body simulation at z = 1, we determine the best-fit
values of DA, H and f , just marginalized over the pa-
rameters σv and b. To do this, we use the Markov chain
Monte Carlo (MCMC) technique described by Ref. [55],
and adopt the likelihood function given by

− 2 lnL =
∑

n

∑

ℓ,ℓ′=0,2

{
P (S)

ℓ,sim(kn) − P (S)
ℓ,model(kn)

}

× Cov−1
ℓ,ℓ′(kn)

{
P (S)

ℓ′,sim(kn) − P (S)
ℓ′,model(kn)

}
,

(28)

where the quantity Covℓ,ℓ′ represents the covariance ma-
trix between different multipoles. The range of wavenum-
ber used in the likelihood analysis was chosen as k ≤
kmax = 0.205hMpc−1, so as to satisfy kmax ≤ k1%. As
for the covariance, we simply ignore the non-Gaussian
contribution (see Ref. [56] for validity of this treatment),
and use the linear theory to estimate the diagonal com-
ponents of the covariance, Covℓ,ℓ′ , including the effect of
shot-noise contribution assuming the galaxy number den-
sity ng = 5 × 10−4h3Mpc−3. The explicit expression for
the covariance is presented in Appendix C. We checked
that the linear theory estimate reasonably reproduces the
N-body results of the covariance matrix for the range of
our interest k ! 0.3hMpc−1 at z = 1.

Fig. 9 summarizes the result of the MCMC analy-
sis assuming an idealistically large survey with Vs =
20h−3Gpc3. The two-dimensional contour of the 1-σ
marginalized errors are shown for DA/DA,fid vs H/Hfid

(bottom left), DA/DA,fid vs f (middle left), and f vs
DA/DA,fid (bottom center). Also, the marginalized pos-
terior distribution for each parameter are plotted in the
top left, middle center, and bottom right panels. In each
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FIG. 9: Results of MCMC analysis using the model of red-
shift distortion with and without corrections (depicted as blue
and red lines, respectively). Based on the power spectrum
template (25), we derive the posterior distribution for the pa-
rameters DA, H and f from the monopole and quadrupole
spectra of N-body simulations at z = 1, marginalized over
the one-dimensional velocity dispersion σv and linear bias pa-
rameter b. Top left, middle center and bottom right show
the marginalized posterior distribution for DA/DA,fid, H/Hfid

and f . Shaded regions indicate the 1% interval around
the fiducial values. Middle left, bottom left, and bottom
center plot the two-dimensional 1-σ errors on the surfaces
(H/Hfid, f), (DA/DA,fid, H/Hfid), and (f, H/Hfid). Note that
in estimating likelihood function (28), we adopted the lin-
ear theory to calculate the covariance matrix Covℓ,ℓ′ , includ-
ing the shot-noise contribution with ng = 5 × 10−4h3Mpc−3

and assuming an idealistically large survey volume Vs =
20h−3Gpc3 (see Appendix C for explicit expression).

panel, blue and red lines respectively represent the results
using the model of redshift distortion with and without
the terms A and B.

As it is clear from Fig. 9, the model including the cor-
rections shows a better performance. Within the 1-σ
errors, which roughly correspond to the precision of a
percent-level, it correctly reproduces the fiducial values
of the parameters (indicated by crosses). On the other
hand, the two-dimensional errors of the results neglecting
the corrections show a clear evidence for the systematic
bias on the best-fit parameters. Accordingly, the resul-
tant value of χ2 around the best-fit parameters, given by
χ2 = −2 lnL, is larger than that of the case including the
corrections: χ2 = 10.1 and 22.2 for the cases with and
without corrections, respectively. Although the deviation
from the fiducial values seems somewhat small except for
the growth-rate parameter f , this is solely due to the fact
that we only use the monopole and quadrupole power
spectra. It would be generally significant in the analy-
sis using the full shape of redshift-space power spectrum,
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effect through (e.g., [18, 52, 53])
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(
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The quantities DA,fid and Hfid are the fiducial values
of the angular diameter distance and Hubble parameter
adopted in the N-body simulations. For a given set of
cosmological parameters, the redshift-space power spec-
trum P (S) is calculated from Eq. (18), but we here treat
the quantity f as free parameter in addition to the ve-
locity dispersion σv. Further, to mimic a practical data
analysis using galaxy power spectrum, we introduce the
bias parameter b, assuming the linear deterministic rela-
tion, i.e., δsim = b δm [69]. Then, fitting the monopole
and quadrupole power spectra of Eq. (25) to those of the
N-body simulation at z = 1, we determine the best-fit
values of DA, H and f , just marginalized over the pa-
rameters σv and b. To do this, we use the Markov chain
Monte Carlo (MCMC) technique described by Ref. [55],
and adopt the likelihood function given by

− 2 lnL =
∑

n

∑

ℓ,ℓ′=0,2

{
P (S)

ℓ,sim(kn) − P (S)
ℓ,model(kn)

}

× Cov−1
ℓ,ℓ′(kn)
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ℓ′,sim(kn) − P (S)
ℓ′,model(kn)

}
,

(28)

where the quantity Covℓ,ℓ′ represents the covariance ma-
trix between different multipoles. The range of wavenum-
ber used in the likelihood analysis was chosen as k ≤
kmax = 0.205hMpc−1, so as to satisfy kmax ≤ k1%. As
for the covariance, we simply ignore the non-Gaussian
contribution (see Ref. [56] for validity of this treatment),
and use the linear theory to estimate the diagonal com-
ponents of the covariance, Covℓ,ℓ′ , including the effect of
shot-noise contribution assuming the galaxy number den-
sity ng = 5 × 10−4h3Mpc−3. The explicit expression for
the covariance is presented in Appendix C. We checked
that the linear theory estimate reasonably reproduces the
N-body results of the covariance matrix for the range of
our interest k ! 0.3hMpc−1 at z = 1.

Fig. 9 summarizes the result of the MCMC analy-
sis assuming an idealistically large survey with Vs =
20h−3Gpc3. The two-dimensional contour of the 1-σ
marginalized errors are shown for DA/DA,fid vs H/Hfid

(bottom left), DA/DA,fid vs f (middle left), and f vs
DA/DA,fid (bottom center). Also, the marginalized pos-
terior distribution for each parameter are plotted in the
top left, middle center, and bottom right panels. In each
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FIG. 9: Results of MCMC analysis using the model of red-
shift distortion with and without corrections (depicted as blue
and red lines, respectively). Based on the power spectrum
template (25), we derive the posterior distribution for the pa-
rameters DA, H and f from the monopole and quadrupole
spectra of N-body simulations at z = 1, marginalized over
the one-dimensional velocity dispersion σv and linear bias pa-
rameter b. Top left, middle center and bottom right show
the marginalized posterior distribution for DA/DA,fid, H/Hfid

and f . Shaded regions indicate the 1% interval around
the fiducial values. Middle left, bottom left, and bottom
center plot the two-dimensional 1-σ errors on the surfaces
(H/Hfid, f), (DA/DA,fid, H/Hfid), and (f, H/Hfid). Note that
in estimating likelihood function (28), we adopted the lin-
ear theory to calculate the covariance matrix Covℓ,ℓ′ , includ-
ing the shot-noise contribution with ng = 5 × 10−4h3Mpc−3

and assuming an idealistically large survey volume Vs =
20h−3Gpc3 (see Appendix C for explicit expression).

panel, blue and red lines respectively represent the results
using the model of redshift distortion with and without
the terms A and B.

As it is clear from Fig. 9, the model including the cor-
rections shows a better performance. Within the 1-σ
errors, which roughly correspond to the precision of a
percent-level, it correctly reproduces the fiducial values
of the parameters (indicated by crosses). On the other
hand, the two-dimensional errors of the results neglecting
the corrections show a clear evidence for the systematic
bias on the best-fit parameters. Accordingly, the resul-
tant value of χ2 around the best-fit parameters, given by
χ2 = −2 lnL, is larger than that of the case including the
corrections: χ2 = 10.1 and 22.2 for the cases with and
without corrections, respectively. Although the deviation
from the fiducial values seems somewhat small except for
the growth-rate parameter f , this is solely due to the fact
that we only use the monopole and quadrupole power
spectra. It would be generally significant in the analy-
sis using the full shape of redshift-space power spectrum,
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観測への応用
Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in

27

Planck 
ΛCDM

赤方偏移

密
度
ゆ
ら
ぎ
の
成
長
率

TNSモデルが応用

Planck 2015 XIII

観測グループでも関心が集まり、モデルの有効性が検証され、
やがて実データへと応用され始めた

最近のSDSS BOSS DR12

でも使われている
Beutler, Seo, Saito et al. (’16)



観測への応用
Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
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, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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generacy between these parameters cannot be broken without other
extra information. With the measurement of BAO scale and RSD
(roughly speaking, the quadrupole-to-monopole ratio, P0/P2), how-
ever, we can simultaneously estimate D2

A/H and fσ 8, free from the
bias parameters. Then, if we add the amplitude and shape informa-
tion in the anisotropic power spectrum, which respectively depends
on b2

0H/D2
A and b2

0DAH , the degeneracy between b0, DA and H is
broken, and we can separately determine the geometric parameters
(Percival et al. 2007, 2010; Padmanabhan & White 2008; Anderson
et al. 2012).

We see that the correlations between the linear bias parameter, b0,
and the geometric parameters, DA and H, are not perfect. This im-
plies that the power spectrum amplitude may add information on the
geometric parameters. As opposed to the isotropic case, this makes
when the anisotropic part of the power spectrum is included in the
following reason. The BAO scales and RSD (roughly speaking, the
quadrupole-to-monopole ratio, P0/P2), respectively, well constrain
D2

A/H and fσ 8 free from bias parameters. The degeneracy between
DA and H is broken by both amplitude and shape information in
the anisotropic power spectrum, which, respectively, depends on
b2

0H/D2
A and b2

0DAH (Percival et al. 2007, 2010; Padmanabhan &
White 2008; Anderson et al. 2012).

Although we have already presented our main results, it would
be still worthwhile mentioning how robust our modelling is against
different set-ups as a check. Here we go through a similar study
to what we have done for the mock catalogue. Namely, we com-
pare constraints using several slightly different set-ups which are
summarized in Table 1. The labels of the set-up in Table 1 are
summarized as follows.

(i) Planck-z03. The fiducial model described in the above. The
redshift at which we evaluate the model power spectra is z = 0.3.

(ii) Planck-z035. Same cosmological model as Planck-z03 but
we evaluate the model power spectra at z = 0.35, which is nor-
mally quoted as the effective redshift in the FKP-type measurement
(Percival et al. 2010).

(iii) WMAP5. We assume the cosmological parameters favoured
by the WMAP 5-year result, "m = 0.28, "b = 0.046, h = 0.7,
ns = 0.96, σ 8 = 0.8, and z = 0.3, for computing the model spectra.

(iv) Planck-noAB. Same as Planck-z03, but with the A and B
correction terms in the RSD model (8) dropped out.

(v) Planck-cbias. Same as Planck-z03, but with the galaxy bias
(14) being a constant, i.e. b(k) = b0.

As is seen from Table 1, Planck-z03 gives the smallest χ2, while
the difference is small. The constraints on (f, DA, H) are all consis-
tent with each other, excepting Planck-cbias. The bias parameters
are in fact more important than the others in order to well fit to the
monopole. Comparison between WMAP5 and Planck-z03 shows
that our constraints are not sensitive to choice of the underlying
cosmology for the model power spectrum. We thus conclude that
our results are robust against such systematics.

5.2 Comparison with previous works

Here let us mention the consistency of our results compared with
previous works. We show some examples of similar works (Blake
et al. 2011a; Reid et al. 2012; Samushia et al. 2012; Xu et al. 2013)
in Fig. 8 and Table 2, together with the predictions from different
cosmological models. Fig. 8 shows that all of the results tend to un-
derestimate fσ 8 compared to the Planck best-fitting $CDM model
but no significant deviation from a $CDM model is confirmed. Our
results are in a good agreement with those in Samushia et al. (2012)

Figure 8. Comparisons of our results with those of previous works and
model predictions. The linear growth rate (top), angular diameter distance
(middle), and Hubble parameter (bottom) as a function of redshift are shown.
We plot our results with kmax = 0.175 (h Mpc−1) in filled (red; colours are
available for the online version) circles as well as our aggressive results with
kmax = 0.205 (h Mpc−1) in open (magenta) circles to caveat the systematic
due to non-linear RSDs. For comparison, we also display an open (purple)
inverted triangle from Samushia et al. (2012), open (blue) boxes from Blake
et al. (2011a), open (green) diamonds from Reid et al. (2012), and open
(orange) triangles from Xu et al. (2013). The solid curve is the prediction
of the flat $CDM assumption with the Planck cosmological parameters
["m = 0.32, h = 0.67; Ade et al. (Planck Collaboration) 2013] and the
dotted curve is those of the WMAP cosmological parameters ("m = 0.279,
h = 0.701; Komatsu et al. 2009). On the other hand, the dashed curve is the
prediction of the DGP model (Dvali, Gabadadze & Porrati 2000). Note that
we here do not include the systematic errors for our result.
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Figure 1. The filled circles with error bars are the observed multipole
spectra, monopole (top), quadrupole (middle), and hexadecapole (bottom)
power spectra of the SDSS DR7 LRG sample. We plot the best-fitting results
with solid curves, whose details are described in Section 5. The results are
multiplied by k1.5. The best-fitting curves are plotted in the range of the
wavenumbers k ≤ kmax = 0.175 (h Mpc−1) that corresponds to the valid
range of our theoretical model (see Section 4.3). We used the data in the
range of the wavenumbers k ≤ kmax = 0.175 (h Mpc−1), which include 51
data points, as described in Section 5.

Fig. 1 demonstrates the resultant multipole power spectra, the
monopole (top), quadrupole (middle), and hexadecapole (bottom),
respectively. The solid curves in each panel show the best-fitting
results described in Section 5.

3 MO D E L L I N G T H E MU LT I P O L E
POWER SPECTRA

In this section, we briefly review the theoretical model of the multi-
pole power spectra used in the cosmological analysis. Our goal is to
constrain the linear growth rate and geometrical factors simultane-
ously through RSDs and AP effect in an unbiased manner. For this
purpose, a proper modelling of the shape and the amplitude of the
anisotropic power spectrum is rather crucial (e.g. Padmanabhan &
White 2008), and we will investigate the robustness of our model in
detail in Section 4. The model presented here is based on the pertur-
bation theory calculation, and we will separately give prescription
on how to compute the multipole power spectra.

3.1 Redshift-space distortions and non-linear gravitational
growth

RSDs and gravitational clustering involve, in nature, non-linear
and non-Gaussian effects, and it is quite essential to take a proper
account of these for a robust cosmological analysis beyond the
linear scales. Since we are interested in a large-scale anisotropic
clustering at moderately high redshift, the PT approach should work
well, and a per cent-level precision is achievable with PT calculation
in weakly non-linear regime k ! 0.2 (h Mpc−1).

Let us first consider RSDs. It is well known that the clustering
statistics in redshift space are influenced by the two effects, the
Kaiser and FoG effects. While the former comes from the coherent
motion of galaxies and enhances the clustering amplitude, the latter
is mainly attributed to the virialized random motion of galaxies
sitting in a halo and suppresses the power spectrum significantly
along the line of sight. Strictly speaking, these effects cannot be
treated separately, and through the higher order corrections, a tight
correlation between the density and velocity fields still plays an
important role on the scales of our interest. In the present paper,
among several proposed models to account for the non-linear RSDs
(Matsubara 2008a; Reid & White 2011; Seljak & McDonald 2011),
we adopt the model given by Taruya et al. (2010, hereafter TNS
model):

P s(k, µ) = DFoG(kµf σv)

× [PKaiser(k, µ; f ) + A(k, µ; f ) + B(k, µ; f )], (8)

where σ v is a nuisance parameter, which is related to the one-
dimensional velocity dispersion. The function DFoG(kµfσ v) charac-
terizes the suppression of the power spectrum by the FoG effect, for
which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function PKaiser(k, µ) is the non-linear generalization of the
Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f ) = Pδδ(k) + 2f µ2Pδθ (k) + f 2µ4Pθθ (k). (10)

Here, the functions Pδδ(k), Pθθ (k), and Pδθ (k) are, respectively, the
autopower spectra of the density and the velocity divergence, and
their cross-power spectrum. Here, the velocity divergence, θ , is
normalized as θ ≡ −∇v/(f aH ).

The main characteristic of the model (8) is the two additional
terms A and B, which represent the higher order coupling between
the velocity and density fields, usually ignored in a phenomenolog-
ical model of RSDs. These corrections have been properly derived
on the basis of the low-k expansion from the exact expression of the
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Figure 1. The filled circles with error bars are the observed multipole
spectra, monopole (top), quadrupole (middle), and hexadecapole (bottom)
power spectra of the SDSS DR7 LRG sample. We plot the best-fitting results
with solid curves, whose details are described in Section 5. The results are
multiplied by k1.5. The best-fitting curves are plotted in the range of the
wavenumbers k ≤ kmax = 0.175 (h Mpc−1) that corresponds to the valid
range of our theoretical model (see Section 4.3). We used the data in the
range of the wavenumbers k ≤ kmax = 0.175 (h Mpc−1), which include 51
data points, as described in Section 5.

Fig. 1 demonstrates the resultant multipole power spectra, the
monopole (top), quadrupole (middle), and hexadecapole (bottom),
respectively. The solid curves in each panel show the best-fitting
results described in Section 5.

3 MO D E L L I N G T H E MU LT I P O L E
POWER SPECTRA

In this section, we briefly review the theoretical model of the multi-
pole power spectra used in the cosmological analysis. Our goal is to
constrain the linear growth rate and geometrical factors simultane-
ously through RSDs and AP effect in an unbiased manner. For this
purpose, a proper modelling of the shape and the amplitude of the
anisotropic power spectrum is rather crucial (e.g. Padmanabhan &
White 2008), and we will investigate the robustness of our model in
detail in Section 4. The model presented here is based on the pertur-
bation theory calculation, and we will separately give prescription
on how to compute the multipole power spectra.

3.1 Redshift-space distortions and non-linear gravitational
growth

RSDs and gravitational clustering involve, in nature, non-linear
and non-Gaussian effects, and it is quite essential to take a proper
account of these for a robust cosmological analysis beyond the
linear scales. Since we are interested in a large-scale anisotropic
clustering at moderately high redshift, the PT approach should work
well, and a per cent-level precision is achievable with PT calculation
in weakly non-linear regime k ! 0.2 (h Mpc−1).

Let us first consider RSDs. It is well known that the clustering
statistics in redshift space are influenced by the two effects, the
Kaiser and FoG effects. While the former comes from the coherent
motion of galaxies and enhances the clustering amplitude, the latter
is mainly attributed to the virialized random motion of galaxies
sitting in a halo and suppresses the power spectrum significantly
along the line of sight. Strictly speaking, these effects cannot be
treated separately, and through the higher order corrections, a tight
correlation between the density and velocity fields still plays an
important role on the scales of our interest. In the present paper,
among several proposed models to account for the non-linear RSDs
(Matsubara 2008a; Reid & White 2011; Seljak & McDonald 2011),
we adopt the model given by Taruya et al. (2010, hereafter TNS
model):

P s(k, µ) = DFoG(kµf σv)

× [PKaiser(k, µ; f ) + A(k, µ; f ) + B(k, µ; f )], (8)

where σ v is a nuisance parameter, which is related to the one-
dimensional velocity dispersion. The function DFoG(kµfσ v) charac-
terizes the suppression of the power spectrum by the FoG effect, for
which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function PKaiser(k, µ) is the non-linear generalization of the
Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f ) = Pδδ(k) + 2f µ2Pδθ (k) + f 2µ4Pθθ (k). (10)

Here, the functions Pδδ(k), Pθθ (k), and Pδθ (k) are, respectively, the
autopower spectra of the density and the velocity divergence, and
their cross-power spectrum. Here, the velocity divergence, θ , is
normalized as θ ≡ −∇v/(f aH ).

The main characteristic of the model (8) is the two additional
terms A and B, which represent the higher order coupling between
the velocity and density fields, usually ignored in a phenomenolog-
ical model of RSDs. These corrections have been properly derived
on the basis of the low-k expansion from the exact expression of the
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Figure 1. The filled circles with error bars are the observed multipole
spectra, monopole (top), quadrupole (middle), and hexadecapole (bottom)
power spectra of the SDSS DR7 LRG sample. We plot the best-fitting results
with solid curves, whose details are described in Section 5. The results are
multiplied by k1.5. The best-fitting curves are plotted in the range of the
wavenumbers k ≤ kmax = 0.175 (h Mpc−1) that corresponds to the valid
range of our theoretical model (see Section 4.3). We used the data in the
range of the wavenumbers k ≤ kmax = 0.175 (h Mpc−1), which include 51
data points, as described in Section 5.

Fig. 1 demonstrates the resultant multipole power spectra, the
monopole (top), quadrupole (middle), and hexadecapole (bottom),
respectively. The solid curves in each panel show the best-fitting
results described in Section 5.

3 MO D E L L I N G T H E MU LT I P O L E
POWER SPECTRA

In this section, we briefly review the theoretical model of the multi-
pole power spectra used in the cosmological analysis. Our goal is to
constrain the linear growth rate and geometrical factors simultane-
ously through RSDs and AP effect in an unbiased manner. For this
purpose, a proper modelling of the shape and the amplitude of the
anisotropic power spectrum is rather crucial (e.g. Padmanabhan &
White 2008), and we will investigate the robustness of our model in
detail in Section 4. The model presented here is based on the pertur-
bation theory calculation, and we will separately give prescription
on how to compute the multipole power spectra.

3.1 Redshift-space distortions and non-linear gravitational
growth

RSDs and gravitational clustering involve, in nature, non-linear
and non-Gaussian effects, and it is quite essential to take a proper
account of these for a robust cosmological analysis beyond the
linear scales. Since we are interested in a large-scale anisotropic
clustering at moderately high redshift, the PT approach should work
well, and a per cent-level precision is achievable with PT calculation
in weakly non-linear regime k ! 0.2 (h Mpc−1).

Let us first consider RSDs. It is well known that the clustering
statistics in redshift space are influenced by the two effects, the
Kaiser and FoG effects. While the former comes from the coherent
motion of galaxies and enhances the clustering amplitude, the latter
is mainly attributed to the virialized random motion of galaxies
sitting in a halo and suppresses the power spectrum significantly
along the line of sight. Strictly speaking, these effects cannot be
treated separately, and through the higher order corrections, a tight
correlation between the density and velocity fields still plays an
important role on the scales of our interest. In the present paper,
among several proposed models to account for the non-linear RSDs
(Matsubara 2008a; Reid & White 2011; Seljak & McDonald 2011),
we adopt the model given by Taruya et al. (2010, hereafter TNS
model):

P s(k, µ) = DFoG(kµf σv)

× [PKaiser(k, µ; f ) + A(k, µ; f ) + B(k, µ; f )], (8)

where σ v is a nuisance parameter, which is related to the one-
dimensional velocity dispersion. The function DFoG(kµfσ v) charac-
terizes the suppression of the power spectrum by the FoG effect, for
which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function PKaiser(k, µ) is the non-linear generalization of the
Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f ) = Pδδ(k) + 2f µ2Pδθ (k) + f 2µ4Pθθ (k). (10)

Here, the functions Pδδ(k), Pθθ (k), and Pδθ (k) are, respectively, the
autopower spectra of the density and the velocity divergence, and
their cross-power spectrum. Here, the velocity divergence, θ , is
normalized as θ ≡ −∇v/(f aH ).

The main characteristic of the model (8) is the two additional
terms A and B, which represent the higher order coupling between
the velocity and density fields, usually ignored in a phenomenolog-
ical model of RSDs. These corrections have been properly derived
on the basis of the low-k expansion from the exact expression of the
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Figure 1. The filled circles with error bars are the observed multipole
spectra, monopole (top), quadrupole (middle), and hexadecapole (bottom)
power spectra of the SDSS DR7 LRG sample. We plot the best-fitting results
with solid curves, whose details are described in Section 5. The results are
multiplied by k1.5. The best-fitting curves are plotted in the range of the
wavenumbers k ≤ kmax = 0.175 (h Mpc−1) that corresponds to the valid
range of our theoretical model (see Section 4.3). We used the data in the
range of the wavenumbers k ≤ kmax = 0.175 (h Mpc−1), which include 51
data points, as described in Section 5.

Fig. 1 demonstrates the resultant multipole power spectra, the
monopole (top), quadrupole (middle), and hexadecapole (bottom),
respectively. The solid curves in each panel show the best-fitting
results described in Section 5.

3 MO D E L L I N G T H E MU LT I P O L E
POWER SPECTRA

In this section, we briefly review the theoretical model of the multi-
pole power spectra used in the cosmological analysis. Our goal is to
constrain the linear growth rate and geometrical factors simultane-
ously through RSDs and AP effect in an unbiased manner. For this
purpose, a proper modelling of the shape and the amplitude of the
anisotropic power spectrum is rather crucial (e.g. Padmanabhan &
White 2008), and we will investigate the robustness of our model in
detail in Section 4. The model presented here is based on the pertur-
bation theory calculation, and we will separately give prescription
on how to compute the multipole power spectra.

3.1 Redshift-space distortions and non-linear gravitational
growth

RSDs and gravitational clustering involve, in nature, non-linear
and non-Gaussian effects, and it is quite essential to take a proper
account of these for a robust cosmological analysis beyond the
linear scales. Since we are interested in a large-scale anisotropic
clustering at moderately high redshift, the PT approach should work
well, and a per cent-level precision is achievable with PT calculation
in weakly non-linear regime k ! 0.2 (h Mpc−1).

Let us first consider RSDs. It is well known that the clustering
statistics in redshift space are influenced by the two effects, the
Kaiser and FoG effects. While the former comes from the coherent
motion of galaxies and enhances the clustering amplitude, the latter
is mainly attributed to the virialized random motion of galaxies
sitting in a halo and suppresses the power spectrum significantly
along the line of sight. Strictly speaking, these effects cannot be
treated separately, and through the higher order corrections, a tight
correlation between the density and velocity fields still plays an
important role on the scales of our interest. In the present paper,
among several proposed models to account for the non-linear RSDs
(Matsubara 2008a; Reid & White 2011; Seljak & McDonald 2011),
we adopt the model given by Taruya et al. (2010, hereafter TNS
model):

P s(k, µ) = DFoG(kµf σv)

× [PKaiser(k, µ; f ) + A(k, µ; f ) + B(k, µ; f )], (8)

where σ v is a nuisance parameter, which is related to the one-
dimensional velocity dispersion. The function DFoG(kµfσ v) charac-
terizes the suppression of the power spectrum by the FoG effect, for
which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function PKaiser(k, µ) is the non-linear generalization of the
Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f ) = Pδδ(k) + 2f µ2Pδθ (k) + f 2µ4Pθθ (k). (10)

Here, the functions Pδδ(k), Pθθ (k), and Pδθ (k) are, respectively, the
autopower spectra of the density and the velocity divergence, and
their cross-power spectrum. Here, the velocity divergence, θ , is
normalized as θ ≡ −∇v/(f aH ).

The main characteristic of the model (8) is the two additional
terms A and B, which represent the higher order coupling between
the velocity and density fields, usually ignored in a phenomenolog-
ical model of RSDs. These corrections have been properly derived
on the basis of the low-k expansion from the exact expression of the
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予想以上に使われた

•西道くんがシミュレーションをもとにモデルの詳細に検討
を進めたおかげで有効性・実用性を示せた

•当時ポスドクでバークレーにいた斎藤くんが、SDSS BOSS

チームに関わりデータ解析に用いたことで認知度があがった
Beutler, Saito et al. (’14), Beutler, Seo, Saito et al. (’16)

Nishimichi & Taruya (’11), Ishikawa, Totani, Nishimichi et al. (’14)

わかりやすくて手軽さ・汎用性が受けた（計算コードも公開）

若手の活躍と健闘のおかげ！

引用数：129 (ADS)



摂動論が広げる可能性
精密宇宙論の時代に入り、銀河サーベイから統計精度の高い
大スケールにわたる観測データが得られるようになってきた

摂動論にもとづく理論計算が本質的役割を果たす時代

•修正重力理論における摂動論

•ニュートリノの影響を取り入れた摂動論テンプレート

Koyama, AT & Hiramatsu (’09)

Saito, Takada & AT (’08, ’09, ‘11)
→観測データへ応用、 ニュートリノ質量和の制限

紹介しきれなかった他の研究

→ f(R)重力理論の観測的制限
AT, Nishimichi, Bernardeau & Koyama (’14)

AT, Koyama, Hiramatsu & Oka (’14) Song,  AT, et al. (’15)

日本の観測プロジェクトへの活用に向けてさらに発展

…



課題と展望

•銀河バイアスのよりよい理解

•重力進化摂動計算の再考・リノベーション
さらに高次に行くと流体方程式に
もとづく摂動計算が破綻（UV問題）

有効理論的アプローチが必要？

銀河の個数密度ゆらぎ質量密度ゆらぎ

観測的応用だけでなく、基礎研究も不可欠

より基礎的な記述へ（Vlasove方程式）

‘nuisance parameters’ をこえた理解が可能か？



共同研究者のみなさま、今まで楽しく研究ができま
した。ありがとうございました。そしてこれからも

よろしくお願いします。


