カイラル磁気効果発見と批判そして統合へ

福嶋 健二

東京大学大学院理学系研究科物理学専攻
－木村利栄理論物理学賞 受賞記念講演－

紆余曲折の物語

－発見前夜～黎明期
ロインスタントンはどこで見付かるか
－公式発見への道のり（テーゼ）
\square 量子異常が見えた？
․ 次々となされる批判（アンチテーゼ）
ロカイラル化学ポテンシャルの功罪
批判を乗り越えて（アウフヘーベン）
\square 量子異常と非平衡の物理

発見前夜～黎明期

OCDと量子異常

 Diracフェルミオン（ゼロ質量）

Jan．20， 2021 ＠基礎物理学研究所（オンライン）

Q CDと量子異常

カイラル量子異常

$$
\begin{aligned}
& \text { E B } \\
& \frac{d N_{5}}{d t d^{3} x}=\frac{q^{2}}{2 \pi^{2}} \boldsymbol{E} \cdot \boldsymbol{B} \Rightarrow \partial_{\mu} j_{5}^{\mu}=-\frac{q^{2}}{8 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
\end{aligned}
$$

Jan．20，2021＠基礎物理学研究所（オンライン）

平行電磁場をかけなくても，QCDではグルーオンの運動方程式の虚時間古典解が似たような性質を持つ

解の存在と性質は’70年代から知られていたが・••
$\langle\theta \mid \theta\rangle \rightarrow S_{\mathrm{QCD}}=-\frac{1}{2 g^{2}} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\frac{\theta}{16 \pi^{2}} \operatorname{tr} F_{\mu \nu} \tilde{F}^{\mu \nu}$
θ は（何故か分からないが）ゼロとコンシステント
インスタントンは実験で見えるのか？
－理論屋はカイラル対称性の自発的破れの起源 （質量の起源）はインスタントンだと信じている
－n＇の質量が異常に大きい

もっと直接的な実験的証拠は？

真空を変化させる実験

相対論的重イオン衝突実験

RHIC：From dreams to beams in two decades

Gordon Baym
Department of Physics，University of Illinois at Urbana－Champaign
Urbana，IL 61801，U．S．A．

This talk traces the history of RHIC over the last two decades，reviewing the scien－ tific motivations underlying its design，and the challenges and opportunities the machine presents．

1．THE VERY EARLY DAYS

The opening of RHIC culminates a long history of fascination of nuclear and high energy physicists with discovering new physics by colliding heavy nuclei at high energy． As far back as the late 1960＇s the possibility of accelerating uranium ions in the CERN ISR for this purpose was contemplated［1］．The subject received＂subtle stimulation＂ by the workshop on＂Bev／nucleon collisions of heavy ions＂at Bear Mountain，New York， organized by Arthur Kerman，Leon Lederman，Mal Ruderman，Joe Weneser and T．D．Lee in the fall of 1974 ［1］．In retrospect，the Bear Mountain meeting was a turning point in bringing heavy ion physics to the forefront as a research tool．The driving question at the meeting was，as Lee emphasized，whether the vacuum is a medium whose properties one could change；＂we should investigate，＂he pointed out，＂．．．phenomena by distributing high energy or high nucleon density over a relatively large volume．＂If in this way one could restore broken symmetries of the vacuum，then it might be possible to create abnormal dense states of nuclear matter，as Lee and Gian－Carlo Wick speculated［2］．

真空＝媒質

真空を変化させる実験

標準的な場の量子論の教科書によれば・••$$
\begin{equation*}
=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\frac{1}{2}\left[a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}\right]\right) \tag{2.31}
\end{equation*}
$$

The second term is proportional to $\delta(0)$ ，an infinite c－number．It is simply the sum over all modes of the zero－point energies $\omega_{\mathbf{p}} / 2$ ，so its presence is completely expected，if somewhat disturbing．Fortunately，this infinite energy shift cannot be detected experimentally，since experiments measure only en－ ergy differences from the ground state of H ．We will therefore ignore this infinite constant term in all of our calculations．It is possible that this en－ ergy shift of the ground state could create a problem at a deeper level in the theory；we will discuss this matter in the Epilogue．

$$
\text { QCDには当てはまらない } \quad \omega_{p}=\sqrt{\substack{\boldsymbol{p}^{2}+m^{2} \\ \text { 凝縮で動的に決まる }}}
$$

Jan．20， 2021 ＠基礎物理学研究所（オンライン）

真空を変化させる実験

インスタントンに似た物理を調べられる？
－虚時間 \rightarrow 実時間のトポロジー的遷移？高温で遷移率が大きくなる
（QCDスファレロン遷移）McLerran－Motola－Shaposhnikov（1990）
－実時間で真空が急激に変化して，一時的に θ と同じ量子数をもつ凝縮が生成される？
（Disoriented Chiral Condensate）Bjorken，Pisarski， Kharzeev，．．．（～1990）

T．D．Lee－＂Vacuum Engineering＂

公式発見への道のり

磁場を入れてみよう

当時は磁場中のクォーク物質の計算はまだマイナーな研究課題で，カラー超伝導で議論されていただけ

査読したカラー超伝導の論文で？？？と思うことが あって，たまたま廊下でHarmen Warringaと議論

これ, 真面目に計算できるのでは?

Fukushima－Warringa， ＂Color superconducting matter in a magnetic field＂ Phys．Rev．Lett．100， 032007 （2008）
メジャーでなかった理由
中性子星の表面磁場 $\lesssim 10^{12}$ gauss $\sim 10^{-2} \mathrm{MeV}^{2}$ マグネターの表面磁場
$\lesssim 10^{15}$ gauss $\sim 10 \mathrm{MeV}^{2}$
マグネターの中心部
$\lesssim 10^{18}$ gauss $\sim 10^{4} \mathrm{MeV}^{2} \sim m_{\pi}^{2}$
やっとQCDスケールに届いても，密度のエネルギー
スケールの方が大きく，磁場効果はほとんど効かない

お前の磁場はネグリジブルだ！

© B

相対論的重イオン衝突実験の作る磁場

$$
10^{20} \text { gauss } \sim \mathrm{GeV}^{2}
$$

Larry McLerran
Kharzeev－McLerran－Warringa， ＂The effects of topological charge change in heavy ion collisions：Event by event P and $C P$ violation＂，NPA 803， 227 （2008）

直感的な描像

Kharzeev－McLerran－Warringa， ＂The effects of topological charge change in heavy ion collisions：Event by event P and $C P$ violation＂，NPA 803， 227 （2008）

カイラリティがトポロジー的なゲージ配位に誘起される

$$
\left(N_{L}^{f}-N_{R}^{f}\right)=2 Q_{\mathrm{w}}
$$

磁場がスピンの向きを揃え電荷の偏りが誘起される

$$
Q=2 Q_{\mathrm{w}} \sum_{f}\left|q_{f}\right| \quad \begin{aligned}
& \text { ここまではDCCなど様々な } \\
& \text { 理論シナリオのひとつ }
\end{aligned} . .
$$

最高に愉快な数曰間

2007年9月にBNLから基研に異動 2008年の初夏にBNLに 釣りしに 物理を議論しに行く

Harmen Warringa，Dima Kharzeevと議論が始まる
磁場中のもっと場の量子論的な計算はできないか？
「粒子数」はとても扱いにくい
カラー超伝導では（ β 平衡の）化学ポテンシャルを使う
カイラリティ \rightarrow 化学ポテンシャルで大分配関数計算

最高に愉快な数曰間

毎朝「答えが分かったぞ！」 から議論がスタート

K．Fukushima，＂Views of the Chiral Magnetic Effect＂ Lect．Notes Phys．871， 241 （2013） 1209.5064 ［hep－ph］

我々が最初に気付いた「公式」と「導出法」

$$
\begin{gathered}
\Omega=\frac{|e B|}{2 \pi} \sum_{s= \pm} \sum_{n=0}^{\infty} \alpha_{n, s} \int_{-\infty}^{\infty} \frac{\mathrm{d} p_{3}}{2 \pi}\left[\omega_{p, s}+T \sum_{ \pm} \log \left(1+e^{-\beta\left(\omega_{p, s} \pm \mu\right)}\right)\right] \\
\text { ゼロ点振動 } \\
\text { Landau縮退度 }
\end{gathered}
$$

$$
\begin{aligned}
& \omega_{p, s}^{2}=\left[\operatorname{sgn}\left(p_{3}\right)\left(p_{3}^{2}+2|e B| n\right)^{1 / 2}+s \mu_{5}\right]^{2}+m^{2} \\
& \text { Landau軌道 } \text { カイラル化学ポテンシャル }
\end{aligned}
$$

最高に愉快な数曰間

$$
\begin{aligned}
\Omega & =\frac{|e B|}{2 \pi} \sum_{s= \pm} \sum_{n=0}^{\infty} \alpha_{n, s} \int_{-\infty}^{\infty} \frac{\mathrm{d} p_{3}}{2 \pi}\left[\omega_{p, s}+T \sum_{ \pm} \log \left(1+e^{-\beta\left(\omega_{p, s} \pm \mu\right)}\right)\right] \\
\omega_{p, s}^{2} & =\left[\operatorname{sgn}\left(p_{3}\right)\left(p_{3}^{2}+2|e B| n\right)^{1 / 2}+s \mu_{5}\right]^{2}+m^{2} \\
j_{3} & =\left.\frac{\partial \Omega}{\partial A_{3}}\right|_{A_{3}=0} \quad\left(\mu_{5}\right. \text { のためゲージ量子異常ではない) } \\
& =e \frac{|e B|}{2 \pi} \sum_{s= \pm} \sum_{n=0}^{N} \alpha_{n, s} \int_{-\Lambda}^{\Lambda} \frac{\mathrm{d} p_{3}}{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} p_{3}}\left[\omega_{p, s}+T \sum_{ \pm} \log \left(1+e^{-\beta\left(\omega_{p, s} \pm \mu\right)}\right)\right] \\
& =e \frac{|e B|}{4 \pi^{2}}\left[\omega_{p, \pm}\left(p_{3}=\Lambda\right)-\omega_{p, \pm}\left(p_{3}=-\Lambda\right)\right] \\
& =e \frac{|e B|}{4 \pi^{2}}\left[\left(\Lambda \pm \mu_{5}\right)-\left(\Lambda \mp \mu_{5}\right)\right]=\frac{e^{2} \mu_{5}}{2 \pi^{2}} B
\end{aligned}
$$

最高に愉快な数曰間

Harmen•自分「運動量の端っこから答えが出て温度にも
質量にもよらない式が出たっ！」
（Dima Kharzeevのオフィスに駆け込んで興奮して黒板に式を書き殴る二人）

Dima「そうそう，量子異常だからね一，フフフ」
Harmen•自分「あれ？思ったより驚かないな・••答えを知っていたのかな・••」

最高に愉快な数曰間

1 種類の荷電粒子に よる電流密度

$$
\boldsymbol{j}=\frac{e^{2} \mu_{5}}{2 \pi^{2}} \boldsymbol{B}
$$

QCDで期待される電流 $J=N_{c} \sum_{f} q_{f}\left\lfloor\frac{q_{f} \Phi}{2 \pi}\right\rfloor \frac{L_{z} \mu_{5}}{\pi}$

The Chiral Magnetic Effect

Kenji Fukushima，${ }^{1, *}$ Dmitri E．Kharzeev，${ }^{2}{ }^{2} \dagger$ and Harmen J．Warringa ${ }^{2}$ ，\ddagger
${ }^{1}$ Yukawa Institute，Kyoto University，Kyoto，Japan
${ }^{2}$ Department of Physics，Brookhaven National Laboratory，Upton NY 11973，USA （Dated：August 26，2008）

Phys．Rev．D78， 074033 （2008）

カイラル磁気効果まとめ

仮に右巻き粒子だけの世界があれば磁場と平行に電流が発生
（量子異常的に微妙な議論だが大丈夫です）
メジャーになった理由

磁場に沿った方向に電荷揺らぎが増大
（平均をとるので揺らぎのみ観測）

STAR，PRL103， 251601 （2009）

次々となされる批判

カイラル磁気効果は見えていない！

Jan．20， 2021 ＠基礎物理学研究所（オンライン）

カイラル磁気効果は見えていない！ $\cos \left(\Delta \phi_{1}+\Delta \phi_{2}\right)=\cos \Delta \phi_{1} \cos \Delta \phi_{2}-\sin \Delta \phi_{1} \sin \Delta \phi_{2}$ $\cos \left(\Delta \phi_{1}-\Delta \phi_{2}\right)=\cos \Delta \phi_{1} \cos \Delta \phi_{2}+\sin \Delta \phi_{1} \sin \Delta \phi_{2}$

Bzdak－Koch－Liao（2010）
Jan．20，2021＠基礎物理学研究所（オンライン）

カイラル磁気効果は見えていない！現状のまとめ
－重イオン衝突実験でカイラル磁気効果は（まだ）確認されていない。
－存在が否定されたわけでもない。強磁場の存在 は間違いないが，トポロジーの摇らぎが強いか どうか分からず，観測できない可能性もある。
－同重核を使った実験計画が進行中。（質量数は等しいが電荷が違うので磁場の効果だけを抜き出すことができる。）

昔なやんだ質問

－量子異常なのに化学ポテンシャルに依存？化学ポテンシャルはゲージ場の第ゼロ成分
－ゲージ不変なのか？
Chern－Simons流の軸性ゲージ場のところに外場 μ_{5}
－実際の実験のどこに紫外発散が？
量子異常に対応する電流をダイヤグラム計算 すると赤外から寄与が出てくる
－平衡状態のベクトル演算子期待値は本当に電流？ いまから詳しく議論します

Electromagnetic Response of Weyl Semimetals

M．M．Vazifeh and M．Franz

Department of Physics and Astronomy，University of British Columbia，Vancouver，British Columbia，Canada V6T 1Z1 （Received 22 March 2013；published 9 July 2013）
It has been suggested recently，based on subtle field－theoretical considerations，that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term $\theta \boldsymbol{E} \cdot \boldsymbol{B}$ with space and time dependent axion angle $\theta(\boldsymbol{r}, t)$ ．Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytical and numerical techniques．We confirm the existence of the anomalous Hall effect expected on the basis of the field theory treatment．We find，contrary to the latter，that chiral magnetic effect（that is，ground state charge current induced by the applied magnetic field）is absent in both the semimetal and the insulator phase． We elucidate the reasons for this discrepancy．

$$
J_{z}=-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k_{z}}{2 \pi} \frac{\partial \epsilon_{n}\left(k_{z}\right)}{\partial k_{z}} n_{F}\left[\epsilon_{n}\left(k_{z}\right)\right]:=0
$$

カイラル磁気効果は存在しない！

- 結晶の周期性（量子異常はキャンセルする）
- ゼロ点振動が入っていない
- 平衡状態では電流は存在しない

計算そのものはQCDには当てはまらない平衡状態に関するステートメントは正しい QCDも例外ではないはず
μ_{5} の発明は理論を進展させたが同時に混乱も起こした

カイラル磁気効果は存在します！

μ_{5} に物理の非平衡性が集約されている！

平衡状態（時間依存性がない）では μ_{5} はゼロになる時空に依存する θ 項 $\quad \frac{g^{2}}{32 \pi^{2}} \theta(x, t) F_{a}^{\mu \nu} \tilde{F}_{\mu \nu}^{a}$軸性U（1）回転して θ 項を消すと $\frac{1}{2 N_{f}} \partial_{\mu} \theta \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$
これより μ_{5} の正体は θ の時間微分であると分かる
μ_{5} が有限であれば平衡状態ではない！

批判を乗り越えて

Jan．20， 2021 ＠基礎物理学研究所（オンライン）

粒子生成の物理

Fukushima－Kharzeev－Warringa，
＂Real－time dynamics of the Chiral Magnetic Effect＂ Phys．Rev．Lett．104， 212001 （2010）

互いに平行なカラー電磁場のもとで粒子対生成 カイラリティの生成
垂直な磁場方向にCME電流が生成
μ_{5} はどこにも入っていない，電場による非平衡性

粒子生成の物理

粒子生成の物理

ローレンツブーストによる(古典)ホール効果の導出

$$
j_{\text {Hall }}=j^{\prime} \simeq v \cdot n e=\frac{n e c}{B} E
$$

粒子生成の物理

K^{\prime} で見たときのSchwinger 対生成率

$$
\begin{array}{ll}
\Gamma=\frac{q^{2} E_{z}^{\prime} B_{z}^{\prime}}{4 \pi^{2}} \operatorname{coth}\left(\frac{B_{z}^{\prime}}{E_{z}^{\prime}} \pi\right) \exp \left(-\frac{m^{2} \pi}{\left|q E_{z}^{\prime}\right|}\right) & \sim E B \\
\text { ブーストして(K') } & \text { for }|q B| \gg|q E| \gg m^{2}
\end{array}
$$

$\partial_{t} j_{y} \simeq \frac{q^{2} B_{y}}{2 \pi^{2}} \frac{\mathcal{E}_{z} \mathcal{B}_{z}^{2}}{\mathcal{B}_{z}^{2}+\mathcal{E}_{z}^{2}} \operatorname{coth}\left(\frac{\mathcal{B}_{z}}{\mathcal{E}_{z}} \pi\right) \exp \left(-\frac{2 m^{2} \pi}{\left|g \mathcal{E}_{z}\right|}\right)$

Harmenの宿題

粒子対生成によるカイラリティ生成

$$
\omega \xrightarrow{B \gg E} \frac{e^{2} E B}{4 \pi^{2}} \exp \left(-\frac{\pi m^{2}}{e E}\right)=\frac{1}{2} \partial_{t} n_{5}
$$

カイラル量子異常関係式

$$
\partial_{t} n_{5}=\frac{e^{2} E B}{2 \pi^{2}}+2 m\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle
$$

Harmen Warringa，＂Dynamics of the Chiral Magnetic Effect in a weak magnetic field＂Phys．Rev．D86， 085029 （2012）

近似してるんじゃない？

$$
\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle \text { を計算しよう! }
$$

Shi Pu Patrick Copinger
\rightarrow（できました！）\rightarrow（量子異常が消えました！）
$\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle=-\frac{e^{2} E B}{4 \pi^{2} m} \longrightarrow \partial_{\mu} j_{5}^{\mu}=0$
間違ってない？\rightarrow（Schwingerも同じ結果です！）
近似してるんじゃない？\rightarrow（してません！）

あれ？

$$
\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle=-\frac{e^{2} E B}{4 \pi^{2} m} \longrightarrow \partial_{\mu} j_{5}^{\mu}=0
$$

cf．PCAC
これまでm＝0で落としていた項は落ちるとは限らない

$$
\partial_{t} n_{5}=\frac{e^{2} E B}{2 \pi^{2}}+2 m\left\langle\bar{\psi} \cdot \gamma_{\left.\gamma_{5} \psi\right\rangle}^{m=0}\right.
$$

これが本当だとカイラル磁気効果は存在しない？

自分的にお気に入りの論文

Patrick•Shi「inとoutは別の状態なので区別すべきです！」

An enigma．－We choose constant and parallel electric E and magnetic B fields in the three－axis direction．Then，the celebrated formula for the Schwinger mechanism reads，

$$
\begin{equation*}
\omega=\frac{e^{2} E B}{4 \pi^{2}} \operatorname{coth}\left(\frac{B}{E} \pi\right) \exp \left(-\frac{\pi m^{2}}{e E}\right) \tag{1}
\end{equation*}
$$

for the pair production rate（for a comprehensive review， see Ref．［15］）．In a particular limit of strong B（i．e．，$\sqrt{e B}$ being the largest mass scale in a system），the spin direction is completely aligned along B ，so that particles have

Copinger，Fukushima，Pu， Phys．Rev．Lett．121， 261602 （2018）

平衡状態で計算するとゼロになるが実時間で有限

色んな面白い話を割愛しました

－物性実験でカイラル磁気効果が見えた（？）電気伝導度の磁場依存性（日高義将さん）
－実時間の運動学的方程式による定式化（山本直希さん）超新星爆発メカニズムへの応用初期宇宙（primordial magnetic field）への応用

- 強磁場中のQCD／QED計算手法の開発（服部恒一さん）
- 相対論的流体方程式でのカイラル量子異常（本郷優さん）
- 非一様な電磁場中での粒子生成の問題（田屋英俊さん）
- 円偏光電磁場によるカイラル量子異常（岡隆史さん）

原子核理論は面白いです

カイラル磁気効果は「例外」でなく「一例」

