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Abstract

Recent observations suggest that soft-gamma repeaters and anomalous X-ray pul-

sars belong to new classes of neutron stars with very strong magnetic fields. As-

sociated with this discovery, there is growing interest in the subjects concerning

ultra-magnetized neutron stars, i.e. magnetars. Motivated by the recent observa-

tional situation, we study the equilibrium configurations of magnetized stars in the

context of general relativity. For this purpose, we first investigate stellar electro-

magnetic fields in a general relativistic framework. Next, we consider the stellar

deformation induced by magnetic stress. In particular, based on the perturbation

method, we formulate the magnetic deformation of a star endowed with a dipole

magnetic field. We further estimate ellipticity for several stellar models. We find

the general relativistic modifications of field strength and ellipticity, which are

characterized by factors.
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4.5 The potential ãt2 as a function of r̃. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 The r-component of the electric field E(r) for the stellar model of n = 0. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 The θ-component of the electric field E(θ) for the stellar model of n = 0. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 The r-component of the electric field E(r) for the stellar model of n = 1. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xi

4.9 The θ-component of the electric field E(θ) for the stellar model of n = 1. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 The r-component of the electric field E(r) for the stellar model of n = 3. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.11 The θ-component of the electric field E(θ) for the stellar model of n = 3. The

field strength is normalized by the typical value Ωµ/R2 and plotted as a function

of r̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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Chapter 1

Introduction

1.1 Brief history of neutron stars

The possibility of the existence of neutron stars was postulated soon after the discovery of

the neutrons by Chadwick in 1932. In 1934, Baade and Zwicky proposed the idea of neutron

stars. Linking supernovae with the collapse of ordinary stars to neutron stars tentatively,

they suggested that there is a bound state with very higher density and smaller radius than

ordinary stars. The first theoretical models for neutron stars were developed by Oppenheimer

and Volkoff [1] in 1939. In these models, an ideal gas of free neutrons was assumed as the

ingredients of neutron stars. However, they did not become the focus of attention of physicists

and astronomers. This is because the thermal radiation from neutron stars would be too faint

to observe owing to astronomical distances.

This situation among physicists and astronomers was dramatically changed by the acci-

dental observational discovery of pulsars by Hewish and Bell [2] in 1967. Pulsars are objects

emitting pulses of radiation at short and remarkably regular intervals. Their pulse periods

range from milliseconds to several seconds. The most famous pulsar is the Crab Pulsar, which

is at the heart of the Crab Nebula. According to Chinese historical records, this remnant of

a supernova occurred in 1054 AD. This pulsar has a period of 33ms and is steadily slowing

down.

The observed period of pulsars supported the fact that they can be identified with neutron

stars. The principal argument to identify pulsars with neutron stars can be understood by

considering the characteristic periods of oscillation and rotation of a star. First, we consider the

probability of stellar oscillation as the origin of pulses. The characteristic period of oscillation

is proportional to (Gρ)−1/2, i.e. t ∼ (Gρ)−1/2, where ρ is the average density. Hence, in

1
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the case of white dwarfs with M ∼ M¯ and R ∼ 104km, we derive t
(Oscillation)
WD ∼ 100s. On

the other hand, we have t
(Oscillation)
NS ∼ 1ms in the case of neutron stars with M ∼ M¯ and

R ∼ 10km. Therefore, the oscillation models of white dwarfs cannot explain the shorter

periods of pulsars, while those of neutron stars cannot produce the somewhat longer periods.

Next, we discuss the possibility of rotation. In this case, we have to bear in mind that matter

will be thrown off the star if the rotational velocity is very quick. From this consideration,

we can derive the maximum angular velocity, which is usually called the Keplarian angular

velocity ΩK. The maximum value can be derived by equating the gravitational attraction

to the centrifugal force at the stellar surface. The result is given by ΩK = (GM/R3)1/2 or

tmin = 2π(R3/(GM))1/2. Hence, we derive tmin WD ∼ 10s for white dwarfs and tmin NS ∼ 1ms

for neutron stars. Therefore, pulsars such as the Crab Pulsar can be explained only by a

rotating neutron star. We note that the possibility of rapid rotation is a direct consequence

of the high density of neutron stars.

Many theoretical studies have been done with intense vigor since the discovery of neutron

stars. This circumstance about theoretical works was further enhanced by the discovery of

pulsating, compact X-ray sources by the Uhuru satellite [3–5] in 1971. It seems that these are

neutron stars in close binary systems, and X-ray is emitted from the accreting gas from their

normal companion stars. The latter consequence can be extrapolated by the fact that their

X-ray luminosity was much larger than that of the so-called rotation-powered pulsars like the

Crab Pulsar. Furthermore, the fact that they showed a long-term overall spin-up behavior

strongly supports the evidence of accretion.

In recent years, various aspects of neutron stars have been disclosed with the growing

number of pulsars, including new types of these objects, which are mentioned later.

1.2 Physics of neutron stars

The subjects concerning neutron stars involve a wide range of physics. This would be seen by

considering various features of neutron stars actually. In order to show this point clearly, we

now review some aspects of neutron stars concretely (see also Refs. [6–8]).

First, let us review the formation and structure of neutron stars. A star with a very

large mass >∼ 10M¯ is expected to evolve through all the stages of nuclear burning. After

any available nuclear energy is exhausted, the gravitational contraction of the central core

occurs. Initially, this contraction can be controlled by the pressure of degenerate electron gas

in the core. However, associated with the creation of more iron in the surrounding shell, the

core can no longer be supported by the degenerate pressure. In this contraction, two energy
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absorbing processes, the photo-disintegration of atomic nuclei and the capture of electrons

via inverse beta decay, are further added and ultimately lead to an uncontrolled collapse.

In the former, kinetic energy is used to unbind atomic nuclei, and in the latter the kinetic

energy of degenerate electrons is converted into the kinetic energy of electron neutrinos which

escape from the core. The time-scale of the collapse of the core is given by the free-fall time

tFF ∼ (Gρ)−1/2. At a density of ρ ∼ 109g cm−3, we derive tFF ∼ 1ms. Therefore, the collapse

is very rapid. Associated with the free fall, a large amount of gravitational energy is liberated

within this time-scale. The collapse of the core is not opposed until a density comparable

to the density of nuclear matter is reached. After the nuclear density is reached, the core is

expected to resist compression due to nuclear forces and rebound falling matter. This produce

an explosion called a supernova.

A neutron star can be left behind after the supernova explosion. In fact, it is believed

that neutron stars are created in a significant fraction of supernova explosions. A newly-born

neutron star initially has a temperature between 1011 to 1012K. However, it rapidly cools due

to neutrino emission and reaches a temperature of the order of 109K in a day. Its temperature

further comes down to 108K in many years. Although these temperatures are very high

compared with the solar standards, they are low if we consider the standards set by the high

densities inside a neutron star. This is also stated that the temperature inside a neutron star

is lower than the Fermi temperature. Namely, electrons, protons and above all neutrons are

degenerate inside a neutron star. Therefore, some state variable, e.g., pressure depends on

only one variable, e.g., density inside a neutron star, since the temperature can be regarded

as zero.

Owing to the electron capture during the collapse, the core is made of neutron-rich nuclei.

When the density exceeds 4 × 1011g cm−3, a new phenomenon occurs in such a core, that

is, neutrons drip from neutron-rich nuclei. This phenomenon is called neutron drip. At high

densities, since the normal beta-decay mode n → p+ e−+ νe is blocked by the Pauli exclusion

principle, neutrons can survive in a neutron star without decaying. Hence, neutrons are the

dominant constituent of neutron stars. At higher densities around 1015g cm−3, the core further

becomes energetically possible to produce pions, muons and hyperons. At higher densities still,

it seems that quarks come into play. In order to understand the structure of neutron stars, we

have to know the equations of state (EOS) of neutron stars. Therefore, we need the knowledge

of nuclear physics and high-energy particle physics.

A neutron star is also a luminous source with a very wide range of radiation from the radio

to the γ-ray range. Hence, as another aspect of neutron stars, we now consider the radiation

from them. There are two important energy sources which can produce radiation. One is the
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rotational energy of a star in the presence of a strong magnetic field. When a magnetized star

rotates, an electric field, whose strength is proportional to the rotational velocity, is induced.

This electric field acts on the surface electrons and protons of a neutron star. Since the

electric force can become much larger than the gravitational force at the surface, the electric

charges would eventually be ripped off the surface. Thus, the magnetosphere filled with a

plasma is built [9]. The electric field also contributes the acceleration of charged particles

which are seeds of radiation. The accelerated particles move along the curved magnetic field

lines and therefore emit curvature radiation photons. These emitted photons may be subject

to magnetic pair production in the strong field. The repetition of these processes leads to a

cascade, which would produce some part of radiation. The other source is the gravitational

potential energy of matter that is captured by the star and accreted onto its surface. Accreting

X-ray pulsars are classified into this type. If a neutron star is in a binary system, then such

matter is available enough. In this case, some large part of the energy is converted into heat

and subsequently into radiation.

Furthermore, neutron stars can become gravitational radiation sources. We can consider

coalescing binary neutron stars and oscillating neutron stars to be the plausible sources of grav-

itational waves. The signals from them may be detected by the new generation of gravitational-

wave interferometers (LIGO, VIRGO, GEO600 and TAMA300). Therefore, at present, grav-

itational waves are investigated by many astrophysicists with intense vigor, in relation with

the detection.

As seen above, the subjects about neutron stars include various fields in modern physics.

This situation would further be excited by the appearance of new classes of neutron stars

called soft-gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). These objects are

mentioned in the next section.

1.3 New classes of neutron stars

The steady spin-down of most pulsars is explained by the magnetic dipole radiation from

the rotating, magnetized stars. Indeed, the analysis of the Crab Pulsar based on dipole

radiation is almost consistent with the Chinese historical records. This success gives strong

evidence that pulsars have magnetic fields, especially dipole magnetic fields. The magnetic

field strength can be determined by the period and period derivative of a pulsars. From

the measurements of these quantities, we know that neutron stars have strong magnetic field

within a range 108-1013G. However, very recently, the new classes of objects such as SGRs

and AXPs appeared with great surprise. This is because the observations of periods indicated
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that these objects are the neutron stars with very strong magnetic fields within a range 1014-

1015G (see Ref. [10] for the effect of a pulsar wind on the spin-down). Therefore, these seems

to be magnetars [11–17]. This terminology is used for the star whose magnetic energy is

dominant over the rotational energy, or the star whose radiation energy is mainly supplied by

the magnetic energy. The discovery of the strong magnetic fields in excess of Bcr ∼ 1013G raised

the upper limit of a pulsar magnetic field by a factor of 102. In such a strong magnetic field,

quantum electrodynamics with external fields should be taken into account seriously. Hence,

elementary processes in these strong fields would have quite different features from those in

ordinary circumstances (see Ref. [18] for detail discussion). Thus, these new objects may

promote a new branch concerning neutron stars at the beginning of this twenty-first century.

We now give a brief review of the observations of SGRs and AXPs (see also Ref. [19]).

1.3.1 Soft-gamma repeaters

Some of SGRs have already be known since twenty years ago. However, it is very recently

that the various features of these objects are revealed.

SGRs are transient sources of high-energy photons. They emit sporadic and short bursts of

soft γ-rays during periods of activity. The time scale of the bursts is typically ∼ 0.1s, and the

luminosity is characterized by 1039-1041erg s−1. It is very interesting that these recurrent bursts

and earthquakes share four distinctive statistical properties: power-law energy distributions,

log-symmetric waiting time distributions, strong positive correlations between waiting times

of successive events, and weak or no correlations between intensities and waiting times [20].

This fact suggests that SGR events are induced by star-quakes. Therefore, crust-quakes due

to magnetic stress [15] seem to be a plausible explanation for the bursts.

SGRs are also persistent X-ray sources of luminosity 1035-1036erg s−1. In addition, the

periodicity for some SGRs and the association with supernova remnants were reported. These

would give evidence that SGRs are neutron stars. There are so far four known SGRs, SGR

0525–66 [21–29], SGR 1900+14 [30–54], SGR 1806–20 [32, 55–70], SGR 1627–41 [71–76], and

one possible candidate SGR 1801–23 [77]. In the following, we briefly review each object.

SGR 0525–66

SGR 0525–66 was discovered by a giant burst on March 5, 1979 [21–24]. The time profile of the

burst consists of an initial, narrow structure-less pulse and a pulsating tail part. Associated

with the discovery of this burst, the periodicity of 8.1s was found in the pulsating stage [21,22].

Furthermore, the association with the supernova remnant N49 in the Large Magellanic Cloud
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(LMC) was suggested [21, 22, 25, 26]. If it is true, the luminosity of isotropic radiation in

the initial impulse would be ∼ 5 × 1044erg s−1, and that at the pulsating stage would be

∼ 3.6 × 1042erg s−1 [22]. After the giant burst and subsequent weak recurrent bursts, some

weak bursts were observed in 1981 and 1982 [27]. In recent years, X-ray observations of

SGR 0525–66 were done, which gave a X-ray luminosity of 1036erg s−1 [28]. However, some

observations showed the negative conclusion that there is no evidence for the association with

the supernova remnant N49 in the LMC [29].

SGR 1900+14

SGR 1900+14 was discovered by three bursts on March 24, 25 and 26, 1979 [30]. However, this

object had been quiet for thirteen years since these bursts. In 1992, some weak recurrent bursts

were detected [31]. Recently, after the detection of one quiescent X-ray source [33,38,39], the

clear periodicity of 5.16s [33, 39, 40] and the period derivative of 1.1 × 10−10s s−1 [40] were

founded from this source. These leads to the magnetic field strength for magnetars. The

luminosity of X-ray emission are within a range 1035-1036erg s−1 [40]. The association with

the supernova remnant G42.8+0.6 in our galaxy was also suggested [33,38].

On August 27, 1998, a giant burst occurred at the location of SGR 1900+14 [48]. This

burst was very similar to that of SGR 0525–66 on March 5, 1979. The time profile of this

burst had a tail 300s long, which also showed a clear periodicity of 5.16s [48]. Furthermore, it

is very interesting to notice that the average spin-down rate became ∼ 2.6 times larger than

that before the giant burst [45].

SGR 1806–20

This object was also found fortuitously by short bursts in 1979 [55]. The association with

the supernova remnant G10.0–0.3 in our galaxy was indicated by Kulkarni and Frail [59].

From X-ray observations, a quiescent X-ray source having a luminosity of 3× 1035erg s−1 was

identified with SGR 1806–20 [61]. Furthermore, a period of 5.47s and a period derivative of

8.3× 10−11s s−1 were detected [66] in the quiescent X-ray emission. These results also give a

very strong magnetic field in excess of 1013G.

SGR 1627–41

SGR 1627–41 was found very recently [71]. This object has a persistent X-ray source of

a luminosity 7-9 × 1034erg s−1 and shows weak evidence for the periodicity of 6.41s [71].
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AXP Period [s] Period derivative [s s−1]

4U 0142+61 8.69 2× 10−12

1E 2259+586 6.98 6× 10−13

1E 1048.1–5937 6.44 2× 10−11

1RXS J170849.0–400910 11.0 2× 10−11

1E 1841–045 11.8 4× 10−11

AX J1845–0258 7.0 —

RX J0720.4–3125 8.4 2.6× 10−12

Table 1.1: The periods and period derivatives of known AXPs.

However, this period was not derived in other observations [76]. SGR 1627–41 also seems to

be associated with the supernova remnant G337.0–0.1 in our galaxy [71].

SGR 1801–23

Soft bursts from SGR 1801–23 were observed twice in the direction of the Galactic center on

Jun 29, 1997 [77]. Their time histories and energy spectra were consistent with those of other

SGRs. However, there are no other bursts from this object to date. Therefore, we do not have

any other information about SGR 1801–23 at present.

1.3.2 Anomalous X-ray pulsars

AXPs constitute a separate group of neutron stars, but have many similarities to SGRs.

AXPs do not emit any bursts like SGRs. In general, AXPs are characterized by the following:

(i) a narrow spin period distribution compared with the other X-ray pulsars, (ii) soft X-ray

spectra, (iii) a relatively low luminosity of the order of ∼ 1035erg s−1, (iv) almost constant

flux, (v) a stable spin period evolution, and (vi) the association with supernova remnants.

There are seven known AXPs: 4U 0142+61 [78–82], 1E 2259+586 [80,83–86], 1E 1048.1–5937

[80, 82, 86–89], 1RXS J170849.0–400910 [90, 91], 1E 1841–045 [92], AX J1845–0258 (J1845.0–

0300) [93–95], and RX J0720.4–3125 [96]. The periods and period derivatives of these AXPs

takes very similar values to those of SGRs. Hence, we find the magnetic field strength of

magnetars again. These values are summarized in Table 1.1.
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1.4 Subjects dealt with in this paper

Most stars have spherically symmetric structure. However, they are subject to the effects of

rotation and a stellar magnetic field, which both lead to deformation of a star. It is well known

that the rotational effect produces flattening of a star with respect to the rotational axis. If

we consider a dipole magnetic field, then this also gives the same effect with respect to the

magnetic axis. In most cases, these effects are very small, and therefore can be treated as

perturbations to a spherically symmetric star. As seen in the last section, there exist neutron

stars with very strong magnetic fields, although the relation between SGRs and AXPs is

not yet clear. For these ultra-magnetized stars, the magnetic effect is dominant over the

rotational effect. Hence, such a star is deformed mainly by the magnetic stress. The magnetic

field strength of magnetars is much stronger than that of typical pulsars. However, this

magnetic field strength can also be treated in a perturbative approach. Incidentally, stellar

deformation may shows an observable effect. In fact, the irregular spin-down [84, 85, 88, 89]

observed for two AXPs, 1E 1048.1–5937 and 1E 2259+586, can be interpreted as an effect

arising from stellar magnetic deformation, which is called radiative precession [97, 98]. As

discussed by Melatos [97, 98], this effect is given by the coupling between precession due to

magnetic deformation and an oscillating component of electromagnetic torque. Thus, magnetic

deformation plays a significant role for some kind of stars. Therefore, it is important to evaluate

the deformation of magnetized stars seriously. In this paper, we study magnetic deformation

of a star in the context of general relativity.

The quadrupole deformation of Newtonian stars due to a dipole magnetic field was dis-

cussed by Chandrasekhar and Fermi [99] and Ferraro [100]. In their papers, the incompressible

fluid body with a dipole magnetic field is assumed. This kind of deformation was discussed also

in relation to gravitational radiation [101, 102]. The general relativistic approach by Bonaz-

zola et al. [103], Bocquet et al. [104], and Bonazzola and Gourgoulhon [105] appeared recently.

However, their approach is fully numerical. Hence, their physical interpretation is not easy.

In this paper, we develop a more analytic treatment using the perturbation method (see also

Ref. [106]). Our formulation is regarded as a general relativistic version of Refs. [99, 100]. In

our method, we can easily include realistic EOS and construct relativistic magnetized stars.

Furthermore, this method gives simple calculations of ellipticity of deformed stars etc, and

makes the results transparent for physical interpretation.

For the purpose of the formulation of relativistic magnetized stars, we first take a non-

rotating, spherically symmetric star as a background. Second, we consider a stellar magnetic

field, which is regarded as a perturbation, in the context of general relativity. We restrict
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the discussion of stellar magnetic deformation to non-rotating, i.e. static cases. We then

take into account only axisymmetric, poloidal magnetic fields produced by long-lived toroidal

electric currents, because toroidal magnetic fields would break the symmetric property (see

also Ref. [104] and reference therein). Furthermore, we assume a perfectly conducting interior.

Since we now consider non-rotating configurations, this implies that the electric field inside

the stars must vanish. Hence, there is no electric charge inside the stars. Furthermore,

the surface charge should be absent, since the total charge should vanish in astrophysical

situations. Otherwise, the electromagnetic field itself would have the angular momentum due

to the non-vanishing electric field produced by the charge [107–109]. This is not a purely

static case. From this discussion, we can write the four-current as Jµ = (0, 0, 0, Jφ) [104].

Here, the current distribution Jφ is introduced as the first-order quantity with respect to

the perturbation. The corresponding magnetic field is solved from the Maxwell equation.

We investigate deformation of stars due to the resulting magnetic stress, which arises as the

second-order correction to the background. This perturbation method is very similar to that

of slowly rotating, relativistic stars developed by Hartle [110], in which rotation is regarded

as a small parameter. Our formalism can be applied to any configurations of the magnetic

fields. However, we restrict our discussion to dipole magnetic fields because dipole fields are

important in many astrophysical situations.

As mentioned previously, the configurations of pulsars are affected by both rotation and a

stellar magnetic field. Therefore, it is important to further compare both effects for various

pulsars. In general, the rotational axis of pulsars does not aligned with the axis of the dipole

magnetic field. The general relativistic treatment for this case is a complicated task, because

the situation is not stationary. However, in this paper, we assume that the rotational effect

decouples from the magnetic effect. Thus we compare both effects by considering the deforma-

tion arising from each perturbation separately (see also Ref. [111]); the rotational deformation

is provided by the formulation by Hartle [110], and the magnetic deformation is given by our

formulation [106] mentioned above. This estimate is important to judge which effect domi-

nates in rotating, magnetized stars, whose rotation rate and magnetic field strength are within

a wide range. We note that if both effects are comparable, our estimate breaks down, and

therefore sophisticated numerical codes are required.

When the deformed star rotates on the axis which does not coincide with the magnetic

axis, the star precesses inevitably. The above-mentioned wobbles in the spin-down of the two

AXPs also arise from precession probably due to the stellar magnetic deformation. These

deformed, precessing objects are analyzed by solving the Euler equation of motion in the

form IijdΩj/dt − εijkI
jlΩkΩl = Ni, where Iij is the inertia tensor, Ωi is the angular velocity,
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and Ni is the torque acting on the object. When we take into account the electromagnetic

torque by a rotating magnetic dipole [112, 113], the radiative precession [97, 98] can actually

be found for a magnetically deformed star. Furthermore, since such a star emits gravitational

waves, we can consider the gravitational radiation reaction torque [114,115]. The gravitational

backreaction damps the wobbles on a time-scale proportional to [(Iz − Ix)
2 /Ix]

−1 for wobbling,

axisymmetric rigid bodies (see Refs. [114,115] for detailed discussion), where Ii is the principal

moments of inertia. Thus, the moments of inertia play a significant role in the analyses of

pulsar precession. The estimates of the moments of inertia have been done in the context of

Newtonian gravity so far, but neutron stars are fully general relativistic objects. Therefore, we

further discuss the principal moments of inertia of magnetically deformed stars in the context

of general relativity.

1.5 Plan of this paper

This paper is organized as follows. We first describe non-rotating, spherically symmetric stars,

as background in Chapter 2. This becomes the basic part in our formulation of magnetized

stars. We deal with several polytropic stellar models in the context of both Newtonian gravity

and general relativity. Next, we review the rotational flattening of stars using the pertur-

bation method in Chapter 3. It is very useful to see this approach in order to develop the

formulation of magnetized stars. In Chapter 4, we study the electromagnetic fields of pul-

sars following Refs. [116, 117]. We discuss not only dipole magnetic fields, but also induced

electric fields in the cases of aligned dipole rotators, which is needed to define the moment of

inertia of magnetically deformed stars with respect to the symmetric axis. In Chapter 5, we

formulate magnetic deformation of stars, assuming non-rotating configurations. Furthermore,

we compare the magnetic effect with the rotational effect on stellar deformation for various

pulsars. Using the results of stellar deformation, we further investigate the moments of inertia

of the stars in the context of general relativity in Chapter 6. Finally, we give summary and

conclusion. in Chapter 7. We use units in which c = G = 1 in most places.



Chapter 2

Non-Rotating Stars

In this chapter, we review the formulation and solutions for non-rotating, spherically symmet-

ric stars, which become background in the perturbation method. We discuss such stars in the

context of both Newtonian gravity and general relativity (see also standard texts [6,8,118,119]).

In this discussion, we adopt polytropic stellar models. First, we discuss Newtonian stars in

§2.1. Second, we consider the general relativistic versions in §2.2.

2.1 Newtonian stars

2.1.1 Formulation

We now consider a spherically symmetric star which is in hydrostatic equilibrium. The basic

equations governing such a star are

0 = ∇Φ +
1

ρ
∇p, (2.1)

∇2Φ = 4πρ, (2.2)

where p and ρ denote pressure and density respectively, and Φ denotes gravitational potential.

From the spherical symmetry, Eqs. (2.1) and (2.2) reduce to

0 =
dΦ(r)

dr
+

1

ρ(r)

dp(r)

dr
, (2.3)

1

r2

d

dr

(
r2dΦ(r)

dr

)
= 4πρ(r). (2.4)

If we consider main sequence stars like the sun, the above equations should be supplemented

with the equations concerning power generated in the stars (see, e.g., Ref. [8]). However, our

11
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discussion is intended for neutron stars, which have no power generation and lower temperature

than Fermi temperature. Therefore, it is sufficient to consider Eqs. (2.1) and (2.2) only.

The above equations (2.3) and (2.4) is combined to give the second-order differential equa-

tion
1

r2

d

dr

(
r2

ρ

dp

dr

)
= −4πρ. (2.5)

This equation involves two unknown functions p and ρ. Hence, we need another relation

between the pressure and the density, which is given by an equation of state (EOS). By

assuming such a relation, the equations can be reduced to a differential equation consisting of

one unknown function. We can finally obtain the structure of a star by solving the differential

equation.

We now adopt polytropic stellar models. A polytropic model with index n is specified by

the following relation between pressure and density,

p = Kρ1+1/n, (2.6)

where K is a constant. Using this, we have the differential equation for ρ,

1

r2

d

dr

[
r2

ρ

d

dr

(
Kρ1+1/n

)]
= −4πρ. (2.7)

Normalized equations

Let us now introduce the normalized quantities of the density, the pressure and the radial

coordinate as

ρ = ρcρ̃, (2.8)

p = pcp̃, (2.9)

r = r∗r̃, (2.10)

where ρc and pc are the values of density and pressure at the stellar center respectively, and

r∗ is given by

r∗ =

√
pc

4πρ2
c

. (2.11)

Using the normalized quantities, we derive the equation,

1

r̃2

d

dr̃

(
r̃2

ρ̃

d

dr̃
ρ̃1+1/n

)
= −ρ̃. (2.12)

Furthermore, it is convenient to introduce the function Θ defined as

ρ̃ = Θn. (2.13)
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Using this function, Eq. (2.12) reduces to

(1 + n)
d2Θ

dr̃2
+

2(1 + n)

r̃

dΘ

dr̃
+ Θn = 0. (2.14)

This differential equation must be solved by imposing two boundary conditions. Such condi-

tions are expressed as

Θ|r̃=0 = 1, (2.15)

dΘ

dr̃

∣∣∣∣∣
r̃=0

= 0, (2.16)

where the second condition follows immediately from the substitution of Eq. (2.6) into Eqs. (2.3)

and (2.4). Once we obtain the solution for Θ, we can calculate the solution for density and

pressure from the relation

ρ = ρcΘ
n, (2.17)

p = pcΘ
1+n. (2.18)

Furthermore, from Eq. (2.3), the gravitational potential Φ can be written as

Φ = Φ∗Φ̃ = Φ∗ [− (n + 1) Θ + c1Φ] , (2.19)

where Φ∗ is defined by Φ∗ = pc/ρc, and c1Φ is a constant. This internal potential must be

connected smoothly with the exterior solution given by

Φ = Φ∗
c2Φ

r̃
, (2.20)

where c2Φ is a constant fixed by the junction conditions. Therefore, Eq. (2.14) governs stellar

structure in polytropic models. In the next subsection, we discuss the analytic and numerical

solutions for several polytropic indices.

2.1.2 Solutions for stellar configurations

We can find analytic solutions for several polytropic indices. Such solutions are summarized

as follows:

• n = 0

Θ = 1− r̃2

6
, (2.21)

ρ̃ = 1, (2.22)
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Figure 2.1: The function Θ(r̃) for several polytropic stellar models. The polytropic index is denoted

by n.
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Figure 2.2: The density ρ̃ plotted as a function of r̃ for several polytropic stellar models.
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Figure 2.3: The pressure p̃ plotted as a function of r̃ for several polytropic stellar models.
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Figure 2.4: The potential Φ̃ plotted as a function of r̃ for several polytropic stellar models.
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p̃ = 1− r̃2

6
, (2.23)

Φ̃ =





r̃2

6
− 3 (r̃ < r̃s)

−2
√

6
r̃

(r̃ > r̃s)
, (2.24)

r̃s =
√

6, (2.25)
ρc

ρ̄
= 1, (2.26)

• n = 1

Θ =

√
2

r̃
sin

(
r̃√
2

)
, (2.27)

ρ̃ =

√
2

r̃
sin

(
r̃√
2

)
, (2.28)

p̃ =
2

r̃2
sin2

(
r̃√
2

)
, (2.29)

Φ̃ =




−2

√
2

r̃
sin

(
r̃√
2

)
− 2 (r̃ < r̃s)

−2
√

2π
r̃

(r̃ > r̃s)
, (2.30)

r̃s =
√

2π, (2.31)

ρc

ρ̄
=

π2

3
, (2.32)

• n = 5

Θ =

(
1 +

r̃2

18

)−1/2

, (2.33)

ρ̃ =

(
1 +

r̃2

18

)−5/2

, (2.34)

p̃ =

(
1 +

r̃2

18

)−3

, (2.35)

r̃s → ∞, (2.36)
ρc

ρ̄
→ ∞. (2.37)

Here, r̃s corresponds to the stellar radius R, i.e. R = r∗r̃s, and ρ̄ denotes the average density

as, using the total mass M,

ρ̄ ≡
(

4π

3
R3

)−1

M. (2.38)

The total mass can be derived by integrating the following equation for the mass function

m(r),
dm

dr
= 4πr2ρ. (2.39)
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After using the boundary condition

m|r=0 = 0, (2.40)

we can derive the total mass M = m(R). Equation (2.39) can also be written in the normalized

form
dm̃

dr̃
= r̃2ρ̃. (2.41)

The normalized mass function m̃ is defined as

m = m∗m̃, (2.42)

where m∗ is given by

m∗ =

√√√√ p3
c

4πρ4
c

. (2.43)

Using the above quantity, the ratio of the central density to the average density is derived in

the form
ρc

ρ̄
=

4πR3ρc

3M
=

r̃3
s

3m̃(r̃s)
. (2.44)

From the analytic solution (2.22), we see that the case of n = 0 corresponds to an incom-

pressible fluid body. Furthermore, from Eq. (2.36), we can see that the stellar radius becomes

infinity as n approaches to 5. In this case, the ratio of the central density to the average

density also diverges. Therefore, it seems that plausible models for stars are described by

polytropic indices in a range 0 < n < 5.

The solutions for the other polytropic indices can be obtained by numerical calculations.

Figures 2.1, 2.2, 2.3 and 2.4 display the numerical results of Θ, ρ̃, p̃ and Φ̃, respectively, for

n = 0, 0.5, 1, 1.5 and 3. These are plotted as a function of r̃. In Table 2.1, we further show

the numerical values of the radius r̃s and the ratio of the central density to the average density

ρc/ρ̄, together with the analytic results. From this table, we find that the stellar radius r̃s and

the ratio ρc/ρ̄ become larger with the polytropic index n.

2.2 General relativistic stars

2.2.1 Formulation

Next, we deal with non-rotating, general relativistic stars. As in the last section, we assume

that the equilibrium configurations have spherical symmetry. The spherically symmetric space-

time can be described by the line element

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.45)
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n r̃s r̃s ρc/ρ̄ ρc/ρ̄

(analytic) (numerical) (analytic) (numerical)

0.
√

6 2.4495 1 1.0000

0.5 — 3.3714 — 1.8351

1.
√

2π 4.4428 π2/3 3.2897

1.5 — 5.7770 — 5.9903

3. — 13.793 — 54.175

5. ∞ — ∞ —

Table 2.1: The stellar radius r̃s and the ratio of the central density to the average density ρc/ρ̄ derived

for polytropic models.

It is sometimes useful to use the following function instead of the function λ,

m =
r

2

(
1− e−λ

)
. (2.46)

This function is the general relativistic version of the mass function Eq. (2.42) as will be seen

below.

The stress-energy tensor of a star consisting of perfect fluid is given by

T µ
ν = (ρ + p) uµuν + pδµ

ν , (2.47)

where the four-velocity uµ is written in the form

uµ =
(
e−ν/2, 0, 0, 0

)
. (2.48)

The equations which govern stellar structure can be obtained from the Einstein equation

Gµ
ν = 8πT µ

ν (2.49)

and the equation of motion

T µ
ν;µ = 0. (2.50)

First, from the (t, t)-component of Eq. (2.49), we obtain

dm

dr
= 4πr2ρ. (2.51)

This equation exactly has the same form as Eq. (2.39) in the form. Hence, this is the reason

why m is called the mass function. Second, the following equation can be obtained from

(r, r)-component of Eq. (2.49),
dν

dr
=

2m + 8πr3p

r(r − 2m)
. (2.52)
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Third, the r-component of Eq. (2.50) reduces to the equation

dp

dr
= −1

2
(ρ + p)

dν

dr
. (2.53)

Using Eq. (2.52), we derive the equation

dp

dr
= −(ρ + p) (m + 4πr3p)

r(r − 2m)
. (2.54)

This equation is called the Tolman-Oppenheimer-Volkoff equation (see, e.g., Refs. [1,118–120]).

In addition to Eqs. (2.51), (2.52) and (2.54), we have an EOS

p = p(ρ). (2.55)

These give four equations for the four unknown functions ν, m, ρ and p. Therefore, stellar

structure is governed by these equations.

Normalized equations

As in the last section, it is convenient to introduce the normalized quantities r̃, m̃, ρ̃ and p̃.

Using these, Eqs. (2.51), (2.52) and (2.54) reduce, respectively, to

dm̃

dr̃
= r̃2ρ̃, (2.56)

dν

dr̃
=

2ζ(m̃ + ζr̃3p̃)

r̃ (r̃ − 2ζm̃)
. (2.57)

dp̃

dr̃
= −(ρ̃ + ζp̃) (m̃ + ζr̃3p̃)

r̃(r̃ − 2ζm̃)
, (2.58)

where ζ is the parameter defined by

ζ ≡ pc

ρc

. (2.59)

Note that this parameter can be related with the general relativistic factor M/R in the way

M

R
=

m∗m̃(r̃s)

r∗r̃s

= ζ
m̃(r̃s)

r̃s

. (2.60)

We now use the polytropic EOS (2.6) again, which is described by Θ. Using the function

Θ, we have
dm̃

dr̃
= r̃2Θn, (2.61)

dν

dr̃
=

2ζ(m̃ + ζr̃3Θn+1)

r̃ (r̃ − 2ζm̃)
. (2.62)
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Figure 2.5: The general relativistic factor M/R plotted as a function of ζ. The polytropic index is

denoted by n.

dΘ

dr̃
= −(1 + ζΘ) (m̃ + ζr̃3Θn+1)

(n + 1)r̃(r̃ − 2ζm̃)
. (2.63)

These differential equations govern polytropic stellar models in the context of general relativity.

Equations (2.61), (2.62) and (2.63) should be solved using the boundary conditions

m̃|r̃=0 = 0, ν|r̃=0 = const, Θ|r̃=0 = 1. (2.64)

Furthermore, we have to impose the junction condition in which the interior solution is con-

nected with the exterior solution smoothly.

2.2.2 Solutions for stellar configurations

Exterior solution

First, let us discuss the stellar exterior solution which is asymptotically flat at infinity. The

outside of the star is assumed to be a vacuum, i.e. ρ = p = Θ = 0. In this case, from Eq. (2.61),

we derive

m̃ = const ≡ M

m∗
. (2.65)

This result is equivalent to

eλ =
(
1− 2M

r

)−1

. (2.66)

Substituting Eq. (2.65) into Eq. (2.62) and integrating the equation, we derive

ν = ln
(
1− 2M

r

)
. (2.67)
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Figure 2.6: Radial dependence of Θ for polytropic stellar models with M/R = 0.2.
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Figure 2.7: Radial dependence of ρ̃ for polytropic stellar models with M/R = 0.2.
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Figure 2.8: Radial dependence of p̃ for polytropic stellar models with M/R = 0.2.
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Figure 2.9: Radial dependence of ν for polytropic stellar models with M/R = 0.2.
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Figure 2.10: Radial dependence of λ for polytropic stellar models with M/R = 0.2.

Therefore, we obtain the line element

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.68)

This is the well-known Schwarzschild metric.

Interior solutions

Next, we discuss interior solutions. It is somewhat difficult to seek analytic solutions for stellar

structure in the general relativistic case unlike the Newtonian case. However, we can find the

analytic solution for the case of n = 0. In this case, the integration of Eq. (2.61) gives

m̃ =
1

3
r̃3. (2.69)

Using this result, from Eq. (2.63), we derive the equation

dΘ

(1 + ζΘ) (1 + 3ζΘ)
= − r̃dr̃

3− 2ζr̃2
. (2.70)

This is easily integrated as

1 + 3ζΘ

1 + ζΘ
=

1 + 3ζ

1 + ζ

(
1− 2ζm̃

r̃

) 1
2

. (2.71)

Hence, we obtain

Θ =
−(1 + ζ) + (1 + 3ζ)

(
1− 2ζm̃

r̃

) 1
2

ζ
[
3(1 + ζ)− (1 + 3ζ)

(
1− 2ζm̃

r̃

) 1
2

] . (2.72)
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If we take the limit Θ → 0, which corresponds to r̃ → r̃s, in Eq. (2.71), then we can derive

r̃s =





3

2ζ


1−

(
1 + ζ

1 + 3ζ

)2







1
2

(2.73)

or

ζ =
1−

(
1− 2M

R

) 1
2

3
(
1− 2M

R

) 1
2 − 1

. (2.74)

From this result, we can find that ζ diverges, which means pc → ∞, as M/R approaches to

4/9. Therefore, there cannot exist the star whose radius is smaller than 9M/4. The metric

function ν can be obtained by integrating the following equation derived from Eq. (2.62),

dν

dr̃
=

8ζr̃

3

(1 + 3ζ)
(
1− 2ζ

3
r̃2

)− 1
2

3(1 + ζ)− (1 + 3ζ)
(
1− 2ζ

3
r̃2

) 1
2

. (2.75)

The integration gives

eν =


3

2

(
1− 2M

R

) 1
2 − 1

2

(
1− 2Mr2

R3

) 1
2




2

, (2.76)

where the junction condition at the surface has been used.

The other solutions can be obtained by numerical integration (see also Ref. [121]). In their

calculations, ζ plays an important role, because this parameter specifies the general relativistic

factor M/R through the relation (2.60). Figure 2.5 displays the relations between M/R and

ζ for several polytropic models. From this figure, we can find that the values of M/R become

smaller as n becomes large for fixed ζ. Furthermore, we can find that there exits an attainable,

maximum value of M/R for the stellar model of n = 2. Thus, we cannot construct a stellar

model with M/R = 0.2 for the case of n >∼ 2.

Figure 2.6, 2.7, 2.8, 2.9 and 2.10 display radial dependence of Θ, ρ̃, p̃, ν and λ, respectively,

for polytropic stellar models with M/R = 0.2. From the comparison with the Newtonian

cases, we find that r̃s becomes small slightly owing to the general relativistic effect for the

fixed polytropic index.



Chapter 3

Rotating Stars

In this chapter, we deal with rotating configurations of stars. Stellar rotation causes centrifugal

force and therefore induces the rotational flattening of stars. We now discuss the deformation

of stars due to rotation. We assume that stars rotate with uniform angular velocity Ω. The

rotational effect can be treated as a perturbation. This is because rotational energy is much

smaller than gravitational energy in most cases. The characteristic small parameter εΩ is given

by the square root of the ratio of the rotational energy ∼ MR2Ω2 to the gravitational energy

∼ M2/R, i.e. εΩ ∼
√

R3Ω2/M .

In a similar way as the last chapter, Newtonian stars (see also Refs. [122–124]) and general

relativistic stars (see also Refs. [110,125]) are discussed in §3.1 and §3.2, respectively.

3.1 Newtonian stars

3.1.1 Formulation

In the case of rotating stars, the basic equations are written in the forms

0 = ∇Φ +
1

ρ
∇p + Ω× (Ω× r) , (3.1)

∇2Φ = 4πρ. (3.2)

The last term in Eq. (3.1) is a second-order quantity in εΩ and can be expressed as

Ω× (Ω× r) =
[
−2

3
rΩ2 +

2

3
rΩ2P2(cos θ)

]
er +

1

3
rΩ2dP2(cos θ)

dθ
eθ, (3.3)

where Pl is the Legendre polynomial of order l.

25
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We can now expand ρ, p and Φ as

ρ = ρ(0)(r) +
[
ρ

(2)
0 (r) + ρ

(2)
2 (r)P2

]
, (3.4)

p = p(0)(r) +
[
p

(2)
0 (r) + p

(2)
2 (r)P2

]
, (3.5)

Φ = Φ(0)(r) +
[
Φ

(2)
0 (r) + Φ

(2)
2 (r)P2

]
, (3.6)

where the superscripts “(0)” and “(2)” here denote zeroth and second order in εΩ, respectively.

The zeroth-order quantities ρ(0), p(0) and Φ(0) have been discussed in the last chapter. We

shall abbreviate “(0)” in most places hereafter.

Multiplying Eq. (3.1) by er or eθ, we obtain

dΦ
(2)
0

dr
+

ρ
(2)
0

ρ

dΦ

dr
+

1

ρ

dp
(2)
0

dr
− 2

3
rΩ2 = 0, (3.7)

dΦ
(2)
2

dr
+

ρ
(2)
2

ρ

dΦ

dr
+

1

ρ

dp
(2)
2

dr
+

2

3
rΩ2 = 0, (3.8)

and

Φ
(2)
2 +

p
(2)
2

ρ
+

1

3
r2Ω2 = 0, (3.9)

Here we have used the expression

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
. (3.10)

Equations (3.7) and (3.8) can easily be integrated using the relations

dΦ

dr
= −1

ρ

dp

dr
, (3.11)

ρ
(2)
0 =

dρ

dp
p

(2)
0 , (3.12)

ρ
(2)
2 =

dρ

dp
p

(2)
2 . (3.13)

One of the integrated forms is Eq. (3.9), and the other is

Φ
(2)
0 +

p
(2)
0

ρ
− 1

3
r2Ω2 = const. (3.14)

Furthermore, from Eq. (3.2), we obtain

1

r2

d

dr


r2dΦ

(2)
0

dr


 = 4πρ

(2)
0 , (3.15)

1

r2

d

dr


r2dΦ

(2)
2

dr


− 6

r2
Φ

(2)
2 = 4πρ

(2)
2 , (3.16)
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where we have used the formulas

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
, (3.17)

1

sin θ

d

dθ

(
sin θ

dPl

dθ

)
= −l(l + 1)Pl. (3.18)

Outside the star, we have to solve Eqs. (3.15) and (3.16) with ρ
(2)
0 = ρ

(2)
2 = 0, assuming

the potentials to vanish at infinity. Inside the star, it is useful to introduce δP
(2)
0 and δP

(2)
2

defined as

δP
(2)
0 =

p
(2)
0

ρ
, (3.19)

δP
(2)
2 =

p
(2)
2

ρ
. (3.20)

Using Eqs. (3.9) and (3.14), we can derive the differential equations for δP
(2)
0 and δP

(2)
2 ,

d2

dr2
δP

(2)
0 +

2

r

d

dr
δP

(2)
0 + 4π

ρ′

p′
ρδP

(2)
0 = 2Ω2, (3.21)

d2

dr2
δP

(2)
2 +

2

r

d

dr
δP

(2)
2 +

(
4π

ρ′

p′
ρ− 6

r2

)
δP

(2)
2 = 0, (3.22)

where the prime here denotes differentiation with respect to r. Hence, Eq. (3.21) and (3.22)

should be solved inside the star, using boundary conditions at the stellar center. Thereby

we can derive the internal potentials Φ
(2)
0 and Φ

(2)
2 through the relations (3.9) and (3.14).

The potentials must be connected at the stellar surface, by imposing the junction conditions

mentioned below. Consequently, Eqs. (3.9), (3.14), (3.15), (3.16), (3.21) and (3.22) govern the

deformed star by rotation.

Junction conditions

We now discuss the junction conditions about the potentials. Here some remark concerning

the junction conditions should be mentioned (see also Ref. [123]). Let us express internal and

external gravitational potentials by Φin and Φext, respectively. These can be written, showing

order explicitly, as

Φin = Φ
(0)
in + Φ

(2)
in , (3.23)

Φext = Φ
(0)
ext + Φ

(2)
ext. (3.24)

Furthermore, we express the boundary surface by ξ. This can also be expanded as

ξ = ξ(0) + ξ(2). (3.25)
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Here, ξ(0) is simply given by ξ(0) = R, while ξ(2) can be written as

ξ(2) = ξ
(2)
0 + ξ

(2)
2 P2 = −

(
1

ρ

dp

dr

)−1 (
δP

(2)
0 + δP

(2)
2 P2

)
. (3.26)

Using these quantities, we have

Φin|ξ = Φ
(0)
in

∣∣∣
ξ(0)

+
(

Φ
′(0)
in

∣∣∣
ξ(0)

ξ(2) + Φ
(2)
in

∣∣∣
ξ(0)

)
, (3.27)

Φ′
in|ξ = Φ

′(0)
in

∣∣∣
ξ(0)

+
(

Φ
′′(0)
in

∣∣∣
ξ(0)

ξ(2) + Φ
′(2)
in

∣∣∣
ξ(0)

)
, (3.28)

Φext|ξ = Φ
(0)
ext

∣∣∣
ξ(0)

+
(

Φ
′(0)
ext

∣∣∣
ξ(0)

ξ(2) + Φ
(2)
ext

∣∣∣
ξ(0)

)
, (3.29)

Φ′
ext|ξ = Φ

′(0)
ext

∣∣∣
ξ(0)

+
(

Φ
′′(0)
ext

∣∣∣
ξ(0)

ξ(2) + Φ
′(2)
ext

∣∣∣
ξ(0)

)
. (3.30)

Hence, boundary conditions are now expressed as

(
Φ

(0)
in − Φ

(0)
ext

)∣∣∣
ξ(0)

= 0, (3.31)
(
Φ
′(0)
in − Φ

′(0)
ext

)∣∣∣
ξ(0)

= 0, (3.32)
(
Φ

(2)
in − Φ

(2)
ext

)∣∣∣
ξ(0)

= 0, (3.33)

[(
Φ
′′(0)
in − Φ

′′(0)
ext

)∣∣∣
ξ(0)

]
ξ(2) +

(
Φ
′(2)
in − Φ

′(2)
ext

)∣∣∣
ξ(0)

= 0. (3.34)

From Eq. (2.4), we can derive

d2

dr2

(
Φ

(0)
in − Φ

(0)
ext

)∣∣∣∣∣
ξ(0)

= −2

r

d

dr

(
Φ

(0)
in − Φ

(0)
ext

)∣∣∣∣∣
ξ(0)

+ 4πρ(0)
∣∣∣
ξ(0)

. (3.35)

Thus, the left-hand side of Eq. (3.35) vanishes except for the case of n = 0. Therefore, in the

cases of n 6= 0, we can use the junction condition

(
Φ
′(2)
in − Φ

′(2)
ext

)∣∣∣
ξ(0)

= 0. (3.36)

However, in the case of n = 0, we have to use the condition (3.34) instead of Eq. (3.36).

Normalized equations

In the remaining part of this subsection, we consider the normalized forms of the equations

mentioned above. In addition to r̃, ρ̃, p̃ and Φ̃, we use the dimensionless quantities Ω̃, δP̃
(2)
0

and δP̃
(2)
2 defined as

Ω = Ω∗Ω̃, (3.37)

δP
(2)
0 = δP∗δP̃

(2)
0 , (3.38)

δP
(2)
2 = δP∗δP̃

(2)
2 , (3.39)
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Figure 3.1: The function δP̃
(2)
0 plotted with respect to r̃.

where

Ω∗ =
√

4πρc, (3.40)

δP∗ =
pc

ρc

. (3.41)

Equations (3.9) and (3.14) are then written as

Φ̃
(2)
0 = −δP̃

(2)
0 +

1

3
r̃2Ω̃2 + const, (3.42)

Φ̃
(2)
2 = −δP̃

(2)
2 − 1

3
r̃2Ω̃2. (3.43)

Furthermore, Eqs. (3.21) and (3.22) are written as

d2

dr̃2
δP̃

(2)
0 +

2

r̃

d

dr̃
δP̃

(2)
0 +

ρ̃′

p̃′
ρ̃δP̃

(2)
0 = 2Ω̃2, (3.44)

d2

dr̃2
δP̃

(2)
2 +

2

r̃

d

dr̃
δP̃

(2)
2 +

(
ρ̃′

p̃′
ρ̃− 6

r̃2

)
δP̃

(2)
2 = 0, (3.45)

where the prime with respect to normalized functions denotes differentiation with respect to

r̃.
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Figure 3.2: The function δP̃
(2)
2 plotted with respect to r̃.

3.1.2 Solutions for stellar configurations

Exterior solution

First, we consider the outside of the star. The gravitational potential terms Φ
(2)
0 and Φ

(2)
2 obey

the following equations derived from Eqs. (3.15) and (3.16),

1

r2

d

dr


r2dΦ

(2)
0

dr


 = 0, (3.46)

1

r2

d

dr


r2dΦ

(2)
2

dr


− 6

r2
Φ

(2)
2 = 0. (3.47)

The solution which vanishes at infinity is given by

Φ̃
(2)
0 =

c1Φ

r̃
, (3.48)

Φ̃
(2)
2 =

d1Φ

r̃3
, (3.49)

where c1Φ and d1Φ are constants. This exterior solution must be connected with an interior

solution, using the junction conditions mentioned previously.

Interior solutions

Next, we discuss interior solutions. For n = 0, we can easily obtain the analytic expressions of

δP̃
(2)
0 and δP̃

(2)
2 . From Eqs. (3.44) and (3.45), we obtain the following solution which vanishes
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at the stellar center,

δP̃
(2)
0 =

1

3
r̃2Ω̃2, (3.50)

δP̃
(2)
2 = d2Φr̃2, (3.51)

where d2Φ is a constant. From these expressions, we derive

Φ̃
(2)
0 = c2Φ, (3.52)

Φ̃
(2)
2 = −

(
d2Φ +

1

3
Ω̃2

)
r̃2 (3.53)

where we have used Eqs. (3.42) and (3.43). In this case, we have

Φ̃
′′(0)
in − Φ̃

′′(0)
ext = 1, (3.54)

(
1

ρ̃

dp̃

dr̃

)−1

= −
√

6

2
, (3.55)

ξ̃
(2)
0 =

√
6Ω̃2, ξ̃

(2)
2 = 3

√
6d2Φ. (3.56)

Using these results, from the junction conditions (3.33) and (3.34), we derive the equations

c1Φ√
6
− c2Φ = 0, (3.57)

c1Φ

6
= −

√
6Ω̃2, (3.58)

d1Φ

6
+ 6

√
6d2Φ = −2

√
6Ω̃2, (3.59)

d1Φ

12
+
√

6d2Φ =
2
√

6

3
Ω̃2. (3.60)

Therefore, we obtain

c1Φ = −6
√

6Ω̃2, (3.61)

c2Φ = −6Ω̃2, (3.62)

d1Φ = 18
√

6Ω̃2, (3.63)

d2Φ = −5

6
Ω̃2. (3.64)

Consequently, we have

δP̃
(2)
0 =

1

3
r̃2Ω̃2, (3.65)
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Figure 3.3: The potential Φ̃(2)
0 plotted as a function of r̃.

δP̃
(2)
2 = −5

6
r̃2Ω̃2, (3.66)

Φ̃
(2)
0 =




−6Ω̃2 (r̃ < r̃s)

−6
√

6
r̃

Ω̃2 (r̃ > r̃s)
, (3.67)

Φ̃
(2)
2 =





1
2
Ω̃2r̃2 (r̃ < r̃s)

18
√

6
r̃3 Ω̃2 (r̃ > r̃s)

, (3.68)

ξ̃(2) =
√

6
(
Ω̃2 − 5

2
Ω̃2P2

)
. (3.69)

Taking into account the last result (3.69), we can find the value of ellipticity as

ellipticity ≡ −3

2

ξ
(2)
2

R
=

15

4
Ω̃2 =

5

4

R3Ω2

M
, (3.70)

where ellipticity is defined by the difference between the equatorial radius and the polar radius.

The other solutions can be obtained by numerical calculations. In general, the potentials

can be written as

Φ̃
(2)
0 =





c1Φ
r̃

(r̃ > r̃s)

−δP̃
(2)
0 + 1

3
r̃2Ω̃2 + c2Φ (r̃ < r̃s)

, (3.71)

Φ̃
(2)
2 =





d1Φ

r̃3 (r̃ > r̃s)

−d2ΦδP̃
(2)†
2 − 1

3
r̃2Ω̃2 (r̃ < r̃s)

, (3.72)

where c1Φ, c2Φ, d1Φ and d2Φ are constants, and δP̃
(2)
2 = d2ΦδP̃

(2)†
2 . From the junction conditions

(3.33) and (3.34), we derive

−c1Φ

r̃s

+ c2Φ = δP̃
(2)
0 (r̃s)− 1

3
r̃2
s Ω̃

2, (3.73)
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Figure 3.4: The potential Φ̃(2)
2 plotted as a function of r̃.

c1Φ

r̃2
s

= δP̃
′(2)
0 (r̃s)− 2

3
r̃sΩ̃

2 − ξ̃
(2)
0 A, (3.74)

d1Φ

r̃3
s

+ δP̃
(2)†
2 (r̃s)d2Φ = −1

3
r̃2
s Ω̃

2, (3.75)

3

r̃4
s

d1Φ +
[
−δP̃

′(2)†
2 (r̃s) + ξ̃

(2)†
2 A

]
d2Φ =

2

3
r̃sΩ̃

2, (3.76)

where

ξ
(2)
0 = −

(
1

ρ

dp

dr

)−1

δP
(2)
0

∣∣∣∣∣∣
ξ(0)

, (3.77)

ξ
(2)†
2 = −

(
1

ρ

dp

dr

)−1

δP
(2)†
2

∣∣∣∣∣∣
ξ(0)

, (3.78)

A =
(
Φ̃
′′(0)
in − Φ̃

′′(0)
ext

)∣∣∣
ξ(0)

. (3.79)

Therefore, we obtain

c1Φ = r̃2
s

[
δP̃

′(2)
0 (r̃s)− 2

3
r̃sΩ̃

2 − ξ̃
(2)
0 A

]
, (3.80)

c2Φ = δP̃
(2)
0 (r̃s) + r̃sδP̃

′(2)
0 (r̃s)− r̃2

s Ω̃
2 − r̃sξ̃

(2)
0 A, (3.81)

d1Φ =
r̃5
s

[
2δP̃

(2)†
2 (r̃s)− r̃sδP̃

′(2)†
2 (r̃s) + r̃sξ̃

(2)†
2 A

]
Ω̃2

3
[
3δP̃

(2)†
2 (r̃s) + r̃sδP̃

′(2)†
2 (r̃s)− r̃sξ̃

(2)†
2 A

] , (3.82)

d2Φ = − 5r̃2
s Ω̃

2

3
[
3δP̃

(2)†
2 (r̃s) + r̃sδP̃

′(2)†
2 (r̃s)− r̃sξ̃

(2)†
2 A

] . (3.83)
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Figure 3.5: Dependence of ellipticity on the polytropic index n.

Using these expressions, we can obtain solutions for δP
(2)
0 , δP

(2)
2 , Φ

(0)
0 and Φ

(0)
2 numerically.

We show these functions for several polytropic models in Figs. 3.1, 3.2, 3.3 and 3.4.

The ellipticity of the star can be derived in the same way as Eq. (3.70),

ellipticity = −3

2

ξ
(2)
2

R
= −3

2

ξ̃
(2)
2 m̃(r̃s)

r̃4
s Ω̃

2

R3Ω2

M
. (3.84)

We show dependence of ellipticity on the polytropic index n in Fig. 3.5. We find that the

value of ellipticity becomes small as the polytropic index n becomes large for fixed R3Ω2/M .

3.2 General relativistic stars

3.2.1 Formulation

Next, we discuss rotating, general relativistic stars. The basic procedure is almost the same

as in the Newtonian case. However, a different point from the Newtonian case arises in the

general relativistic case. In the context of general relativity, rotating objects induce dragging

of inertial frames. Hence, there is some change about stellar deformation from the Newtonian

case, owing to this effect. We investigate stellar deformation, in particular concentrating on

the general relativistic effect.

Frame dragging

First, we consider frame dragging due to a rotating, spherically symmetric star. We now

assume that the star slowly rotates with uniform angular velocity Ω. The metric can be
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written in the form

ds2 = −eν [dt− ω(r)dφ]2 + eλdr2 + r2
(
dθ2 + sin2 θdφ2

)
, (3.85)

where the function ω is of the same order as Ω and causes frame dragging. The equation

which ω obeys can be obtained from the (t, φ)-component of the Einstein equation Eq. (2.49),

d2

dr2
$ +

(
4

r
− J ′

J

)
d

dr
$ +

4J ′

rJ $ = 0, (3.86)

where $ and J are defined, respectively, as

$ = Ω− ω, (3.87)

J = e−
ν+λ

2 . (3.88)

Here, Ω is written as

Ω =
dφ

dt
=

dφ
dτ
dt
dτ

=
uφ

ut
, (3.89)

where uµ denotes four-velocity of fluid.

Outside the star, the solution for $ can easily be derived. Since we have ν ′+λ′ = 0 outside

the star, we find

$ = Ω− 2J

r3
. (3.90)

Here, J corresponds to the angular momentum of the star [126]. This exterior solution must

be connected smoothly with an interior solution, which is obtained later.

Stellar deformation

Now, we formulate a relativistic star deformed by rotation. The space-time can be described

by the line element [110]

ds2 = −eν [1 + 2 (h0(r) + h2(r)P2)] dt2 + eλ

[
1 +

2eλ

r
(m0(r) + m2(r)P2)

]
dr2

+r2 (1 + 2k2(r))
[
dθ2 + sin2 θ (dφ− ωdt)2

]
, (3.91)

where h0, h2, m0, m2 and k2 are functions of second order in εΩ.

The stress-energy tensor of the star made of perfect fluid has the form

T µ
ν = (ρ + p) uµuν + pδµ

ν , (3.92)



36 CHAPTER 3. ROTATING STARS

where the density ρ and the pressure p are expanded in the same way as in the Newtonian

case,

ρ = ρ(0) +
[
ρ

(2)
0 + ρ

(2)
2 P2

]
, (3.93)

p = p(0) +
[
p

(2)
0 + p

(2)
2 P2

]
. (3.94)

Up to second order in εΩ, the non-vanishing components of four-velocity have the forms

ut = e−
ν
2 [1− (h0 + h2P2)] +

1

2
e−

3
2
νr2 sin2 θ$2, (3.95)

uφ = Ωut. (3.96)

The basic equations of equilibrium configurations can be obtained from the Einstein equa-

tion (2.49) and the equation of motion (2.50) using the above quantities. First, from Eq. (2.50),

we obtain the equations

1

ρ + p

dp
(2)
0

dr
= − ν ′

2 (ρ + p)

(
ρ′

p′
+ 1

)
p

(2)
0 − dh0

dr
+

d

dr

(
1

3
r2e−ν$2

)
, (3.97)

1

ρ + p

dp
(2)
2

dr
= − ν ′

2 (ρ + p)

(
ρ′

p′
+ 1

)
p

(2)
2 − dh2

dr
− d

dr

(
1

3
r2e−ν$2

)
, (3.98)

p
(2)
2

ρ + p
= −h2 − 1

3
r2e−ν$2, (3.99)

where the superscript “(0)” is abbreviated. When we recall Eq. (2.53), Eqs. (3.97) and (3.98)

are integrated to give Eq. (3.99) and

p
(2)
0

ρ + p
= −h0 +

1

3
r2e−ν$2 + const. (3.100)

As in the Newtonian case, it is useful to introduce δP
(2)
0 and δP

(2)
2 defined by

δP
(2)
0 =

p
(2)
0

ρ + p
, (3.101)

δP
(2)
2 =

p
(2)
2

ρ + p
. (3.102)

Using these quantities, we have

δP
(2)
0 = −h0 +

1

3
r2e−ν$2 + const, (3.103)

δP
(2)
2 = −h2 − 1

3
r2e−ν$2. (3.104)

These relations correspond to Eq. (3.9) and (3.14) in the Newtonian case.
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Furthermore, we can obtain the following equations from Eq. (2.49),

dm0

dr
= 4πr2 (ρ + p)

ρ′

p′
δP

(2)
0

+
1

12
r4e−(ν+λ)$′2 +

1

3
r3 (ν ′ + λ′) e−(ν+λ)$2, (3.105)

dδP
(2)
0

dr
= −

(
1

r2
+

ν ′

r

)
eλm0 − 4πr (ρ + p) eλδP

(2)
0 +

2

3
re−ν$2

−1

3
r2ν ′e−ν$2 +

2

3
r2e−ν$$′ +

1

12
r3e−ν$′2, (3.106)

d

dr
(h2 + k2) =

(
1

r
− ν ′

2

)
h2 +

eλ

r

(
1

r
+

ν ′

2

)
m2, (3.107)

h2 +
eλ

r
m2 =

1

6
r4e−(ν+λ)$′2 − 1

3
r3

(
e−(ν+λ)

)′
$2, (3.108)

dh2

dr
+

(
rν ′

2
+ 1

)
dk2

dr
= 4πreλ (ρ + p) δP

(2)
0 +

(
1

r2
+

ν ′

r

)
eλm2

+
3

r
eλh2 +

2

r
eλk2 +

1

12
r3e−ν$′2. (3.109)

Here, it is convenient to introduce the function v2 defined as

v2 ≡ h2 + k2. (3.110)

Using this, from Eqs. (3.107), (3.108) and (3.109), we obtain a couple of equations

dv2

dr
= −ν ′h2 +

(
1

r
+

ν ′

2

) [
1

6
r4e−(ν+λ)$′2 +

1

3
r3 (ν ′ + λ′) e−(ν+λ)$2

]
, (3.111)

dh2

dr
= − 4eλ

r2ν ′
v2 +

[
8π

eλ

ν ′
(ρ + p) +

2

r2ν ′
(
1− eλ

)
− ν ′

]
h2

+
1

6

(
rν ′

2
− eλ

rν ′

)
r3e−(ν+λ)$′2 +

1

3

(
rν ′

2
+

eλ

rν ′

)
r2 (ν ′ + λ′) e−(ν+λ)$2. (3.112)

Therefore, we have to solve two sets of equations (3.105)-(3.106) and (3.111)-(3.112) for the

four unknown functions m0, δP
(2)
0 , v2 and k2. The other functions, i.e. h0, δP

(2)
2 , m2 and k2

can be derived from Eqs. (3.103), (3.104), (3.108) and (3.110), respectively. However, outside

the star, we have the following equations in place of the set of equations (3.105)-(3.106),

dm0

dr
=

1

12
r4$′2, (3.113)

dh0

dr
=

1

(r − 2M)2
m0 − r4

12(r − 2M)
$′2, (3.114)

since δP
(2)
0 is meaningless in this case.
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Boundary and junction conditions

Solutions for the metric functions can be obtained by imposing boundary and junction condi-

tions. These are summarized as follows:

• r →∞

h0, h2 → 0, (3.115)

m0,m2 → finite, (3.116)

k2, ω → 1

rα
(α ≥ 3) , (3.117)

• r = R

gµν |−ξ = gµν |+ξ (µ, ν = t, r, θ, φ) , (3.118)

gab,r|−ξ = gab,r|+ξ (a, b = t, θ, φ) , (3.119)

• r → 0

ω, h0, δP
(2)
0 → finite, (3.120)

m0,m2, h2, v2 → 0. (3.121)

The conditions for the limit r → 0 can be seen by taking Taylor expansions about the stellar

center.

Concerning the conditions (3.118) and (3.119), a similar situation to the Newtonian case

arises when n = 0. This stems from the fact that ν ′′ and λ′ are discontinuous in the case of

n = 0. Now, we have

grr|ξ = eλ
∣∣∣
ξ(0)

+


λ′eλ

∣∣∣
ξ(0)

ξ(2) +
2e2λ

r
m

∣∣∣∣∣
ξ(0)


 , (3.122)

gtt,r|ξ = ν ′eν |ξ(0) +
[(

ν ′′ + ν ′2
)
eν

∣∣∣
ξ(0)

ξ(2) + 2eν (ν ′h + h′)|ξ(0)

]
, (3.123)

where m and h are given by

m = m0 + m2P2, (3.124)

h = h0 + h2P2. (3.125)

Hence, from the conditions (3.118) and (3.119), we derive

(λ′in − λ′ext)|ξ(0) ξ(2)
a +

2eλ

r
(ma in −ma ext)

∣∣∣∣∣
ξ(0)

= 0, (3.126)

(ν ′′in − ν ′′ext)|ξ(0) ξ(2)
a + 2 (h′a in − h′a ext)|ξ(0) = 0, (3.127)
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where a takes 0 or 2. In the general relativistic case, ξ
(2)
0 and ξ

(2)
2 are given, respectively, by

ξ
(2)
0 = −

(
1

ρ + p

dp

dr

)−1

δP
(2)
0 , (3.128)

ξ
(2)
2 = −

(
1

ρ + p

dp

dr

)−1

δP
(2)
2 . (3.129)

From Eqs. (3.126) and (3.127), in the case of n = 0, we see that m0 and m2 are discontinuous,

and that h0 and h2 are not smooth at the surface. On the other hand, in the cases of n 6= 0,

the metric functions m0 and m2 are connected continuously, and h0 and h2 are connected

smoothly at the surface along with ω and k2.

Normalized equations

Next, we consider the normalization of the above equations. Note that the metric functions

h0, h2 and k2 are dimensionless, while m0 and m2 have the same dimension as mass. Hence,

we normalize m0 and m2 as

m0 = m∗m̃0, m2 = m∗m̃2. (3.130)

Furthermore, we can write

$ = Ω∗$̃. (3.131)

Using these quantities, we derive

dm̃0

dr̃
= r̃2 (ρ̃ + ζp̃)

ρ̃′

p̃′
δP̃

(2)
0

+
1

12
r̃4e−(ν+λ)$̃′2 +

1

3
r̃3 (ν ′ + λ′) e−(ν+λ)$̃2, (3.132)

dδP̃
(2)
0

dr̃
= −

(
1

r̃2
+

ν ′

r̃

)
eλm̃0 − ζr̃ (ρ̃ + p̃) eλδP̃

(2)
0 +

2

3
r̃e−ν$̃2

−1

3
r̃2ν ′e−ν$̃2 +

2

3
r̃2e−ν$̃$̃′ +

1

12
r̃3e−ν$̃′2, (3.133)

dv2

dr̃
= −ν ′h2 + ζ

(
1

r̃
+

ν ′

2

) [
1

6
r̃4e−(ν+λ)$̃′2 +

1

3
r̃3 (ν ′ + λ′) e−(ν+λ)$̃2

]
, (3.134)

dh2

dr̃
= − 4eλ

r̃2ν ′
v2 +

[
2ζ

eλ

ν ′
(ρ̃ + ζp̃) +

2

r̃2ν ′
(
1− eλ

)
− ν ′

]
h2

+
ζ

6

(
r̃ν ′

2
− eλ

r̃ν ′

)
r̃3e−(ν+λ)$̃′2 +

ζ

3

(
r̃ν ′

2
+

eλ

r̃ν ′

)
r̃2 (ν ′ + λ′) e−(ν+λ)$̃2,(3.135)

ζδP̃
(2)
0 = −h0 +

ζ

3
r̃2e−ν$̃2 + const, (3.136)

ζδP̃
(2)
2 = −h2 − ζ

3
r̃2e−ν$̃2, (3.137)
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ζm̃2 = r̃e−λ

[
−h2 +

ζ

6
r̃4e−(ν+λ)$̃′2 +

ζ

3
r̃3 (ν ′ + λ′) e−(ν+λ)$̃2

]
. (3.138)

Furthermore, outside the stars, we have

dm̃0

dr̃
=

1

12
r̃4$̃′2, (3.139)

dh0

dr̃
=

ζ

(r̃ − 2ζM̃)2
m̃0 − ζr̃4

12(r̃ − 2ζM̃)
$̃′2. (3.140)

The junction conditions are written as

(λ′in − λ′ext)|ξ̃(0) ξ̃(2)
a +

2ζeλ

r̃
(m̃a in − m̃a ext)

∣∣∣∣∣
ξ̃(0)

= 0, (3.141)

(ν ′′in − ν ′′ext)|ξ̃(0) ξ̃(2)
a + 2 (h′a in − h′a ext)|ξ̃(0) = 0. (3.142)

Moreover, we have

ξ̃
(2)
0 = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
0 , (3.143)

ξ̃
(2)
2 = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
2 . (3.144)

In these normalized equations, the prime denotes differentiation with respect to r̃.

3.2.2 Solutions for stellar configurations

The first-order function $ and the moment of inertia

First, we have to derive solutions for $, which are needed to find the second-order quantities in

εΩ. In Fig. 3.6, we show numerical interior solutions for $ connected with the exterior solution

(3.90). These have been obtained for several polytropic stellar models with M/R = 0.2. The

values of the angular momentum J and the angular velocity Ω can be obtained by using the

relations

J =
1

6
R4$′(R), (3.145)

Ω = $(R) +
1

3
R$′(R). (3.146)

Once we know J from the solutions for ω, we can derive the values of the moment of inertia

I of the spherically symmetric star with respect to the rotation axis in the way

I =
J

Ω
=

√√√√ p3
c

(4πρ2
c)

3

J̃

Ω̃
=

m∗r2
∗

ζ

J̃

Ω̃
=

J̃/Ω̃

ζm̃(r̃s)r̃2
s

MR2. (3.147)
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Figure 3.6: The function $ normalized by Ω, which is plotted as a function of r̃ for stellar models

with M/R = 0.2.
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Figure 3.7: The moment of inertia I, which is plotted as a function of M/R and normalized by MR2.
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Figure 3.8: The function m̃0(r̃) under the boundary condition δP
(2)
0 (0) = 0. Stellar models with

M/R = 0.2 are adopted here.

Here, J has been normalized as

J = J∗J̃ , J∗ =

√√√√ p3
c

16π2ρ5
c

. (3.148)

Figure 3.7 displays the moment of inertia I as a function of M/R. From this figure, we can

find that the values of the moment of inertia become large with the general relativistic factor

M/R for each polytropic index n.

The functions m0, δP
(2)
0 and h0

Now, we discuss the second-order functions in εΩ. The exterior solution for m̃0 and h̃0 can be

obtained from Eqs. (3.139) and (3.140) as

m̃0 = − J̃2

r̃3
+ cm, (3.149)

h0 =
ζJ̃2

r̃3 (r̃ − 2ζm̃(r̃s))
− ζcm

r̃ − 2ζm̃(r̃s)
, (3.150)

where we have here imposed the condition in which h0 must vanish at infinity. The remaining

constant cm corresponds to mass shift and should be fixed by the junction condition at the

stellar surface.

In Figs. 3.8, 3.9 and 3.10, we show numerical results for m̃0, δP̃
(2)
0 and h0. These have been

obtained by using the condition in which δP
(2)
0 vanishes at the stellar center. The imposition
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Figure 3.9: The function δP̃
(2)
0 (r̃) under the boundary condition δP

(2)
0 (0) = 0. Stellar models with

M/R = 0.2 are adopted here.
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Figure 3.10: The function h0(r̃) under the boundary condition δP
(2)
0 (0) = 0. Stellar models with

M/R = 0.2 are adopted here.
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Figure 3.11: The function m̃0(r̃) in the case of vanishing mass shift. Stellar models with M/R = 0.2

are adopted here.
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Figure 3.12: The function δP̃
(2)
0 (r̃) in the case of vanishing mass shift. Stellar models with M/R = 0.2

are adopted here.
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Figure 3.13: The function h0(r̃) in the case of vanishing mass shift. Stellar models with M/R = 0.2

are adopted here.

of this condition corresponds to seeing the sequences of stars with the same central density.

In this case, the mass shift cm is determined at the stellar surface in the way

cm = m̃0s +
J̃2

r̃3
s

+
r̃e−λ

2ζ
Aλξ̃

(2)
0 , (3.151)

where m̃0s is the surface value of m̃0, which can be derived by numerical integration from the

stellar center, and Aλ is defined as

Aλ = (λ′in − λ′ext)|ξ(0) . (3.152)

We further note that h0/ζ exactly corresponds to Φ̃
(2)
0 in the Newtonian case (see Fig. 3.3).

Furthermore, we show the other numerical results for m̃0, δP̃
(2)
0 and h0 in Figs. 3.11, 3.12

and 3.13. These have been obtained in the case of vanishing mass shift, i.e. cm = 0. In this

case, an interior solution can be written as

m̃0 = c0m̃0H + m̃0P, (3.153)

δP̃
(2)
0 = c0δP̃

(2)
0H + δP̃

(2)
0P , (3.154)

where the subscripts ‘H’ and ‘P’ denote homogeneous and particular solutions respectively,

and c0 is a constant. We can also express ξ̃
(2)
0 as

ξ̃
(2)
0 = c0ξ̃

(2)
0H + ξ̃

(2)
0P , (3.155)

where

ξ̃
(2)
0H = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
0H , (3.156)
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Figure 3.14: The function v2(r̃) obtained for stellar models with M/R = 0.2.

ξ̃
(2)
0P = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
0P . (3.157)

Considering the junction conditions, we derive c0 in the form

c0 = −
J̃2

r̃3
s

+ m̃0Ps + r̃se−λ

2ζ
Aλξ̃

(2)
0P

m̃0Hs + r̃se−λ

2ζ
Aλξ̃

(2)
0H

. (3.158)

In these calculations, we adopted polytropic stellar models with M/R = 0.2.

The functions v2, h2, k2, m2 and δP
(2)
2

Next, we discuss v2 and h2. Here, it is useful to introduce the new variable z

z =
r

M
− 1 =

r̃

ζm̃(r̃s)
− 1. (3.159)

Using this variable, Eq. (3.134) and (3.135) can be written outside the star as

dv2

dz
= − 2

z2 − 1
+

6J̃2

ζ3m̃(r̃s)4

z

(z − 1)(z + 1)5
, (3.160)

dh2

dz
= −2v2 − 2z

z2 − 1
h2 − 3J̃2

ζ3m̃(r̃s)4

z2 − 3

(z − 1)(z + 1)5
. (3.161)

From these equations, we can derive the second-order differential equation for h2 in the form

d2h2

dz2
− 2z

1− z2

dh2

dz
+

(
6

1− z2
− 4

(1− z2)2

)
h2 = − 12J̃2

ζ3m̃(r̃s)4

z2 + 3z − 3

(z − 1)2(z + 1)6
. (3.162)
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Figure 3.15: The function h2(r̃) obtained for stellar models with M/R = 0.2.
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Figure 3.16: The function k2(r̃) obtained for stellar models with M/R = 0.2.
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Figure 3.17: The function δP
(2)
2 (r̃) obtained for stellar models with M/R = 0.2.
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Figure 3.18: The function m2(r̃) obtained for stellar models with M/R = 0.2.
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Solutions for the homogeneous equation are given by the associated Legendre functions

P 2
2 (z) = 3

(
1− z2

)
, (3.163)

Q2
2(z) =

3

2

(
z2 − 1

)
ln

(
z + 1

z − 1

)
− 3z3 − 5z

z2 − 1
. (3.164)

Hence, the general solution that vanishes at infinity can be written as

h2 = c1Q
2
2 +

J̃2

ζ3m̃(r̃s)4

z + 2

(z + 1)4
, (3.165)

where c1 is a constant. In a similar way, homogeneous solutions for v2 can be expressed in

terms of the associated Legendre functions

P 1
2 = 3z

√
z2 − 1, (3.166)

Q1
2 =

√
z2 − 1

[
3z2 − 2

z2 − 1
− 3

2
z ln

(
z + 1

z − 1

)]
. (3.167)

The solution for v2 that vanishes at infinity can be derived as

v2 =
2c1√
z2 − 1

Q1
2 +

J̃2

ζ3m̃(r̃s)4

1

(z + 1)4
. (3.168)

The constant c1 must be fixed by the junction condition.

Let us now write the above exterior solution as

v2 = c1u1(z) + u2(z), (3.169)

h2 = c1w1(z) + w2(z). (3.170)

An interior solution can be expressed as

v2 = c2v2 H + v2 P, (3.171)

h2 = c2h2 H + h2 P, (3.172)

where c2 is a constant. Then, the continuous conditions require

c1 =
v2 Ph2 H − v2 Hh2 P − u2h2 H + w2v2 H

h2 Hu1 − v2 Hw1

, (3.173)

c2 =
−v2 Pw1 + h2 Pu1 + u2w1 − u1w2

−h2 Hu1 + v2 Hw1

. (3.174)

Here, we use the surface values for the functions in these expressions. Figures 3.14 and 3.15

display the functions v2 and h2, respectively, with respect to r̃. Here, h2/ζ corresponds to

Φ̃
(2)
2 in the Newtonian case (see Fig. 3.4). These have been obtained for stellar models with

M/R = 0.2. Furthermore, we show k2, δP̃
(2)
2 and m̃2 derived from Eqs. (3.110), (3.137) and

(3.138) in Figs. 3.16, 3.17 and 3.18.
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Figure 3.19: Ellipticity plotted as a function of M/R, which is obtained for polytropic stellar models.

3.2.3 Ellipticity

Ellipticity is now defined in the same way as in the Newtonian case. However, the expression

of ellipticity has the somewhat different form [125]

ellipticity = −3

2


ξ

(2)
2

rs

+ k2(rs)


 , (3.175)

where k2 arises due to a definition of the radius, that is, the circumferential radius. Figure

3.19 display the values of ellipticity as a function of M/R for several polytropic stellar models.

From this figure, we can see that the ellipticity becomes small as the general relativistic factor

M/R becomes large for fixed R3Ω2/M in each model.



Chapter 4

Stellar Electromagnetic Fields

In this chapter, we discuss stellar electromagnetic fields (see also Refs. [6, 7, 127]). We here

restrict our discussion to axisymmetric, poloidal magnetic fields. In particular, we are in-

terested in dipole magnetic fields, because these play significant roles in many astrophysical

situations. The magnetic fields are assumed to be weak, i.e. B ∼ O(εB), and therefore we

neglect the backreaction to stellar structure in this chapter. We also consider electric fields

induced by stellar rotation. In this discussion, we assume slow, uniform rotation of angular ve-

locity Ω ∼ O(εΩ). The discussion in Minkowski space-time is reviewed in §4.1. The treatment

in the context of general relativity is given in §4.2.

4.1 Minkowskian cases

4.1.1 Dipole magnetic fields

The equations governing magnetic fields are given by the Maxwell equation,

∇ ·B = 0, (4.1)

∇×B = 4πJ , (4.2)

where J is electric current. It is conventional to introduce the vector potential A defined as

B = −∇×A. (4.3)

Using this quantity, Eq. (4.1) is automatically satisfied, while Eq. (4.2) reduces to

∇× (∇×A) = −4πJ . (4.4)

51
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In general, poloidal magnetic fields are written as

A = A(φ)eφ = Aφdφ, (4.5)

where A(φ) is related with Aφ in the way

A(φ) =
Aφ

r sin θ
. (4.6)

The electric current J is also written as

J = J(φ)eφ = Jφdφ. (4.7)

Since we consider axisymmetric cases, Aφ and Jφ are independent of the coordinate φ. The

equation for Aφ can be obtained from Eq. (4.4) in the form

∂2Aφ

∂r2
+

1

r2

∂2Aφ

∂θ2
− 1

r2
cot θ

∂Aφ

∂θ
= −4πJφ. (4.8)

The potential Aφ and the current Jφ can now be expanded as

Aφ =
∞∑

l=1

aφl(r) sin θ
dPl

dθ
, (4.9)

Jφ =
∞∑

l=1

jφl(r) sin θ
dPl

dθ
. (4.10)

Here, we note that dipole magnetic fields correspond to l = 1. The equation for the radial

part is obtained from Eq. (4.8) in the form

d2aφl

dr2
− l(l + 1)

r2
aφl = −4πjφl, (4.11)

where we have used the formula

1

sin θ

d

dθ

(
sin θ

dPl

dθ

)
+ l(l + 1)Pl = 0. (4.12)

By solving Eq. (4.11), we can obtain the configurations of magnetic fields through the expres-

sion

B =

(
cot θ

r
A(φ) +

1

r

∂A(φ)

∂θ

)
er +

(
−1

r
A(φ) − ∂A(φ)

∂r

)
eθ

=
1

r2 sin θ

∂Aφ

∂θ
er − 1

r sin θ

∂Aφ

∂r
eθ. (4.13)

In the case of a dipole magnetic field, we have

B = −2aφ1

r2
cos θer +

a′φ1

r
sin θeθ. (4.14)
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Normalized forms

Now, we show the normalization of the above-mentioned quantities. The magnetic field

strength B, the magnetic dipole moment µ, the potential aφ1 and the current jφ1 are nor-

malized as follows:

B = B∗B̃, B∗ =
√

4πpc, (4.15)

µ = µ∗µ̃, µ∗ = r3
∗
√

4πpc, (4.16)

aφ1 = aφ∗ãφ1, aφ∗ = r2
∗
√

4πpc, (4.17)

jφ1 = jφ∗j̃φ1, jφ∗ =

√
pc

4π
. (4.18)

Using these quantities, Eq. (4.11) is written as

d2ãφl

dr̃2
− l(l + 1)

r̃2
ãφl = −j̃φl. (4.19)

In the following, we discuss the solution for a dipole field.

Exterior solution

First, we consider the exterior solution which vanishes at infinity. Setting jφl = 0 in Eq. (4.11),

we derive the solution

aφl ∝ 1

rl
. (4.20)

In the case of a dipole magnetic field, we have

aφ1 = −µ

r
, (4.21)

where µ is the magnetic dipole moment. Using Eq. (4.13), we obtain the magnetic configura-

tion

B =
2µ

r3
cos θer +

µ

r3
sin θeθ. (4.22)

The magnetic dipole moment µ must be fixed by the junction to an interior solution, which is

discussed below.

Interior solutions

Next, we consider interior solutions. For this purpose, we need to have the current distribution

jφ1. It is significant to notice that the current distribution is not arbitrary, but restricted by

an integrability condition [100,128]. This condition can be written as

jφ1 = cjr
2ρ, (4.23)
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Figure 4.1: The potential ãφ1 plotted as a function of r̃. The polytropic index is denoted by n.
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Figure 4.2: The r-component of the magnetic fields B(r) on the symmetry axis (θ = 0), which is

plotted as a function of r̃. The field strength is normalized by the typical value µ/R3.
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Figure 4.3: The θ-component of the magnetic fields B(θ) on the equatorial plane (θ = π/2), which is

plotted as a function of r̃. The field strength is normalized by the typical value µ/R3.

where cj is a constant. This is normalized as

j̃φ1 = c̃j r̃
2ρ̃, (4.24)

where cj = c̃j/r∗. This restriction can be obtained by considering the equilibrium configu-

rations of the stars endowed with a dipole magnetic field (see Chapter 5 for more detailed

discussion). After assuming a current distribution which satisfies Eq. (4.23), we can obtain a

solution by solving the differential equation (4.11). In this paper, we adopt the current which

exists in the whole area of the star.

In the case of incompressible fluid, i.e. n = 0, we can derive an analytic interior solution.

Since ρ = const, from Eqs. (4.19) and (4.24), we derive the interior solution

ãφ1 = car̃
2 − 1

10
c̃j r̃

4, (4.25)

which is regular at the stellar center. Here, ca is a constant fixed by the junction at the stellar

surface.

In general, the junction conditions for aφ1 are expressed by

aφ1|−R = aφ1|+R , (4.26)

daφ1

dr

∣∣∣∣∣−R

=
daφ1

dr

∣∣∣∣∣
+R

. (4.27)

In the case of n = 0, from Eq. (4.21) and (4.25), we derive

ca =
1

6
c̃j r̃

2
s , (4.28)
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µ̃ = − 1

15
c̃j r̃

5
s . (4.29)

Namely, we have

ãφ1 =





c̃j

15
r̃5
s

r̃
(r̃ > r̃s)

c̃j

6
r̃2
s r̃

2 − c̃j

10
r̃4 (r̃ < r̃s)

. (4.30)

In the other cases, the constants ca and µ can be derived in the forms

ca = − 1

3r̃2
s

[
ãφp(r̃s) + r̃sã

′
φp(r̃s)

]
, (4.31)

µ̃a =
r̃2
s

3

[
−2ãφp(r̃s) + r̃sã

′
φp(r̃s)

]
, (4.32)

where aφp denotes the particular solution for aφ1.

Numerical solutions

We show numerical solutions for aφ1, B(r) and B(θ) in Figs. 4.1, 4.2 and 4.3, respectively. The

magnetic field strength is normalized by the typical surface field strength µ/R3. The results

in Fig. 4.1 corresponds to the choice of c̃j = 1.

4.1.2 Induced electric fields

Next, we discuss the electric field induced by rotation of the star which has a dipole magnetic

field. The electric field can be described by the Maxwell equation,

∇ ·E = −4πJt, (4.33)

∇×E = 0, (4.34)

where Jt is related with the electric charge ρe as Jt = −ρe. It is useful to introduce the

potential At defined as

E = ∇At, (4.35)

where At is related with the usual scalar potential ϕ in the form At = −ϕ. This ensures

Eq. (4.34), while Eq. (4.33) gives the equation for At,

∂2At

∂r2
+

2

r

∂At

∂r
+

1

r2

∂2At

∂θ2
+

cot θ

r2

∂At

∂θ
= −4πJt. (4.36)

We now expand At and Jt as

At =
∞∑

l=0

atl(r)Pl, (4.37)

Jt =
∞∑

l=0

jtl(r)Pl. (4.38)
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Figure 4.4: The potential ãt0 as a function of r̃.

Note that the symmetry with respect to the equatorial plane requires

atl = 0 (l : odd), (4.39)

jtl = 0 (l : odd). (4.40)

Using Eqs. (4.37) and (4.38), we obtain the equation

d2atl

dr2
+

2

r

datl

dr
− l(l + 1)

r2
atl = −4πjtl. (4.41)

This equation governs stellar electric fields. In the normalized form, this reduces to

d2ãtl

dr̃2
+

2

r̃

dãtl

dr̃
− l(l + 1)

r̃2
ãtl = −j̃tl, (4.42)

where we have used the normalization

atl = at∗ãtl, at∗ = Ω∗aφ∗ =

(
pc

ρc

) 3
2

, (4.43)

jtl = jt∗j̃tl, jt∗ = Ω∗jφ∗ =
√

ρcpc, (4.44)

and Eqs. (4.15)–(4.18).

Solutions

A perfectly conducting interior is usually assumed, because the time scale of the magnetic

decay of neutron stars is much longer than the other time scales. We also adopt this reasonable

assumption in this paper. The generalized Ohm’s law is written as

J = σ (E + v ×B) , (4.45)
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Figure 4.5: The potential ãt2 as a function of r̃.

where σ is conductivity, and we have used the slow rotation approximation. Hence, in the

case of a perfect conductor, i.e. σ →∞, we derive

E + v ×B = 0. (4.46)

Using the potential functions At and A, this relation is written in the form

At + ΩAφ = cA, (4.47)

where cA is a constant of integration. In particular, in the case of a dipole field, we have

at0 =
2

3
Ωaφ1 + cA, (4.48)

at2 = −2

3
Ωaφ1, (4.49)

atl = 0 (l 6= 0, 2). (4.50)

Therefore, monopole and quadrupole electric fields are excited due to the rotation of a dipole

magnetic field. In this way, inside the star, we can derive the configurations of the electric field

by not solving the Maxwell equation, but considering the assumption of a perfect conductor.

Furthermore, we can obtain the induced charge configuration using Eqs. (4.11) and (4.41) as

follows:

jt0 =
2

3
Ωjφ1 − Ω

3πr

daφ1

dr
− Ω

3πr2
aφ1, (4.51)

jt2 = −2

3
Ωjφ1 +

Ω

3πr

daφ1

dr
− 2Ω

3πr2
aφ1. (4.52)
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In the normalized forms, we derive

j̃t0 =

(
2

3
j̃φ1 − 4

3r̃

dãφ1

dr̃
− 4

3r̃2
ãφ1

)
Ω̃, (4.53)

j̃t2 =

(
−2

3
j̃φ1 +

4

3r̃

dãφ1

dr̃
− 8

3r̃2
ãφ1

)
Ω̃. (4.54)

Outside the star, from Eq. (4.41), we derive the general expression of the exterior solution,

atl ∝ 1

rl+1
. (4.55)

Considering the junction to the above-mentioned interior solution, we obtain the exterior

solution

at2 =
2ΩµR2

3r3
, (4.56)

atl = 0 (l 6= 2). (4.57)

Here, the vanishing monopole part corresponds to the assumption that the total charge equals

to zero.

Consequently, we obtain the solution

at0 =





2Ω
3

aφ1 + 2Ωµ
3R

(r ≤ R)

0 (r ≥ R)
, (4.58)

at2 =




−2

3
Ωaφ1 (r ≤ R)

2
3

ΩµR2

r3 (r ≥ R)
. (4.59)

Note that at0 and at2 need not be connected smoothly at the surface, owing to induced surface

charge. The electric field components are now given by

E =





2
3
Ωa′φ1 (1− P2) er +

2Ωaφ1

r
sin θ cos θeθ (r ≤ R)

−2ΩµR2

r4 P2er − 2ΩµR2

r4 sin θ cos θeθ (r ≥ R)
. (4.60)

The exterior field is characterized by the quadrupole moment Q = ΩµR2/3.

Numerical results

We show the numerical solutions for at0 and at2 in Figs. 4.4 and 4.5, respectively. These

functions are normalized by Ω̃. Furthermore, we show the components of the electric field in

Fig. 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11. We have adopted the stellar models of n = 0, 1, 3. In

these figures, θ denotes the angle of the radial direction from the symmetry axis.
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Figure 4.6: The r-component of the electric field E(r) for the stellar model of n = 0. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.
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Figure 4.7: The θ-component of the electric field E(θ) for the stellar model of n = 0. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.
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Figure 4.8: The r-component of the electric field E(r) for the stellar model of n = 1. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.
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Figure 4.9: The θ-component of the electric field E(θ) for the stellar model of n = 1. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.



62 CHAPTER 4. STELLAR ELECTROMAGNETIC FIELDS

� �

���

���

���

���

���

���

�
	

�

	

�

� 	 � � � � �

E
(r

) [
Ω

 µ

�  / 
R

2 ]-1

r~ / r~s

θ=0
θ=π/4
θ=π/2

Figure 4.10: The r-component of the electric field E(r) for the stellar model of n = 3. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.
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Figure 4.11: The θ-component of the electric field E(θ) for the stellar model of n = 3. The field

strength is normalized by the typical value Ωµ/R2 and plotted as a function of r̃.
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4.2 General relativistic cases

4.2.1 Dipole magnetic fields

We now deal with a stellar dipole magnetic field in the context of general relativity. The

magnetic field obeys the Maxwell equation

F ν
µ ;ν = 4πJµ, (4.61)

where Fµν is the Faraday tensor, and Jµ is four-current. We now introduce the four-potential

Aµ defined as

Fµν = Aν,µ − Aµ,ν . (4.62)

The poloidal magnetic field can be described by

Aµ = (0, 0, 0, Aφ) , (4.63)

Jµ = (0, 0, 0, Jφ) , (4.64)

where Aφ and Jφ are expanded as Eqs. (4.9) and (4.10), respectively, again. From Eq. (4.61),

the equation for Aφ is derived in the form

e−λ ∂2Aφ

∂r2
+

1

2
(ν ′ − λ′) e−λ ∂Aφ

∂r
+

1

r2

∂2Aφ

∂θ2
− 1

r2
cot θ

∂Aφ

∂θ
= −4πJφ. (4.65)

This is the general relativistic version of Eq. (4.8). Furthermore, the equations for the radial

parts of Aφ can be written in the form

e−λ d2aφl

dr2
+

1

2
(ν ′ − λ′) e−λ daφl

dr
− l(l + 1)

r2
aφl = −4πjφl. (4.66)

This equation is also written in the normalized form

e−λ d2ãφl

dr̃2
+

1

2
(ν ′ − λ′) e−λ dãφl

dr̃
− l(l + 1)

r̃2
ãφl = −j̃φl, (4.67)

where the prime here denotes differentiation with respect to r̃, and we have used Eqs. (4.15)–

(4.18).

In local inertial frames, electric and magnetic fields are now defined as

F(µ)(ν) =




0 −E(r) −E(θ) −E(φ)

E(r) 0 B(φ) −B(θ)

E(θ) −B(φ) 0 B(r)

E(φ) B(θ) −B(r) 0




, (4.68)
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Figure 4.12: The potential ãφ1 as a function of r̃. We adopted polytropic stellar models with M/R =

0.2.

where F(µ)(ν) is derived from F(µ)(ν) = e λ
(µ)e

σ
(ν)Fλσ using the tetrad e λ

(µ). Hence, we derive the

general expression of the dipole magnetic field in the form

B =
1

r2 sin θ

∂Aφ

∂θ
er − e−

λ
2

r sin θ

∂Aφ

∂r
eθ (4.69)

= −2aφ1

r2
cos θer +

e−
λ
2 a′φ1

r
sin θeθ. (4.70)

Once we obtain the solution for aφ1, we can find the configuration of the dipole field from the

above expression.

Exterior solution

We now discuss the exterior solution which vanishes at infinity. Such a solution can be obtained

in the form [129–131]

aφl ∝
(

2M

r

)l

ψl(r), (4.71)

where ψl can be expressed by the hyper-geometric function,

ψl = 2F1

(
l, l + 2, 2(l + 1);

2M

r

)
(4.72)

=
(2l + 1)!

(l − 1)!(l + 1)!

∞∑

n=0

(n + l − 1)!(n + l + 1)!

(n + 2l + 1)!n!

(
2M

r

)n

. (4.73)

Hence, we can write the dipole field as

aφ1 =
3µ

8M3
r2

[
ln

(
1− 2M

r

)
+

2M

r
+

2M2

r2

]
, (4.74)
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Figure 4.13: The magnetic field component B(r) on the symmetry axis, which is plotted as a function

of r̃. The magnetic field strength is normalized by the typical value µ/R3. We adopted

polytropic stellar models with M/R = 0.2.

where µ is the magnetic dipole moment with respect to an observer at infinity. Note that this

expression reduces to the Newtonian expression at large r. Using the normalized quantities,

this equation can be written as

ãφ1 =
3µ̃

8ζ3m̃(r̃s)3
r̃2

[
ln

(
1− 2ζm̃(r̃s)

r̃

)
+

2ζm̃(r̃s)

r̃
+

2ζ2m̃(r̃s)
2

r̃2

]
. (4.75)

In the local frames, the components of the dipole magnetic field are given by

B(r) = − 3µ

4M3

[
ln

(
1− 2M

r

)
+

2M

r
+

2M2

r2

]
cos θ, (4.76)

B(θ) =
3µ

4M3




√
1− 2M

r
ln

(
1− 2M

r

)
+

2M(r −M)

r
√

r(r − 2M)


 sin θ. (4.77)

At large r, we can re-derive the expression (4.22) in Minkowski space-time.

Interior solutions

Next, we discuss interior solutions. As in the case of Minkowski space-time, electric current jφ1

must satisfies the integrability condition (see Ref. [103] or Chapter 5 for detailed discussion)

jφ1 = cjr
2 (ρ + p) . (4.78)

In the normalized form, we have

j̃φ1 = c̃j r̃
2 (ρ̃ + ζp̃) , (4.79)



66 CHAPTER 4. STELLAR ELECTROMAGNETIC FIELDS

� ���

�����

��� �

���	�

��� �

���

�

�

� � � � 
 �

B
( θ

 )
[µ

 / 
R

3 ]-1

r~/r~s

n=0.0
n=0.5
n=1.0
n=1.5

Figure 4.14: The magnetic field component B(θ) on the equatorial plane, which is plotted as a function

of r̃. The magnetic field strength is normalized by the typical value µ/R3. We adopted

polytropic stellar models with M/R = 0.2.

where cj = c̃j/r∗. Interior solutions can be obtained by solving Eq. (4.66) numerically under

this restriction.

Numerical results

We show the numerical solutions of ãφ for several polytropic stellar models in Fig. 4.12. These

results correspond to the choice of c̃j = 1. Furthermore, Figs. 4.13 and 4.14 display the

magnetic field components in local frames. In these figures, we adopted polytropic stellar

models with M/R = 0.2. From the comparison with the Newtonian case, we can find that

the magnetic field strength at the stellar center becomes large due to the general relativistic

effect. In the case of M/R = 0.2, the increment is about 50% of the Newtonian values. As an

example, in the case of n = 1, we show the comparison of the magnetic field strength between

the Newtonian and the general relativistic calculations in Figs. 4.15 and 4.16.

4.2.2 Induced electric fields

Next, we consider the electric field induced by stellar rotation in the context of general rela-

tivity. The electric field can be expressed by the t-component of four-potential At, which is

a quantity of order εΩεB. The potential function At obeys the following differential equation
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Figure 4.15: Comparison of the magnetic field component B(r) between the Newtonian and the gen-

eral relativistic calculations in the case of n = 1.
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Figure 4.16: Comparison of the magnetic field component B(θ) between the Newtonian and the gen-

eral relativistic calculations in the case of n = 1.
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derived from the Maxwell equation,

e−λ ∂2At

∂r2
−

(
ν ′ + λ′

2
− 2

r

)
e−λ ∂At

∂r
+

1

r2

∂2At

∂θ2
+

cot θ

r2

∂At

∂θ

= −4πJt +
[(

ν ′ − 2

r

)
ω − ω′

]
e−λ ∂Aφ

∂r
− 2

r2
cot θω

∂Aφ

∂θ
. (4.80)

This equation is the general relativistic version of Eq. (4.36). Using the expansion (4.37) and

(4.38) again, we obtain the equations

• l < 2

e−λ d2atl

dr2
−

(
ν ′ + λ′

2
− 2

r

)
e−λ datl

dr
− l(l + 1)

r2
atl

= −4πjtl − (l + 1)(l + 2)

2l + 3

[(
ν ′ − 2

r

)
ω − ω′

]
e−λa′φ l+1 +

2(l + 1)2(l + 2)

(2l + 3)r2
ωaφ l+1,

(4.81)

• l ≥ 2

e−λ d2atl

dr2
−

(
ν ′ + λ′

2
− 2

r

)
e−λ datl

dr
− l(l + 1)

r2
atl

= −4πjtl − (l + 1)(l + 2)

2l + 3

[(
ν ′ − 2

r

)
ω − ω′

]
e−λa′φ l+1 +

2(l + 1)2(l + 2)

(2l + 3)r2
ωaφ l+1

+
l(l − 1)

2l − 1

[(
ν ′ − 2

r

)
ω − ω′

]
e−λa′φ l−1 +

2l2(l − 1)

(2l − 1)r2
ωaφ l−1. (4.82)

When we deal with a dipole magnetic field, it is sufficient to consider the monopole and

quadrupole parts only. The differential equations for these are given by

e−λ d2at0

dr2
−

(
ν ′ + λ′

2
− 2

r

)
e−λ dat0

dr

= −4πjt0 − 2

3

[(
ν ′ − 2

r

)
ω − ω′

]
e−λa′φ1 +

4

3r2
ωaφ1, (4.83)

e−λ d2at2

dr2
−

(
ν ′ + λ′

2
− 2

r

)
e−λ dat2

dr
− 6

r2
at2

= −4πjt2 +
2

3

[(
ν ′ − 2

r

)
ω − ω′

]
e−λa′φ1 +

8

3r2
ωaφ1. (4.84)

These are also written in the normalized forms

e−λ d2ãt0

dr̃2
−

(
ν ′ + λ′

2
− 2

r̃

)
e−λ dãt0

dr̃

= −j̃t0 − 2

3

[(
ν ′ − 2

r̃

)
ω̃ − ω̃′

]
e−λã′φ1 +

4

3r̃2
ω̃ãφ1, (4.85)

e−λ d2ãt2

dr̃2
−

(
ν ′ + λ′

2
− 2

r̃

)
e−λ dãt2

dr̃
− 6

r̃2
ãt2

= −j̃t2 +
2

3

[(
ν ′ − 2

r̃

)
ω̃ − ω̃′

]
e−λã′φ1 +

8

3r̃2
ω̃ãφ1. (4.86)
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Figure 4.17: The potential ãt0 plotted as a function of r̃ for polytropic stellar models with M/R = 0.2.

The last terms on the right-hand sides in these equations denote the coupling between the

magnetic field and frame dragging.

Solutions

We now adopt the assumption of a perfectly conducting interior again. This condition is

expressed by

0 = Fµνu
ν = ut

(
0,

∂At

∂r
+ Ω

∂Aφ

∂r
,
∂At

∂θ
+ Ω

∂Aφ

∂θ
, 0

)
. (4.87)

Hence, we derive the same relation as in the Minkowskian case,

At = −ΩAφ + cA, (4.88)

where cA is a constant. Therefore, the interior solution can be derived by using the numerical

solution for aφ1 in the same forms as Eqs. (4.48)–(4.50). Furthermore, using Eqs. (4.83) and

(4.84), we can obtain the interior charge distribution in the forms

jt0 =
2

3
Ωjφ1 +

1

6π

[(
ν ′ − 2

r

)
$ + $′

]
e−λa′φ1 −

1

3πr2
$aφ1, (4.89)

jt2 = −2

3
Ωjφ1 − 1

6π

[(
ν ′ − 2

r

)
$ + $′

]
e−λa′φ1 −

2

3πr2
$aφ1, (4.90)

or in the normalized forms

j̃t0 =
2

3
Ω̃j̃φ1 +

2

3

[(
ν ′ − 2

r̃

)
$̃ + $̃′

]
e−λã′φ1 −

4

3r̃2
$̃ãφ1, (4.91)

j̃t2 = −2

3
Ω̃j̃φ1 − 2

3

[(
ν ′ − 2

r̃

)
$̃ + $̃′

]
e−λã′φ1 −

8

3r̃2
$̃ãφ1. (4.92)



70 CHAPTER 4. STELLAR ELECTROMAGNETIC FIELDS

� �

����� �

���

����� �

���

�	�
� �

�	�

����� �

�

� � � � � �

a~ t2

r~/r~s

n=0.0
n=0.5
n=1.0
n=1.5

Figure 4.18: The potential ãt2 plotted as a function of r̃ for polytropic stellar models with M/R = 0.2.

The exterior solution for at0 and at2 can be obtained by using Eqs. (2.68), (3.90) and (4.74).

The homogeneous solutions of Eqs. (4.83) and (4.84) are given by, respectively,

at0 H = const or
1

r
, (4.93)

at2 H =
1

M2
(r −M)(r − 2M)

or
2

Mr

(
3r2 − 6Mr + M2

)
+

3

M2

(
r2 − 3Mr + 2M2

)
ln

(
1− 2M

r

)
. (4.94)

Hence, the solution which vanishes at infinity is obtained as

at0 =
Jµ

2M3r2
(3r −M) +

Jµ

4M4r
(3r − 4M) ln

(
1− 2M

r

)
, (4.95)

at2 = cat2

[
2

Mr

(
3r2 − 6Mr + M2

)
+

3

M2

(
r2 − 3Mr + 2M2

)
ln

(
1− 2M

r

)]

− Jµ

M5r2

(
12r3 − 24Mr2 + 4M2r + M3

)

− Jµ

2M6r2

(
12r3 − 36Mr2 + 24M2r + M3

)
ln

(
1− 2M

r

)
, (4.96)

where we have assumed that the total charge of the star is zero. The constant cat2 is fixed by

the junction condition at the stellar surface in the form

cat2 =
{

Jµ

M5R2

(
12R3 − 24MR2 + 4M2R + M3

)

+
Jµ

2M6R

(
12R3 − 36MR2 + 24M2R + M3

)
ln

(
1− 2M

R

)

− µΩ

4M3

[
2MR + 2M2 + R2 ln

(
1− 2M

R

)]}

/ [
2

MR

(
3R2 − 6MR + M2

)
+

3

M2

(
R2 − 3MR + 2M2

)
ln

(
1− 2M

R

)]
. (4.97)
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Figure 4.19: The electric field component E(r) in the case of the polytropic stellar model of n = 0 and

M/R = 0.2. The field strength is normalized by the typical value Ωµ/R2 and plotted

as a function of r̃.

The exterior electric field in local frames is now expressed by

E(r) =
1

2M6r3

{
cat2

[
4M5r

(
6r2 − 3Mr −M2

)
+ 6M4r3 (2r − 3M) ln

(
1− 2M

r

)]

−2JµM
(
24r3 − 12Mr2 − 4M2r − 3M3

)

−3Jµr
(
8r3 − 12Mr2 −M3

)
ln

(
1− 2M

r

)}
P2,

E(θ) = − 3

M6r3
√

r(r − 2M)

×
{
cat2

[
2M5r2

(
3r2 − 6Mr + M2

)
+ 3M4r3

(
r2 − 3Mr + 2M2

)
ln

(
1− 2M

r

)]

−JµM
(
12r4 − 24Mr3 + 4M2r2 −M4

)

−6Jµr3
(
r2 − 3Mr + 2M2

)
ln

(
1− 2M

r

)}
sin θ cos θ, (4.98)

while the interior solution is given by

E(r) = e−
λ+ν

2 $a′φ1 sin2 θ, (4.99)

E(θ) =
2e−

ν
2

r
$aφ1 sin θ cos θ. (4.100)

Note that E(r) can become discontinuous at the stellar surface, owing to induced surface

electric charge.



72 CHAPTER 4. STELLAR ELECTROMAGNETIC FIELDS

� ��� �
� ��� �
� ��� �
� ��� �
� �

�	� � �
�	� � �
�	� � �
�	� � �

�

� � � 
 � �

E
( θ

 )
[Ω

 µ

�  / 
R

2 ]-1

r~/r~s

θ=0.0
θ=π / 4
θ=π / 2

Figure 4.20: The electric field component E(θ) in the case of the polytropic stellar model of n = 0 and

M/R = 0.2. The field strength is normalized by the typical value Ωµ/R2 and plotted

as a function of r̃.
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Figure 4.21: The electric field component E(r) in the case of the polytropic stellar model of n = 1 and

M/R = 0.2. The field strength is normalized by the typical value Ωµ/R2 and plotted

as a function of r̃.
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Figure 4.22: The electric field component E(θ) in the case of the polytropic stellar model of n = 1 and

M/R = 0.2. The field strength is normalized by the typical value Ωµ/R2 and plotted

as a function of r̃.

Numerical results

First, we show the numerical solutions of at0 and at2 in Figs. 4.17 and 4.18, respectively.

Furthermore, Figs. 4.19, 4.20, 4.21 and 4.22 display the electric field component in local

frames. In these figures, we adopted polytropic stellar models (n = 0, 1) with M/R = 0.2.

The comparison with the Newtonian calculations is shown in Fig. 4.23, 4.24, 4.25 and 4.26

explicitly. From these figures, we can find that the electric field strength in the context of

general relativity is about 1.5 times larger than that by the Newtonian calculations. This

consequence gives the very interesting effect of general relativity, because the enhancement of

the electric field strength leads to higher energy radiation from pulsars.
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Figure 4.23: Comparison of the electric field E(r) between the Newtonian and the general relativistic

calculations for θ = 0. We adopted the polytropic stellar model of n = 1.
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Figure 4.24: Comparison of the electric field E(r) between the Newtonian and the general relativistic

calculations for θ = π/4. We adopted the polytropic stellar model of n = 1.
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Figure 4.25: Comparison of the electric field E(r) between the Newtonian and the general relativistic

calculations for θ = π/2. We adopted the polytropic stellar model of n = 1.
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Figure 4.26: Comparison of the electric field E(θ) between the Newtonian and the general relativistic

calculations for θ = π/4. We adopted the polytropic stellar model of n = 1.





Chapter 5

Stellar Magnetic Deformation

In this chapter, we discuss the magnetic deformation of stars. We consider a dipole magnetic

field only as a stellar magnetic field, which can be treated as perturbation. The stellar magnetic

deformation arises as a second-order effect in εB. Neglecting the rotation of the star, we

formulate the quadrupole deformation due to a dipole magnetic field. The Newtonian case is

dealt with in §5.1, while the general relativistic case is discussed in §5.2.

5.1 Newtonian stars

5.1.1 Formulation

The structure of the star endowed with a magnetic field is governed by the following equations

0 = ∇Φ +
1

ρ
∇p− 1

ρ
J ×B, (5.1)

∇2Φ = 4πρ, (5.2)

∇ ·B = 0, (5.3)

∇×B = 4πJ . (5.4)

Equations (5.3) and (5.4) have been solved in the last chapter. Using Eq. (5.4), we can write

Eq. (5.1) as

0 = ∇Φ +
1

ρ
∇p− 1

4πρ
(∇×B)×B. (5.5)

Here, we have

1

4π
(∇×B)×B =

(
2

3r2
a′φ1jφ1 − 2

3r2
a′φ1jφ1P2

)
er − 2

3r3
aφ1jφ1

dP2

dθ
eθ, (5.6)

77
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where we assumed a dipole magnetic field and used the expansions (4.9) and (4.10) for Aφ

and Jφ.

In the same way as in the rotational case, we expand ρ, p and Φ as follows:

ρ = ρ(0)(r) +
[
ρ

(2)
0 (r) + ρ

(2)
2 (r)P2

]
, (5.7)

p = p(0)(r) +
[
p

(2)
0 (r) + p

(2)
2 (r)P2

]
, (5.8)

Φ = Φ(0)(r) +
[
Φ

(2)
0 (r) + Φ

(2)
2 (r)P2

]
, (5.9)

where the superscripts ‘(0)’ and ‘(2)’ here denote the zeroth-order and second-order quantities

in εB. In most parts, we abbreviate the superscript of the background quantities.

Using the above expansions, from Eq. (5.1), we derive

dΦ
(2)
0

dr
+

ρ
(2)
0

ρ

dΦ

dr
+

1

ρ

dp
(2)
0

dr
− 2

3r2ρ
a′φ1jφ1 = 0, (5.10)

dΦ
(2)
2

dr
+

ρ
(2)
2

ρ

dΦ

dr
+

1

ρ

dp
(2)
2

dr
+

2

3r2ρ
a′φ1jφ1 = 0, (5.11)

and

Φ
(2)
2 +

p
(2)
2

ρ
+

2

3r2ρ
aφ1jφ1 = 0. (5.12)

In order for Eqs. (5.10) and (5.11) to be integrated as in the rotational case, the following

relation must be satisfied [100,128],

jφ1

r2ρ
= cj = const. (5.13)

This integrability condition restricts the current distribution. When Eq. (5.13) is satisfied,

Eq. (5.12) can be derived from Eq. (5.11) actually. Hence, Eqs. (5.11) and (5.12) are consistent

with this integrability condition. Furthermore, from Eq. (5.10), we can derive

Φ
(2)
0 +

p
(2)
0

ρ
− 2

3r2ρ
aφ1jφ1 = const. (5.14)

Here, it is useful to introduce δP
(2)
0 and δP

(2)
2 defined as

δP
(2)
0 =

p
(2)
0

ρ
, (5.15)

δP
(2)
2 =

p
(2)
2

ρ
. (5.16)

Using these quantities, we have

Φ
(2)
0 = −δP

(2)
0 +

2

3r2ρ
aφ1jφ1 + const, (5.17)

Φ
(2)
2 = −δP

(2)
2 − 2

3r2ρ
aφ1jφ1. (5.18)
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From the Poisson equation (5.2), we derive the equations

1

r2

d

dr


r2dΦ

(2)
0

dr


 = 4πρ

(2)
0 , (5.19)

1

r2

d

dr


r2dΦ

(2)
2

dr


− 6

r2
Φ

(2)
2 = 4πρ

(2)
2 . (5.20)

Substituting Eqs. (5.17) and (5.18) into these equations, we obtain

d2

dr2
δP

(2)
0 +

2

r

d

dr
δP

(2)
0 + 4π

ρ′

p′
ρδP

(2)
0 =

2

3

(
2

r
a′φ1 +

2

r2
aφ1 − 4πjφ1

)
jφ1

r2ρ
, (5.21)

d2

dr2
δP

(2)
2 +

2

r

d

dr
δP

(2)
2 +

(
4π

ρ′

p′
ρ− 6

r2

)
δP

(2)
2 = −2

3

(
2

r
a′φ1 −

4

r2
aφ1 − 4πjφ1

)
jφ1

r2ρ
. (5.22)

These equations should be solved inside the star. Once we obtain the solution for δP
(2)
0 and

δP
(2)
2 , we can derive the potential Φ

(2)
0 and Φ

(2)
2 from Eqs. (5.17) and (5.18). The derived

interior solution for Φ
(2)
0 and Φ

(2)
2 must be connected with the exterior solution which vanishes

at infinity. As the junction conditions, Eqs. (3.33) and (3.34) should be used again.

Normalized equations

Now, we write down the normalized equations of the above-mentioned equations. Equations

(5.17) and (5.18) reduce, respectively, to

Φ̃
(2)
0 = −δP̃

(2)
0 +

2

3r̃2ρ̃
ãφ1j̃φ1 + const, (5.23)

Φ̃
(2)
2 = −δP̃

(2)
2 − 2

3r̃2ρ
ãφ1j̃φ1. (5.24)

Furthermore, from Eqs. (5.21) and (5.22), we derive

d2

dr̃2
δP̃

(2)
0 +

2

r̃

d

dr̃
δP̃

(2)
0 +

ρ̃′

p̃′
ρ̃δP̃

(2)
0 =

2

3

(
2

r̃
ã′φ1 +

2

r̃2
ãφ1 − j̃φ1

)
j̃φ1

r̃2ρ̃
, (5.25)

d2

dr̃2
δP̃

(2)
2 +

2

r̃

d

dr̃
δP̃

(2)
2 +

(
ρ̃′

p̃′
ρ̃− 6

r̃2

)
δP̃

(2)
2 = −2

3

(
2

r̃
ã′φ1 −

4

r̃2
ãφ1 − j̃φ1

)
j̃φ1

r̃2ρ̃
. (5.26)

These are very useful in numerical integration.

5.1.2 Solutions for stellar configurations

Exterior solution

The exterior solution for Φ
(2)
0 and Φ

(2)
2 takes the same forms as in the case of rotational

flattening,

Φ̃
(2)
0 =

c1Φ

r̃
, (5.27)
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Figure 5.1: The function δP̃
(2)
0 with respect to r̃ for several polytropic stellar models.

� ���

�����

��� �

���

�

�

� �
	 � �
	 � �
	 � �
	 � �
	 � �
	 
 �
	 � �
	 � �
	 � �

δ 
P

�

~
(2

)
2

r~ / r~s

n=0.0
n=0.5
n=1.0
n=1.5
n=2.0
n=3.0

Figure 5.2: The function δP̃
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2 with respect to r̃ for several polytropic stellar models.
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Figure 5.3: The potential Φ̃(2)
0 plotted as a function of r̃ for several polytropic stellar models.

Φ̃
(2)
2 =

d1Φ

r̃3
, (5.28)

where c1Φ and d1Φ are constants fixed by the junction with the interior solution at the stellar

surface.

Interior solutions

First, we consider the interior solution in the case of an incompressible fluid body, i.e. n = 0.

In this case, using the solution for the dipole magnetic field given by Eq. (4.30), we derive the

differential equations

d2

dr̃2
δP̃

(2)
0 +

2

r̃

d

dr̃
δP̃

(2)
0 = −4

3
c̃2
j

(
r̃2 − 3

)
, (5.29)

d2

dr̃2
δP̃

(2)
2 +

2

r̃

d

dr̃
δP̃

(2)
2 − 6

r̃2
δP̃

(2)
2 =

14

15
c̃2
j r̃

2. (5.30)

Hence, we can obtain the interior solution for δP̃
(2)
0 and δP̃

(2)
2 which vanishes at the stellar

center in the forms

δP̃
(2)
0 = − 1

15
c̃2
j r̃

2
(
r̃2 − 10

)
, (5.31)

δP̃
(2)
2 = d2Φr̃2 +

1

15
c̃2
j r̃

4, (5.32)

where d2Φ is a constant. From these results, we also derive

Φ̃
(2)
0 = c2Φ, (5.33)

Φ̃
(2)
2 = −

(
d2Φ +

2

3
c̃2
j

)
r̃2, (5.34)
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Figure 5.4: The potential Φ̃(2)
2 plotted as a function of r̃ for several polytropic stellar models.

where c2Φ is a constant. This interior solution should be connected with the exterior solution

given by Eqs. (5.27) and (5.28) under the junction conditions, i.e. Eqs. (3.33) and (3.34). In

the current case, we have

Φ̃
′′(0)
in − Φ̃

′′(0)
ext = 1, (5.35)

(
1

ρ̃

dp̃

dr̃

)−1

= −
√

6

2
, (5.36)

ξ̃
(2)
0 =

4
√

6

5
c̃2
j , ξ̃

(2)
2 = 3

√
6d2Φ +

6
√

6

5
c̃2
j . (5.37)

Hence, from the junction conditions, we obtain the algebraic equations

c1Φ√
6
− c2Φ = 0, (5.38)

c1Φ

6
= −4

√
6

5
c̃2
j , (5.39)

d1Φ

6
√

6
+ 6d2Φ = −4c̃2

j , (5.40)

d1Φ

12
+
√

6d2Φ =
2
√

6

15
c̃2
j . (5.41)

The solution is given by

c1Φ = −24
√

6

5
c̃2
j , (5.42)

c2Φ = −24

5
c̃2
j , (5.43)
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d1Φ =
72
√

6

5
c̃2
j , (5.44)

d2Φ = −16

15
c̃2
j . (5.45)

Consequently, we obtain

δP̃
(2)
0 = − 1

15
c̃2
j r̃

2
(
r̃2 − 10

)
, (5.46)

δP̃
(2)
2 = −16

15
c̃2
j r̃

2 +
1

15
c̃2
j r̃

4, (5.47)

Φ̃
(2)
0 =




−24

5
c̃2
j (r̃ < r̃s)

−24
√

6
5

c̃2j
r̃

(r̃ > r̃s)
, (5.48)

Φ̃
(2)
2 =





2
5
c̃2
j r̃

2 (r̃ < r̃s)

72
√

6
5

c̃2j
r̃3 (r̃ > r̃s)

, (5.49)

ξ̃
(2)
0 =

4
√

6

5
c̃2
j , (5.50)

ξ̃
(2)
2 = −2

√
6c̃2

j . (5.51)

Using the last result, we can find the value of ellipticity in the way

ellipticity = −3

2

ξ
(2)
2

R
= 3c̃2

j =
25

2

µ2

M2R2
. (5.52)

In general cases, we can write the potentials Φ̃
(2)
0 and Φ̃

(2)
2 as

Φ̃
(2)
0 =





c1Φ
r̃

(r̃ > r̃s)

−δP̃
(2)
0 + 2

3
c̃j ãφ1 + c2Φ (r̃ < r̃s)

, (5.53)

Φ̃
(2)
2 =





d1Φ

r̃3 (r̃ > r̃s)

−d2ΦδP̃
(2)
2H − δP̃

(2)
2P − 2

3
c̃j ãφ1 (r̃ < r̃s)

, (5.54)

where δP̃
(2)
2H and δP̃

(2)
2P are homogeneous and particular solutions for δP̃

(2)
2 , respectively. Con-

sidering the junctions at the stellar surface, we derive the equations

−c1Φ

r̃s

+ c2Φ = δP̃
(2)
0 (r̃s)− 2

3
c̃j ãφ1(r̃s), (5.55)

c1Φ

r̃2
s

= δP̃
′(2)
0 (r̃s)− 2

3
c̃j ã

′
φ1(r̃s)− ξ̃

(2)
0 A, (5.56)

d1Φ

r̃3
s

+ δP̃
(2)
2H (r̃s)d2Φ = −δP̃

(2)
2P (r̃s)− 2

3
c̃j ãφ1(r̃s), (5.57)

3

r̃4
s

d1Φ +
[
−δP̃

′(2)
2H (r̃s) + ξ̃

(2)
2HA

]
d2Φ = δP̃

′(2)
2P (r̃s) +

2

3
c̃j ã

′
φ1(r̃s)− ξ̃

(2)
2P A. (5.58)
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In these equations, we have used

ξ
(2)
0 = −

(
1

ρ

dp

dr

)−1

δP
(2)
0

∣∣∣∣∣∣
ξ(0)

, (5.59)

ξ
(2)
2H = −

(
1

ρ

dp

dr

)−1

δP
(2)
2H

∣∣∣∣∣∣
ξ(0)

, (5.60)

ξ
(2)
2P = −

(
1

ρ

dp

dr

)−1

δP
(2)
2P

∣∣∣∣∣∣
ξ(0)

, (5.61)

A =
(
Φ̃
′′(0)
in − Φ̃

′′(0)
ext

)∣∣∣
ξ(0)

. (5.62)

The solution of the above algebraic equations is given by

c1Φ = − r̃2
s

3

(
2c̃j ã

′
φ1(r̃s)− 3δP̃

′(2)
0 (r̃s) + 3ξ̃

(2)
0 A

)
, (5.63)

c2Φ =
1

3

(
−2c̃j ãφ1(r̃s) + 3δP̃

(2)
0 (r̃s)− 2r̃sc̃j ã

′
φ1(r̃s) + 3r̃sδP̃

′(2)
0 (r̃s)− 3r̃sξ̃

(2)
0 A

)
, (5.64)

d1Φ = −
(

2

3
c̃j ãφ1(r̃s) + δP̃

(2)
2P (r̃s)

)
r̃3
s

+
δP̃

(2)
2H (r̃s)r̃

3
s

(
6c̃j ãφ1(r̃s) + 9δP̃

(2)
2P (r̃s) + 2r̃sc̃j ã

′
φ1(r̃s) + 3r̃sδP̃

′(2)
2P (r̃s)− 3r̃sξ̃

(2)
2P A

)

3
(
3δP̃

(2)
2H (r̃s) + r̃sδP̃

′(2)
2H (r̃s)− r̃sξ̃

(2)
2HA

) ,

d2Φ = −6c̃j ãφ1(r̃s) + 9δP̃
(2)
2P (r̃s) + 2r̃sc̃j ã

′
φ1(r̃s) + 3r̃sδP̃

′(2)
2P (r̃s)− 3r̃sξ̃

(2)
2P A

3
(
3δP̃

(2)
2H (r̃s) + r̃sδP̃

′(2)
2H (r̃s)− r̃sξ̃

(2)
2HA

) . (5.65)

Using these, we can obtain numerical solutions. We show δP̃
(2)
0 , δP̃

(2)
0 , Φ̃

(2)
0 and Φ̃

(2)
2 as a

function of r̃ in Figs. 5.1, 5.2, 5.3 and 5.4, respectively, for several polytropic stellar models.

In the same way as the case of rotational flattening, ellipticity can also be calculated as

ellipticity = −3

2

ξ̃
(2)
2

r̃s

= −3

2

ξ̃
(2)
2 m̃(r̃s)

2r̃s

µ̃2

µ2

M2R2
. (5.66)

Figure 5.5 displays the numerical results obtained for several polytropic stellar models. From

this figure, we can find that the value of ellipticity becomes large with the polytropic index n

for fixed µ2/(M2R2).

5.2 General relativistic stars

5.2.1 Formulation

Next, we discuss magnetic deformation of a star in the context of general relativity. The

quadrupole deformation of the star endowed with a dipole magnetic field can be treated in



5.2. GENERAL RELATIVISTIC STARS 85

���

���

���

���

���

� ��� � � ��� � � ��� � �

el
lip

tic
ity

 [µ
2	  / 

(M
2  R

2 )]
-1

n

Figure 5.5: Dependence of ellipticity on the polytropic index n.

the very similar way as the rotational case. The space-time of such a star can be described by

the line element

ds2 = −eν [1 + 2 (h0(r) + h2(r)P2)] dt2 + eλ

[
1 +

2eλ

r
(m0(r) + m2(r)P2)

]
dr2

+r2 [1 + 2k2(r)P2]
(
dθ2 + sin2 θdφ2

)
, (5.67)

where h0, h2, m0, m2 and k2 are second-order quantities in εB.

The stress-energy tensor of the perfect fluid body endowed with a dipole magnetic field is

given by

T µ
ν = (ρ + p) uµuν + pδµ

ν +
1

4π

(
F µλFνλ − 1

4
FσλF

σλδµ
ν

)
, (5.68)

where the pressure p and the energy density ρ are expanded again in the forms

p = p(0) +
(
p

(2)
0 + p

(2)
2 P2

)
, (5.69)

ρ = ρ(0) +
(
ρ

(2)
0 + ρ

(2)
2 P2

)
. (5.70)

Here, the superscript ‘(0)’ will be abbreviated in most parts. Furthermore, the Faraday tensor

Fµν is given by the four-potential Aµ = (0, 0, 0, Aφ) which was dealt with in the last Chapter.

The equations which govern the configuration of the magnetized star can be obtained from

the Einstein equations Gµ
ν = 8πT mu

ν and the equation of motion T µ
ν;µ = 0. First, from the

Einstein equation, we obtain

dm0

dr
= 4πr2ρ′

p′
p

(2)
0 +

1

3

[
e−λ

(
a′φ1

)2
+

2

r2
a2

φ1

]
, (5.71)

dh0

dr
= 4πreλp

(2)
0 +

1

r
ν ′eλm0 +

1

r2
eλm0 +

eλ

3r

[
e−λ

(
a′φ1

)2 − 2

r2
a2

φ1

]
, (5.72)
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dh2

dr
+

dk2

dr
= h2

(
1

r
− ν ′

2

)
+

eλ

r
m2

(
1

r
+

ν ′

2

)
+

4

3r2
aφ1a

′
φ1, (5.73)

h2 +
eλ

r
m2 =

2

3
e−λ

(
a′φ1

)2
, (5.74)

dh2

dr
+

(
1 +

rν ′

2

)
dk2

dr
= 4πreλp

(2)
2 +

1

r2
eλm2 +

1

r
ν ′eλm2 +

3

r
eλh2 +

2

r
eλk2

− 1

3r
eλ

[
e−λ

(
a′φ1

)2
+

4

r2
a2

φ1

]
. (5.75)

Second, we obtain the following equations from the equation of motion:

dp
(2)
0

dr
= −ν ′

2

(
ρ′

p′
+ 1

)
p

(2)
0 − (ρ + p) h′0 +

2

3r2
a′φ1jφ1, (5.76)

dp
(2)
2

dr
= −ν ′

2

(
ρ′

p′
+ 1

)
p

(2)
2 − (ρ + p) h′2 −

2

3r2
a′φ1jφ1, (5.77)

p
(2)
2 = − (ρ + p) h2 − 2

3r2
aφ1jφ1. (5.78)

As in the Newtonian case, we derive the general relativistic version of the integrability condi-

tion from Eqs. (5.76) and (5.77) in the form [103]

jφ1

r2 (ρ + p)
= cj = const. (5.79)

Under this condition, we can actually derive Eq. (5.78) from Eq. (5.77). From Eq. (5.76), we

now derive the relation

p
(2)
0

(ρ + p)
= −h0 +

2

3r2 (ρ + p)
aφ1jφ1 + cp0 , (5.80)

where cp0 is a constant of integration. Here, we define δP
(2)
0 and δP

(2)
2 as

δP
(2)
0 =

p
(2)
0

ρ + p
, (5.81)

δP
(2)
2 =

p
(2)
2

ρ + p
. (5.82)

Using these quantities, we consequently derive the relations

δP
(2)
0 = −h0 +

2

3
cjaφ1 + cp0 , (5.83)

δP
(2)
2 = −h2 − 2

3
cjaφ1. (5.84)

From Eq. (5.71) and (5.72), we now have two coupled equations

dm0

dr
= −4πr2ρ′

p′
(ρ + p) (h0 − cp0) +

1

3
e−λ

(
a′φ1

)2
+

2

3r2
a2

φ1 +
8π

3

ρ′

p′
aφ1jφ1, (5.85)
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dh0

dr
=

(
1

r2
+

ν ′

r

)
eλm0 − 4πreλ (ρ + p) (h0 − cp0)

+
1

3r

(
a′φ1

)2 − 2

3r3
eλaφ1

2 +
8π

3r
eλaφ1jφ1, (5.86)

or

dm0

dr
= 4πr2 (ρ + p)

ρ′

p′
δP

(2)
0 +

1

3
e−λ

(
a′φ1

)2
+

2

3r2
a2

φ1, (5.87)

dδP
(2)
0

dr
= −

(
1

r2
+

ν ′

r

)
eλm0 − 4πr (ρ + p) eλδP

(2)
0

− 1

3r

(
a′φ1

)2
+

2

3r3
eλaφ1

2 +
2

3
cja

′
φ1. (5.88)

It is convenient to use Eqs. (5.85) and (5.86) outside the star, while Eqs. (5.87) and (5.88)

should be used inside the star. Furthermore, from Eqs. (5.73), (5.74) and (5.75), we can derive

the differential equations for v2(≡ h2 + k2) and h2,

dv2

dr
= −ν ′h2 +

2

3
e−λ

(
1

r
+

ν ′

2

) (
a′φ1

)2
+

4

3r2
aφ1a

′
φ1, (5.89)

dh2

dr
= − 4eλ

r2ν ′
v2 +

[
8π

eλ

ν ′
(ρ + p) +

2

r2ν ′
(
1− eλ

)
− ν ′

]
h2

+
8

3r4ν ′
eλa2

φ1 +
8

3r3ν ′

(
1 +

rν ′

2

)
aφ1a

′
φ1

+
(

1

3
ν ′e−λ +

2

3r2ν ′

) (
a′φ1

)2
+

16π

3r2ν ′
eλaφ1jφ1. (5.90)

The remaining function m2 can be derived from Eq. (5.74) using the solution of h2. There-

fore, two sets of differential equations (5.85)-(5.86) or (5.87)-(5.88) and (5.89)-(5.89) and one

algebraic equation (5.74) govern the structure of the relativistic magnetized star.

Boundary and junction conditions

The boundary and junction conditions which should be imposed take the same forms as in

the rotational case, i.e.

• r →∞

h0, h2 → 0, (5.91)

m0,m2 → finite, (5.92)

k2 → 1

rα
(α ≥ 3) , (5.93)
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• r = R

gµν |−ξ = gµν |+ξ (µ, ν = t, r, θ, φ) , (5.94)

gab,r|−ξ = gab,r|+ξ (a, b = t, θ, φ) , (5.95)

• r → 0

h0, δP
(2)
0 → finite, (5.96)

m0,m2, h2, v2 → 0. (5.97)

In the case of n = 0, we have to pay attention to the junction conditions. In this case, we

have the conditions

(λ′in − λ′ext)|ξ(0) ξ(2)
a +

2eλ

r
(ma in −ma ext)

∣∣∣∣∣
ξ(0)

= 0, (5.98)

(ν ′′in − ν ′′ext)|ξ(0) ξ(2)
a + 2 (h′a in − h′a ext)|ξ(0) = 0, (5.99)

where a takes 0 or 2. Numerical solutions for the metric functions should be derived following

these conditions.

Normalized equations

Here, we summarize the normalized forms of the above equations. First, we derive

ζδP̃
(2)
0 = −h0 +

2ζ

3
c̃j ãφ1 + cp0 , (5.100)

ζδP̃
(2)
2 = −h2 − 2ζ

3
c̃j ãφ1. (5.101)

Next, outside the star, the equations for m0 and h0 are written as

dm̃0

dr̃
=

ζ

3
e−λ

(
ã′φ1

)2
+

2ζ

3r̃2
ã2

φ1, (5.102)

dh0

dr̃
= ζ

(
1

r̃2
+

ν ′

r̃

)
eλm̃0 +

ζ2

3r̃

(
ã′φ1

)2 − 2ζ2

3r̃3
eλã2

φ1. (5.103)

Inside the star, we derive

dm̃0

dr̃
= r̃2 (ρ̃ + ζp̃)

ρ̃′

p̃′
δP̃

(2)
0 +

ζ

3
e−λ

(
ã′φ1

)2
+

2ζ

3r̃2
ã2

φ1, (5.104)

dδP̃
(2)
0

dr̃
= −

(
1

r̃2
+

ν ′

r̃

)
eλm̃0 − ζr̃ (ρ̃ + ζp̃) eλδP̃

(2)
0

− ζ

3r̃

(
ã′φ1

)2
+

2ζ

3r̃3
eλã2

φ1 +
2

3
c̃j ã

′
φ1. (5.105)
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Figure 5.6: The function m̃0(r̃) under the boundary condition δP
(2)
0 (0) = 0. We adopted stellar

models with M/R = 0.2.

The equations for v2 and h2 are written in the forms

dv2

dr̃
= −ν ′h2 +

2ζ2

3
e−λ

(
1

r̃
+

ν ′

2

) (
ã′φ1

)2
+

4ζ2

3r̃2
ãφ1ã

′
φ1, (5.106)

dh2

dr̃
= − 4eλ

r̃2ν ′
v2 +

[
2ζ

eλ

ν ′
(ρ̃ + ζp̃) +

2

r̃2ν ′
(
1− eλ

)
− ν ′

]
h2

+
8ζ2

3r̃4ν ′
eλã2

φ1 +
8ζ2

3r̃3ν ′

(
1 +

r̃ν ′

2

)
ãφ1ã

′
φ1

+ζ2
(

1

3
ν ′e−λ +

2

3r̃2ν ′

) (
ã′φ1

)2
+

4ζ2

3r̃2ν ′
eλãφ1j̃φ1. (5.107)

Moreover, the function m2 can be derived by

m̃2 =
r̃

ζeλ

[
−h2 +

2ζ2

3
e−λ

(
ã′φ1

)2
]
. (5.108)

These normalized equations are very useful in numerical calculations.

5.2.2 Solutions for stellar configurations

The functions m0, δP
(2)
0 and h0

First, we deal with the metric functions m0, δP
(2)
0 and h0. Outside the star, the differential

equations (5.102) and (5.103) can easily be integrated. The exterior solution which satisfies

the boundary conditions at infinity is given by

m0 =
3µ2

8M4r

(
r2 −M2

)
+

3µ2

8M5

(
r2 −Mr −M2

)
ln

(
1− 2M

r

)
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Figure 5.7: The function δP̃
(2)
0 (r̃) under the boundary condition δP

(2)
0 (0) = 0. We adopted stellar

models with M/R = 0.2.
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+
3µ2

32M6
r2 (r − 2M)

[
ln

(
1− 2M

r

)]2

+ cm, (5.109)

h0 = − 3µ2

8M3

4r −M

r (r − 2M)
+

3µ2

8M5

(r −M)(r − 3M)

r − 2M
ln

(
1− 2M

r

)

+
3µ2

32M6
r2

[
ln

(
1− 2M

r

)]2

− cm

r − 2M
+

3µ2

8M4
, (5.110)

where cm is a constant corresponding to mass shift.

Interior solutions can be obtained by numerical integration. Figures 5.6, 5.7 and 5.8 display

the numerical results of the functions m̃0, δP̃
(2)
0 and h0, respectively, in the case that δP

(2)
0

vanishes at the stellar center. In this case, the mass shift cm is written as

c̃m = m̃0in − m̃0out +
r̃e−λ

2ζ
Aλξ̃

(2)
0 , (5.111)

where m̃0out is given by

m̃0out = ζ

{
3µ̃2

8ζ4m̃(r̃s)4r̃s

(
r̃2
s − ζ2m̃(r̃s)

2
)

+
3µ̃2

8ζ5m̃(r̃s)5

(
r̃2
s − ζm̃(r̃s)r̃s − ζ2m̃(r̃s)

2
)

ln

(
1− 2ζm̃(r̃s)

r̃s

)

+
3µ̃2

32ζ6m̃(r̃s)6
r̃2
s (r̃s − 2ζm̃(r̃s))

[
ln

(
1− 2ζm̃(r̃s)

r̃s

)]2


 , (5.112)

and Aλ is defined as

Aλ = (λ′in − λ′ext)|ξ(0) . (5.113)

Furthermore, in Figs. 5.9, 5.10 and 5.11, we show the functions m̃0, δP̃
(2)
0 and h0 which

are obtained under a different condition, that is, the condition that the mass shift equals to

zero. The interior solution can now be written as

m̃0 = c0m̃0H + m̃0P, (5.114)

δP̃
(2)
0 = c0δP̃

(2)
0H + δP̃

(2)
0P . (5.115)

Associated with these expressions, we can write down ξ̃
(2)
0 as

ξ̃
(2)
0 = c0ξ̃

(2)
0H + ξ̃

(2)
0P , (5.116)

where

ξ̃
(2)
0H = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
0H

∣∣∣∣∣∣
ξ(0)

, (5.117)

ξ̃
(2)
0P = −

(
1

ρ̃ + ζp̃

dp̃

dr̃

)−1

δP̃
(2)
0P

∣∣∣∣∣∣
ξ(0)

. (5.118)
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Figure 5.9: The function m̃0(r̃) in the case of cm = 0. We adopted stellar models with M/R = 0.2.

Using these quantities, c0 is given by

c0 =
m̃0out − m̃0P(r̃s)− r̃se−λ

2ζ
Aλξ̃

(2)
0P

m̃0H(r̃s) + r̃se−λ

2ζ
Aλξ̃

(2)
0H

. (5.119)

Using this expression, we can find numerical solutions.

The functions v2, h2, k2, m2 and δP
(2)
2

Next, we consider the functions v2, h2, k2, m2 and δP
(2)
2 .

First, in order to integrate Eqs. (5.106) and (5.107) outside the star, it is useful to introduce

the variable z

z =
r

M
− 1 =

r̃

ζm̃(r̃s)
− 1 (5.120)

as in the rotational case. Using this variable, we derive the differential equations

dv2

dz
= − 1

(z + 1)(z − 1)
h2 +

2z

3(z + 1)2

1

m̃(r̃s)2

(
dãφ1

dz

)2

+
4

3(z + 1)2

1

m̃(r̃s)2
ãφ1

dãφ1

dz
,(5.121)

dh2

dz
= −2v2 − 2z

z2 − 1
h2 +

4

3(z + 1)2

1

m̃(r̃s)2
ã2

φ1

+
4z

3(z + 1)2

1

m̃(r̃s)2
ãφ1

dãφ1

dz
+

z2 + 1

3(z + 1)2

1

m̃(r̃s)2

(
dãφ1

dz

)2

. (5.122)

The exterior solution which vanishes at infinity can be obtained in the forms

v2 =
2c1√
z2 − 1

Q1
2(z)− 3µ2

4M4
√

z2 − 1
P 1

2 (z) +
9µ2

4M4
z +

3µ2

8M4

7z2 − 4

z2 − 1
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Figure 5.10: The function δP̃
(2)
0 (r̃) in the case of cm = 0. We adopted stellar models with M/R = 0.2.
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Figure 5.11: The function h0(r̃) in the case of cm = 0. We adopted stellar models with M/R = 0.2.
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+
3µ2

16M4

z (11z2 − 7)

z2 − 1
ln

z − 1

z + 1
+

3µ2

16M4

(
2z2 + 1

) (
ln

z − 1

z + 1

)2

, (5.123)

h2 = c1Q
2
2(z)− 3µ2

8M4
P 2

2 (z)− 3µ2

16M4

[
6z2 + 3z − 6− 4z2 + 2z

z2 − 1

]

− 3µ2

32M4

[
3z2 − 8z − 3− 8

z2 − 1

]
ln

z − 1

z + 1
+

3µ2

16M4

(
z2 − 1

) (
ln

z − 1

z + 1

)2

, (5.124)

where c1 is a constant of integration, and P 1
2 , Q1

2, P 2
2 and Q2

2 are the associated Legendre

functions. In the normalized forms, we have

v2 =
2c1√
z2 − 1

Q1
2(z)− 3µ̃2

4ζ2m̃4
s

√
z2 − 1

P 1
2 (z) +

9µ̃2

4ζ2m̃4
s

z +
3µ̃2

8ζ2m̃4
s

7z2 − 4

z2 − 1

+
3µ̃2

16ζ2m̃4
s

z (11z2 − 7)

z2 − 1
ln

z − 1

z + 1
+

3µ̃2

16ζ2m̃4
s

(
2z2 + 1

) (
ln

z − 1

z + 1

)2

, (5.125)

h2 = c1Q
2
2(z)− 3µ̃2

8ζ2m̃4
s

P 2
2 (z)− 3µ̃2

16ζ2m̃4
s

[
6z2 + 3z − 6− 4z2 + 2z

z2 − 1

]

− 3µ̃2

32ζ2m̃4
s

[
3z2 − 8z − 3− 8

z2 − 1

]
ln

z − 1

z + 1
+

3µ̃2

16ζ2m̃4
s

(
z2 − 1

) (
ln

z − 1

z + 1

)2

.(5.126)

Let us now rewrite the exterior solution as

v2 = c1u1(z) + u2(z), (5.127)

h2 = c1w1(z) + w2(z). (5.128)

An interior solution can also be written as

v2 = c2v2 H + v2 P, (5.129)

h2 = c2h2 H + h2 P, (5.130)

where c2 is a constant. The junction conditions determine the constants c1 and c2 as

c1 =
v2 Ph2 H − v2 Hh2 P − u2h2 H + w2v2 H

h2 Hu1 − v2 Hw1

, (5.131)

c2 =
−v2 Pw1 + h2 Pu1 + u2w1 − u1w2

−h2 Hu1 + v2 Hw1

, (5.132)

where we use the surface values in these equations.

Figures 5.12 and 5.13 display the numerical results of these metric functions. Furthermore,

we show the other functions k2, m̃2 and δP̃
(2)
2 derived by using algebraic relations in Figs. 5.14,

5.15 and 5.16.



5.2. GENERAL RELATIVISTIC STARS 95

�

��� ���

��� ���

��� ���

��� ���

���	�

���
���

���
���

� ��� � � ��� � � ��� � 


v� 2

r~ / r~s

n=0.0
n=0.5
n=1.0
n=1.5

Figure 5.12: The metric function v2(r̃), which is obtained for polytropic stellar models with M/R =

0.2.

�

�����

��� �

��� �

��� �

��� �

��� 	

��� 


��� �

��� �

�

� � � � � �

h 2
 / 

ζ

r~ / r~s

n=0.0
n=0.5
n=1.0
n=1.5

Figure 5.13: The metric function h2(r̃), which is obtained for polytropic stellar models with M/R =

0.2.
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Figure 5.14: The metric function k2(r̃), which is obtained for polytropic stellar models with M/R =

0.2.
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Figure 5.15: The metric function m̃2(r̃), which is obtained for polytropic stellar models with M/R =

0.2.
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Figure 5.16: The metric function δP̃
(2)
2 (r̃), which is obtained for polytropic stellar models with

M/R = 0.2.

5.2.3 Ellipticity

After deriving the solutions for the metric functions, we can calculate the values of ellipticity

using the definition

ellipticity = −3

2


ξ

(2)
2

rs

+ k2(rs)


 . (5.133)

Figure 5.17 displays dependence of ellipticity on the general relativistic factor M/R. From

this figure, we can find that the values of ellipticity slightly become large with the general

relativistic factor M/R in each polytropic stellar model for fixed µ2/(M2R2).

Finally, we show the comparison between flattening by rotation and that by a dipole

magnetic field in Fig. 5.18. This figure displays the critical line on which εΩ = εB and the two

regions divided by this line in B-Ω space, where B denotes the typical magnetic field strength

defined by B = µ/R3. We plotted only one representative line of n = 1. However, we can also

derive very close results for the other indices. In the region I, the magnetic effect dominates

the rotational effect, whereas in the region II vice versa. From this figure, we see that objects

having magnetic field strength B ∼ 1014–1015G and a period T ∼ 1 s suc