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Abstract

We discuss the gravitational effects on Dirac particles which propagate in Kerr geometry.
In particular, we provide a simple framework for studying the gravitational effects on a
Dirac particle with infinitesimal mass. We perform our calculations in the slowly rotating,
weak field limit. The two-component Weyl equations with the corrections arising from
the infinitesimal mass and the gravitational field are obtained from the covariant Dirac
equation. Our approach is also applied to neutrino oscillations in the presence of the

gravitational field.
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Chapter 1

Introduction

The discoveries of a quantum concept and a new space-time concept are great achievements
in physics in this century. The former concept was systematized as a theory, together
with quantum mechanics, while the latter was first introduced by Einstein in the form of
special relativity in 1905, and the space-time theory involving gravity, general relativity,
was completed in 1916. On the other hand, one of the great physical problems in this
century is to unify the theories of the forces of nature. The various physical phenomena we
know can be explained by these theories. The electromagnetic interaction and the weak
interaction have been unified with the Weinberg-Salam theory [1], [2]. Moreover, attempts
to incorporate the strong interaction into a wider theory seem to be successful with the
so-called Grand Unified Theories (GUTs) [3]. These interactions except the gravitational
interaction are described in terms of the quantum theory. Although the gravitational
interaction was the first force to be investigated classically, it was the most difficult one
to be quantized. Many physicists have pursued the quantization of the gravitational field
with intense vigor over the past half of a century, and a considerable number of results are
gained. However, a satisfactory quantum theory of gravity is not yet completed. Hence
gravity appears to stand apart from the other three forces.

Next, we shall see what circumstances the quantum theory of gravity becomes impor-
tant under. Since the gravitational force is weaker than the other three forces by a factor
of about 10%°, the gravitational interaction can be ignored in ordinary particle acceler-
ator experiments. However, at an energy scale of about 10 GeV, the gravitational in-
teraction becomes dominant. To see this, let us recall that the Newtonian gravitational

force is given by F' = Gmyms/r?, where the gravitational constant G is approximately
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(1.2 x 10Y GeV) ™ in the system of natural units (5 = ¢ = 1). Note that the mass of a
particle can be regarded as the energy divided by 2. Therefore, if the particle has the so-
called Planck energy, 10! GeV, then the gravitational force will be comparable to the other
forces. The Compton wavelength corresponding to this energy scale, 1072° m, is called the
Planck length. These are, of course, far beyond the range of our instruments. However, at
the singularity at the center of a black hole, or at the instant of the Big Bang, the quantum
corrections will become important. Do we always have to consider these extreme situa-
tions to the problems in which gravity cannot be separated from the quantum theory? In
other words, do the physical phenomena in which gravitational effects and quantum effects
appear simultaneously occur only under these extreme situations? The answer is “No”.
There also exist these physical phenomena under ordinary situations, where there seems
to be no need to consider the quantization of the gravitational field. One of the represen-
tative examples is the so-called Colella-Overhauser-Werner (COW) experiment [4] using a
neutron interferometer (for a review see [5]). This kind of experiment has become possible
by the grace of recent progress in technology, and at the same time the other experiments
which have been described as thought experiments have also become realizable.

The COW experiment was the first experiment that measures the gravitational effects
on a wave function. The gravitational effects on this elegant experiment were often com-
pared with the Aharonov-Bohm (AB) effect [6]. Aharonov and Bohm suggested that even
if electromagnetic fields vanish, there exist the effects of the electromagnetic potentials on
quantum interference. Hence this effect is called AB effect. On the other hand, the COW
experiment showed the effect of the gravitational potential of Earth on quantum interfer-
ence. This effect and the detectability were first suggested by Overhauser and Colella [7],
and the effect was verified by Colella, Overhauser and Werner [4] using a neutron interfer-
ometer. Although their analysis, which was based on inserting the Newtonian gravitational
potential into the Schrodinger equation, was so simple, this experiment was conceptually
very important in the history of the quantum theory. After the COW experiment had been
done, another effect arising from the rotation of Earth was discussed by Page [8]. The ex-
perimental verification of this effect was provided by Werner, Staudenmann and Colella [9].
This theoretical expression was also derived by various authors using various methods [10],
[11], [12]. Furthermore, the general relativistic effects including these effects were derived
by Kuroiwa, Kasai and Futamase [13] starting with the covariant Klein-Gordon equation,

which describes a spinless particle. However, a neutron has spin-1/2 and is described by



the Dirac equation. Under this consideration, Wajima, Kasai and Futamase [14] have de-
rived the general relativistic effects including the spin effects by using the covariant Dirac
equation.

On the other hand, gravitational effects on another physical phenomenon, neutrino os-
cillations, have been much discussed recently [15], [16], [17], [18], [19], [20], [21]. The
COW experiment and this have common ground that the gravitational effects appear in
the quantum interference. However, there are some differences between the two. In the
former case, the gravitational effects on a single mass eigenstate are investigated, and the
spatial spread of the wave function plays a significant role. On the other hand, in the
latter case, the existence of the different mass eigenstates and the linear superposition are
important. Moreover, it is another important difference whether the related particle is
non-relativistic or ultra-relativistic.

It seems that the controversy about the gravitationally induced neutrino oscillation
phases arises. Ahluwalia and Burgard [15] state that the phases amount to approximately
20 % of the kinematic counterparts in the vicinity of a neutron star. Nevertheless, the
definition of the neutrino energy and the derivation of the phases were not clear in the
original paper [15]. The other groups [17], [18], [20], [21] have obtained similar results for
a radially propagating neutrino; the results seem to be different from that in Ref. [15].
However, the authors of Ref. [17] assume that the different mass eigenstates are produced
at different times. This assumption seems to be questionable because the relative phase
between the two mass eigenstates initially becomes arbitrary. These papers except Ref.
[20] are based on the previous work [22], in which the classical action is taken as a quan-
tum phase. Therefore, the effects arising from the spin of the particle are not considered in
these papers. On the other hand, the authors of Ref. [20] use the covariant Dirac equation,
but they also calculate the classical action along the particle trajectory in the end.

In this situation, we shall provide a simple framework different from the previous work
for studying the gravitational effects on a Dirac particle with infinitesimal mass such as
a neutrino. (The experimental confirmation which shows that neutrinos have nonzero
mass is not yet obtained. However, the recent experimental report [23] seems to suggest
neutrinos to be massive.) In particular, we consider the propagation of the particle in
the Kerr geometry, by which the external field of a rotating star can be described. We
do not merely calculate the classical action along the particle trajectory, but start from

the covariant Dirac equation. We shall perform our calculations in the slowly rotating,



weak field limit, and derive the two-component Weyl equations with the corrections arising
from the small mass and the gravitational field. Furthermore, we shall discuss the neutrino
oscillations in the presence of the gravitational field.

The organization of this thesis is as follows. In Chapter 2, we summarize the covariant
formalism of general fields and derive the covariant Dirac equation from the viewpoint
of the strong Principle of Equivalence. In Chapter 3, we consider the gravitational field
arising from a rotating object, and specify the metric and the coordinates in terms of the
(34+1) formalism. In the last part of this chapter, we discuss the covariant Dirac equation
in this field, and derive an equation of the Schrodinger-type. In Chapter 4, following the
discussion of Ref. [14], we derive the Schrodinger equation with general relativistic cor-
rections for a non-relativistic particle, and summarize the general relativistic effects on a
quantum interferometer. In Chapter 5, we derive the Weyl equations with general rela-
tivistic corrections for a ultra-relativistic particle, and discuss the gravitationally induced
neutrino oscillation phases. Finally, we shall give a summary and conclusion in Chapter 6.

We use the following notation; Latin indices 7, j, k, and so on generally run over three
spatial coordinate labels 1, 2, 3 or z, y, z, Latin indices a, b, ¢, and so on over the four
space-time inertial coordinate labels 0, 1, 2, 3 or ¢, x, y, z, and Greek indices «, (3, v, and
so on over the four coordinate labels in a general coordinate system. Furthermore, we use

the metric signature (4, —, —, —).



Chapter 2
Covariant formalism

In this chapter, we review the covariant formalism of general fields including spinors. We
shall derive the covariant Dirac equation in the last part of this chapter. (See also Ref.
24], [25), [26].

In the case of tensor equations, we replace all Lorentz tensors T with objects T}
which behave like tensors under general coordinate transformations to derive the general-
relativistic equations from the special-relativistic ones. Moreover, we replace all derivatives
0, with covariant derivatives V,, and replace 7,, with g,3. The equations are then generally
covariant. Thus we can make equations describing scalar fields or tensor fields generally
covariant forms. This method actually works only for objects which behave like tensors
under Lorentz transformations, and not for spinor fields describing spin-1/2 particles. How
then can we incorporate spinors into general relativity? The clue to the question lies in a
fact that spinors are well defined in the Minkowski space-time.

We now consider locally inertial coordinate systems at every space-time point, and define
general fields involving spinors in these coordinate systems. By relating the locally inertial
coordinate systems to general non-inertial coordinate systems, we shall extend the theories
of the fields into the curved space-time. From the viewpoint of the strong Principle of
Equivalence, which states that all the laws of nature in a locally inertial coordinate system
take the same form as in unaccelerated Cartesian coordinate systems in the absence of

gravitation, this approach is reasonable.



2.1 Covariant differentiation

To begin with, let us introduce the so-called tetrad, or vierbein formalism. We erect a set
of locally inertial coordinates £, * at every space-time point X. The metric in any general

non-inertial coordinate system is then

Gas(2) = € (2) V(@) N, (2.1)

where o€ 2(2)
(@) (x) = 96x ) ) 29
= (500) 22)
If we change the general non-inertial coordinates from z® to 2/*, then e(“)a changes according

to

(2.3)

Thus, the tetrad e(®), forms four covariant vector fields.
Given any contravariant vector field A%(z), we can use the tetrad to refer its components

to the locally inertial coordinate system £ * at x:
A = el@) A~ (2.4)

which behaves like scalars under general coordinate transformations. We can do the same

with general tensor fields:

Ai = e Aa, 2.5
B, = €@ e(b)ﬁ B, etc, (2.6)
where
o — (0% b
@) =Nab g B el )ﬁ (2.7)

Furthermore, it is easy to show that the tetrad satisfies the relations

ef € = 5% (2.8)
€(a) e® = 0 (2.9)

We have shown how to derive objects which behave like scalars under general coordinate

transformations. Since the Principle of Equivalence requires that special relativity should
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apply in locally inertial frames, the scalar field components Ae, B“b, and so on, which are
defined in an arbitrarily chosen locally inertial coordinate system, must behave like vectors

or tensors with respect to Lorentz transformations A% (z) at x:

A%(z) — A% (z) A(x), (2.10)
B“b(x) — A (2) Abd(x) Bcd(x), ete, (2.11)

where
Nab A (2)A 4 () = Tea- (2.12)

Similarly, the tetrad e(®), changes according to

e (z) — A% (z) e® (). (2.13)

«

In general, an arbitrary field &m defined in a locally inertial coordinate system will change

in the following way:

V(@) = 32 [U (A(2))], ), (2.14)

n

where U (A(z)) is a matrix representation of the Lorentz group. For example, if ¢ is a

covariant vector A,, the U (A(x)) is simply
U (A2))],) = AL (@), (2.15)
whereas for a contravariant tensor T“b,
U (@) = A% () Ay(2). (2.16)

An ordinary derivative is, of course, a coordinate vector in the sense that it transforms

as a vector under a general coordinate transformation x — x':

0 o 0’ 0

— ) 2.17
ore - or'e  Ox'* OxP ( )
We can also use the tetrad to form a coordinate scalar derivative:
. 0
e(a) @ . (218)

This coordinate scalar derivative corresponds to the ordinary derivative defined in locally

inertial coordinate systems. Although this is actually a coordinate scalar, it does not have
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simple transformation properties under position-dependent Lorentz transformations when
it acts on general fields. Given a general field ), we have the following transformation rule
under the Lorentz transformation rule (2.14):

(1) 5 D) = AN egfi(a) o {U (M) ()}
o - 0

2 |0 M) 200 +{ 5t (A )]
(2.19)

I
-
o
—
8
~—
Y
=
g
—~

In order to extend the theory in flat space-time into curved space-time, what we have to
do is to make an operator D, which under a position-dependent Lorentz transformation

A% (z), satisfies the transformation rule
Do(x) — AS(2)U (A(x)) Dytp(). (2.20)

Thus Dalﬁ behaves like a tensor with one extra covariant rank under position-dependent
Lorentz transformations. By replacing 8(11; in field equations in flat space-time with Dazﬁ,
we can obtain the field equations which are independent of the choice of locally inertial
coordinate systems.

Considering Eq. (2.19), we can construct a coordinate-scalar Lorentz-vector derivative
f)a of the form

5 o
Da = G(a) l@xa — Fa] s (221)
where I, is a matrix satisfying the Lorentz transformation rule
0
Lo(z) — U(A(x)) To(z) U (A(x)) + [WU (A(m))] Ut (A()). (2.22)

In fact, we can obtain the transformation rule (2.20) under this definition.

The coordinate-scalar Lorentz-vector derivative D, is a covariant derivative with respect
to the position-dependent Lorentz transformations. The introduction of this derivative
allows us to extend the discussion of general fields involving spinors into curved space-

time. Therefore, we can obtain the general field equations in curved space-time.

2.2 Connection

In this section, we shall investigate the structure of the connection I',, introduced in the

last section.
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For the purpose of this, it will be sufficient to consider infinitesimal Lorentz transforma-

tions close to the identity:
Aab(x) = 5ab + (.Uab(x), ‘wab| <K 1. (223)

Since the Lorentz transformation A%(x) is restricted by the condition (2.12), to first order
in w, we have
Wap(x) = —wpa (), (2.24)

where the indices on w are lowered or raised with 1. Under this transformation, the matrix

representation D (A(x)) must be written as
1
U(l+w(x)=1+ §w“b(cc) Tab, (2.25)

where o, are a set of constant matrices, which can always be chosen as an antisymmetric
tensor:
Oagb — —Opq- (226)

For example, if we consider a covariant vector A,, then we have
(Tabo” = Macdy” — e, (2.27)
and for a contravariant tensor 7%, we have
(0ab) sy = 0,5 Mbed®s = 6,° Nacd®s + 6,5 Mg, — 6, Mg ", (2.28)
Furthermore, the matrices o, satisfy the commutation relations:
[Gabs Oed] = NebTad = NeaTbd + NabTca — NdaTch (2.29)
with square brackets denoting the usual commutator
[A,B] = AB — BA. (2.30)

The details are summarized in Appendix A.
Using the transformation rule (2.22), we see that under the infinitesimal Lorentz trans-

formation (2.23), the connection I', transforms according to

Fo(z) — To(z) + ; w(2) [0, Talx)] + ; Uabaiaw“b(x). (2.31)

11



We now assume that the connection I',, has the form:
1
I, (7) = 3 C? () oup, (2.32)

where the Latin indices on C' are, of course, lowered or raised with 7, whereas the Greek
index with g. In this case, C%_(z) is antisymmetric in a and b. Using the transformation

rule (2.31) and the commutation relations (2.29), we obtain the following transformation
rule of C%_(z):

c® () — O, (z) 4w (2)C? (2) + . (2)C, (x) + @ (). (2.33)

oz w

Until now, we have investigated the transformation property of the connection I',,. Next,
we turn our attention to the relation between the connection I', and the tetrad e,)q.

The coordinate-scalar Lorentz-vector derivative D, is a covariant derivative with respect
to local Lorentz transformations. This derivative Da is different from the covariant deriva-
tive V, used in tensor analysis. Nevertheless, there must be some relation between the
two. In order to investigate the relation, we consider the case in which the derivative D,

acts on the tetrad e(,),. Using Eq. (2.27), we have

D a 1 e C
D, e = e(agL [8$“6(b)a — 5 C f“ [Uef]b e(c)a]
K 0 cd
=€) | gpu®a ~ e C7y E@al - (2.34)

However, we have not considered the generally covariant index . The tetrad e(,), behaves
like not only a Lorentz-vector, but also a coordinate-vector. Hence we have to consider the
property as a coordinate-vector as well. We know the covariant derivative of a coordinate

covariant vector. We now introduce a total covariant derivative D, defined as

~ 0 5
Dy erya = €45} [We(b)a — e O, €@y — My G(b)u] ; (2.35)

where I',  is the Christoffel symbol. We can do the same with the tetrad el@):

N 9 c v
D, e = €a) [axue(b)a — Neq C” i e T e(b)] : (2.36)

By the way, the covariant derivative of the metric g,g vanishes:
V., gop = 0. (2.37)
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Hence, from Eq. (2.1) we find

0 = Vﬂgag

= e(aL ﬁa gaﬁ

= G(QL Kﬁae(b) ) ewys + el )a (D e(b)g)} . (2.38)

The simplest solution of this equation is

D, e, =D, ey = 0. (2.39)

«

From now on, we regard this solution as a fundamental condition. Using this condition,
we can find the relation between the connection I'y, and the tetrad e(q),. From Egs. (2.35)
and (2.36), we obtain

C®, (x) = —n*n® 6(c) Va € (2.40)

Therefore, the connection I',, is given by
1
Lo(z) = —3 g, €w) Va €y (2.41)

Note that under the infinitesimal Lorentz transformations (2.23), the tetrad e(q), transforms
according to
6(a)oz(x) - e(a)a<x> + wab(x) e(b)oz('I:)’ (242)

and, hence, we have

) () Vaewn(r) = €, (2) Va epn(r) +w, () e (z) Vo epa(2)

(2 e (1) Ve eion(x) = 5 na(a). (243)

Therefore, we see that C%_(z) given by Eq. (2.40) satisfies the transformation rule (2.33).

2.3 Dirac equation in curved space-time

In this section, we shall use the covariant derivative D, discussed in the previous sections
to derive the Dirac equation in curved space-time.
Let us consider the Dirac equation in locally inertial coordinates systems. This equation

takes the well-known form with respect to locally inertial coordinates £ *:

[z’hy(‘” — mc] T (€) =0, (2.44)

o€
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where the Dirac matrices 7(*) satisfy the relations
(@A) 4 A ) (@) — o pab (2.45)

and ¥ is the Dirac spinor defined in locally inertial coordinate systems.
In order to extend Eq. (2.44) into curved space-time, we replace the derivative 9/0¢

with covariant derivative D,:

0
[’ihv(a)e(a? (E)xa — I‘a> — mc} U (z)=0, (2.46)
It is convenient to introduce a generally covariant derivative D, defined as
0
D, = - T, 247
e (2.47)

and generally covariant Dirac matrices v* defined as
N = ,y(a)e(a?. (2.48)
Using these definitions, we can derive the Dirac equation in the generally covariant form
[ihy* Dy — me] U (x) = 0. (2.49)

Furthermore, we find that the covariant Dirac matrices v satisfy the relations

1" + 477 =24 (2.50)
In the case of spinors, we have
a 1 a
o= (7, 7®)]. (2.51)

(See Appendix A.) Therefore, from Eq. (2.41) we obtain the so-called spin connection

1

r, = -3 [’V(“),’y(b)] Guw €(a) Ve €4 - (2.52)

Finally, let us confirm that the covariant Dirac equation derived above gives the natural
extension of the Klein-Gordon equation.
We now multiply Eq. (2.49) by the operator [ih’yﬁ Dgs + mc} on the left. Then we have

[179° Do Dy + m?c?| W = 0. (2.53)

14



Using a generally covariant total derivative D,:
D, = €9 D,, (2.54)
we can write
Y* Doy’ Ds¥

=7 [(Dar®) Ds¥ +7° (DaD3V))|
= VaVﬁDaDﬂ\D
- (gaﬁ + ; [WQ,VBD Do Dg¥

1
- (gaﬁDaDB + 5[] [Da,Dﬁ]) v, (2.55)

where we have used the following relation:

Doy’ =+ "Dy e,y = 0. (2.56)
Moreover, we can derive
1 1
il PN — _
1 %] Pu D5 = — 3R, (2.57)

where R is the Ricci scalar. (See Appendix B for the details of the calculations.) Therefore,

we obtain the following equation in curved space-time:
1
[thaﬁpaDﬁ +m?e® — ZhQR ¥ =0. (2.58)

This shows the non-minimally coupled generalization of the Klein-Gordon equation. Fur-
thermore, it is shown that this equation for a massless particle is invariant under conformal
transformations. (See Appendix C.)

In the case of a scalar field ®, however, we have

[1W2g*"Va Vs + m?c?| & =0, (2.59)

b

because ¢ vanish. Nevertheless, if we demand that the equation for a massless particle

becomes conformally invariant, then we derive the following Klein-Gordon equation:
1
{fﬂgaﬁvavﬁ _ 67123] b — 0. (2.60)
(See Appendix C for the details.)
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2.4 Another approach

We have obtained the covariant Dirac equation in the last section. In this section, however,
we provide another approach. Using this approach, we can derive the covariant Dirac
equation again.

In this approach, natural generalization is applied to spinors as well as tensors. The

spinors are connected with space-time through the relations
7 + 4P =24 (2.61)
These relations are the natural generalization of the relations
,y(a)y(b) + ’Y(b)W(a) -9 nab' (2.62)

Moreover, we have to generalize the covariant differentiation in tensor analysis. For the
sake of the generalization, it is necessary to introduce four 4 x 4 matrices I'y,, which are
called a spin connection. Using this quantity, we can define the total generally covariant

derivative of the covariant Dirac matrices 7, as

0
Das = 5 276 — 50 — Lavs + 80w (2.63)

The spin connection I',, is uniquely determined up to an additive multiple of the unit matrix
by
Doﬂ/ﬁ =0. (264)

This condition corresponds to the identity
Vaguw = 0. (2.65)
We now introduce the constant Dirac matrices v(* defined as
A(@) = gl@) yo (2.66)

The Dirac matrices *), of course, satisfy the relations (2.62). Using this quantity, from
Egs. (2.63) and (2.64) we find

(6) (b)

B—Fav(b)e ﬂ—l—e()

Vo) Vae Y %) Ta = 0. (2.67)
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Contracting this with e(a)ﬁ , we derive

b
[Faa V(a)} = V) e(a)ﬁ Vo e )@- (2.68)
From this, we can derive
1 a 12
Ta=—¢ 7,9 g eff Vace) + aal, (2.69)

where a, is arbitrary and I is the unit matrix. (See Appendix D for the derivation of
Eq. (2.69).) In order to derive Eq. (2.69), we have utilized the fact that the following 16

matrices are linearly independent:

4 = {I, V(@) s Tab s V(5)V(a) » 7(5)}, (2.70)
where g, are given by .
~ . i
Oab = 210qy = 3 [’Y(a)ﬁ(b)] ) (2.71)
and (s is defined as
Y5 =71 = =i Y0077 (2.72)

(See Appendix E for the proof of the linear independence.)
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Chapter 3

Covariant Dirac equation in Kerr

geometry

We now consider the gravitational field arising from a rotating object. We assume that
the external field of this object is described by the Kerr metric. In particular, we restrict
ourselves to the slowly rotating, weak field limit, and specify the metric and the coordi-
nates in terms of the (3+1) formalism. Furthermore, we shall derive an equation of the

Schrodinger-type from the covariant Dirac equation (2.49) in the last part of this chapter.

3.1 Space-time

To start, let us consider the following line element called the Boyer-Lindquist form:

1 dma’
ds? = — (A — a*sin? 9) Adt? + L;T’ sin? fedtde
p p
_dezz_ 2d92—i 2 4 a2V Z A sin? 0 sin? 9do? 31
AdrT = p 7 (r +a ) a“Asin® 0| sin” 0d¢, (3.1)
A=7r?—2mr +d? (3.2)
p* =1+ a”cos? 0, (3.3)

where using the mass of the rotating object, M, m is defined as follows:

GM

)
C2

3
Il
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and a’ is the Kerr parameter expressed in terms of the mass M and angular momentum J:

i
Mec

a (3.5)

Assuming that the rotating object is a sphere of radius R with uniform density, we have

J 2
=L -2 R? 3.6
Mc  5c¢ wss (3.6)

a

where w, denotes the angular velocity of this object. (If the rotating object deviates from a
sphere, or has an inhomogeneous density distribution, then the numerical factor 2/5 might
be changed by a factor of order unity.)

The slow rotation approximation up to first order in a’, gives

2 4ma’
ds® = (1 — ’r/n) Adt* + L/a sin? fcdtdg
r r
2 -1
— (1 — 77) dr’® — rd6* — " sin® 0d¢. (3.7)
r
Next, we perform the two continuous coordinate transformations
, m
=r(l4+— 3.8
: T( + 27’) ’ (3:8)
' = rsinfcos o,
y = rsinfsing, (3.9)
Z' = rcosd,
so that we obtain
1- 4
ds® = (%)262(#2 + % (@'dy" —y/dx") dt
(1 + %) r3 (1 + %)
m 4 12 /2 2
- (1 + 27“) (dx +dy”“ +dz ) : (3.10)

where a is defined as a = ca’. Moreover, the weak field limit up to O(1/c?), gives

¢2> e 4GMa

('dy" — y/dx’) dt

2 _ 2
dS = (C +2¢+2§ CZTS

¢ /' / /
- <1—262> (da:2+dy2+dz2), (3.11)
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where ¢ is the Newtonian gravitational potential, ¢ = —GM /r.

Furthermore, we consider the case that the observer is revolving around this object in
a plane perpendicular to the rotation axis. Assuming that the angular velocity of the
observer, w,, is constant, the relation between the observer’s rest frame (¢, x,y, z) and the

asymptotically static coordinate frame (¢,2’,1/, 2’) is

¥ = xcosw,t—ysinw,t,
"' = wsinw,t+ ycosw,t, (3.12)
Z = z

Performing this coordinate transformation, we obtain the following line element:

2 8GMR?
ﬁz-l§+ﬂ¢—W§@?+ﬁ)+2i—%Ewwgw&%cﬁ+yﬂ+22wg@?+fﬂdﬂ
& AGM R? &
— [wo — ngo a2 s (xdy — ydz)dt — [ 1 — 20—2 (d:c2 + dy* + dz2> ,

(3.13)

where we have used Eq. (3.6). Using this metric, we can calculate the Christoffel symbol.

The results are shown in Appendix F.

3.2 (341) decomposition

The covariant Dirac equation (2.49) has beautiful space-time symmetry. However, it is
sometimes convenient to break the symmetrical form of this equation. In particular, this
will be useful for investigating the time evolution of a certain physical quantity.

For the purpose of this, we use the (3+1) formalism. In the (3+1) formalism, the metric

Jag 1s split as follows:

goo = N?—;N'N’, (3.14)
Joi = —%’ij =-N; (3-15)
9i5 = —Vij (3.16)

where N is the lapse function, N’ is the shift vector, and ~;; is the spatial metric on the

3D hypersurface. We define 4/ as the inverse matrix of ~;;. Then g7 is also split as

1
900 = ﬁ, (317)
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%
01 N

Using the metric (3.13) derived in the last section, we can write the lapse function, the

shift vector and the spatial metric in the following way:

_ ¢ ¢
N_c<1+02+204 : (3.20)
) AGMR?
4G M R?
Ny = (A)O — st> Z, (322)
N* = 0, (3.23)
¢

3.3 Equation of Schrodinger-type

In this section, we shall derive an equation of the Schrodinger-type from the covariant Dirac

equation (2.49). For the purpose of this, we choose the tetrad

1 N?
6(0§L =C <N, —N> s (325)

e = (0,e45) (3.26)

where the spatial triad ) is defined as

Vij 6(;5 €(l)j = Okt (3.27)
From Egs. (3.20)—(3.24), we derive
¢
o 4G M R?
6(0)1 = (wo ~ 3% T Tea3 Ws | (3.29)



c2 e 5c2r3

ey = 0, (3.31)

4G M R?
6(0)2 = - <wo — Qw — w5> x, (3.30)

From this, we can also calculate the components of the spin connection. (See Appendix
G.)

Using our choice of the tetrad, the covariant Dirac matrices v* are written as

a 0 C

Hence the covariant Dirac equation (2.49) becomes
i ® 0 g _ (—7<0>CNZ' +AyUe ) S i) + i@y 4 me| w. (3.35)
N ot N ) o' : N
Multiplying this by ¥?¢N, we derive the equation of the Schrédinger-type:

0

v = HU
o

= (1" DeNeyj — NY) (B +ihT) +ihTo + 4O me N W, (3.36)
2
where p; is the momentum operator in flat space-time, and we have used (7(0)) =1/

If we adopt the standard representation as the constant Dirac matrices, then in flat space-

time, we have the well-known form

L 0 _ 2
ma\ll = (ca P+ me ﬂ) . (3.37)

On the other hand, if we use the Weyl representation, then for a massless particle we derive

the Weyl equations
ihaatw = dco - Py, (3.38)

where 1 denotes the two-component spinor. (See also Appendix G.)
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Chapter 4
Non-relativistic limit

In this chapter, we restrict ourselves to the non-relativistic limit, that is, the case that the
rest energy of the particle is much larger than the kinetic energy. In this case, it will be
sufficient to expand the Hamiltonian with respect to 1/c¢, because the ratio of the kinetic
energy to the rest energy, p/mec, is much smaller than unity.

We shall obtain the non-relativistic Hamiltonian by performing the Foldy-Wouthuysen-
Tani(FWT) [27], [28] transformation. Furthermore, we shall consider the gravitational
effects on quantum interferometry experiments, and investigate the gravitationally induced
phase difference in the quantum interferometer. Note that the quantum interferometry

experiments in the laboratory are done on Earth. Thus we can choose

= w. (4.1)

4.1 Non-relativistic Hamiltonian

Before performing the FWT transformation, we redefine the spinor and the Hamiltonian

in the following way:
\IJ, — 71/4\117 Hl — 71/4H’7_1/4, (42)

where v is the determinant of the spatial metric:

Since the invariant scalar product is

(W.9) = [Povid, (4.4
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the definition of the scalar product becomes the same as that in flat space-time under this
redefinition:
W) = [Fdda. (45)
It is sometimes convenient to adopt this definition of the scalar product.
We shall obtain the non-relativistic Hamiltonian by applying the FWT transformation
to the Hamiltonian H’. Performing this transformation, we can obtain the “even” operator

up to the order of our interest:

o = UH'U
= ( Pf)* ﬁ?_ ) +0(Cl4). (4.6)

The spinor is also divided into each of the two-component spinors:

@:(@), (4.7)
X

where ® and y is called the “large” and “small” component, respectively.

Next, we define the reduced Hamiltonian as follows:
H, = H, —mdc. (4.8)

Using this, we obtain the Schrodinger equation with general relativistic corrections for the

“large” component in the form

.0
/Lh@(p - H+®

P2
= [2m+m¢—w-(L+S)

1 (AGMR? pt 1 3 _

(M s = B gt on)

1 (3GM 6GM R?
§<2mT3LS+WS[TX(rxw)]>] (I), (49)

where S = ho /2 is the spin of the particle with the Pauli spin matrices o. The details
of the calculations are summarized in Appendix H. Furthermore, following the canonical
quantization procedure, we can obtain this non-relativistic Hamiltonian with S = 0, again.
(See Appendix I.)
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4.2 Gravitational effects on quantum interferometer

In this section, we consider the gravitational effects on quantum interferometer experiments,
and investigate the gravitationally induced phase difference in the quantum interferometer.
In particular, we shall derive the phase difference from the non-relativistic Hamiltonian

derived in the last section.

4.2.1 Quantum interferometer experiments

Before we discuss the gravitationally induced phase difference, we briefly review the prin-
ciple of the quantum interferometer.

The neutron interferometer is a typical one. The neutron interferometer is a extraordi-
nary piece of experimental equipment which allows us to check the basic ideas of quantum
mechanics in the laboratory. One of the most important attributes of the neutron interfer-
ometer is its conceptual simplicity. We here present a simplified model of the interferometer.

The simplest type of the interferometer is constructed from a single crystal. The schematic
drawing of the interferometer is shown in Fig. 4.1. The incident neutron beam is split into
two coherent sub-beams at point A. This split occurs as a result of Bragg scattering off the
atomic planes perpendicular to the face of the crystal. At points B and C, the sub-beams

are redirected. Finally, they interfere at point D.

4.2.2 Gravitationally induced phase difference

The non-relativistic Hamiltonian in Eq. (4.9) can be written as

H, = Hy+ Y AH;, (4.10)
k

where H, corresponds to the Hamiltonian for a non-relativistic particle which propagates

in flat space-time:
P’
Hy=—. 4.11
7 om ( )
If we use @ satisfying the Schrodinger equation

0
h—®) = Hy® 4.12
1 ot 0 00, ( )
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Figure 4.1: The neutron interferometer.

then the Schrodinger equation (4.9) is formally solved in the following way:
d = Pjexp (2 Zﬁk> , (4.13)
k

1 t
B = _ﬁ/ AHydt. (4.14)

Therefore, for the two neutron beams which follow the path ABD and the path ACD,
respectively, the phase difference at point D is

1
ABy = B (path ACD) — Bk (path ABD) = % %Adet- (4.15)

(See Fig. 4.1.) Let us evaluate the phase difference arising from each correction term in
order.

First, the gravitational potential term AH; = m¢ gives the phase shift

m2gAN |
ApBy = #sm 9, (4.16)

where ¢ is the acceleration of gravity, A is the area inside the interferometry loop; A is
given by A = dhsinf (See Fig. 4.1), A is the de Broglie wavelength, and 6 is the rotation

26



angle of the interferometer relative to the horizontal plane. The effect arising from this
phase shift was first predicted by Overhauser and Colella [7], and observed with a neutron
interferometer [4].

Next, we consider the term AHs; = —w - L, which represents the coupling between the

rotation of Earth and the angular momentum. The phase shift arising from this term is

2
ABy = me LA, (4.17)

where

1
Azgfrxdr (4.18)

is the area vector of the interferometry loop. This phase shift is caused by the inertial
force, and hence it dose not depend on gravity. The phase shift (4.17) was first derived
by Page [8] from the analogy with the Sagnac effect in optical interferometry, and later
by other authors using various methods [10], [11], [12]. The experimental verification was
provided in Ref. [9]. The Sagnac effect was observed also in atomic interferometry [29].

The third contribution arises from a general relativistic effect called Lense-Thirring effect:

AGM R*>m r X dr
ABy = ——=2om.,. f
& 5¢2h “ r3
2mr, R R

where R is the position vector of the interferometer from the center of Earth, and r, =
2G'M/c?* is the Schwarzschild radius of Earth. This is very similar to the Biot-Savart law
in the classical electromagnetism. The phase difference (4.19) was derived in Ref. [13].

We here find that the phase difference (4.19) depends on the orientation. In particular, we

have 1
Afs = E%Aﬁg on the equator (R1lw), (4.20)

whereas 5
Afs = —B%Aﬁg on the North Pole (R|jw). (4.21)

Therefore, if we carry out the experiments in different places on Earth, then we can separate
this effect from the Newtonian effect in principle. Until now, the Lense-Thirring effect has
not yet been observed in any interferometer experiments. This is of course due to the
smallness. (The phase shift arising from the Lense-Thirring effect is r,/R ~ 107 times
smaller than that due to the Sagnac effect.)
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The fourth correction term AH, = p*/(8m3c?) is a purely special relativistic correction
to the kinematic energy. Since this term is independent of the path, the phase difference
in the interferometer experiments is not produced.

The fifth correction term AHs = m¢?/(2¢?) can be regarded as the red shift correction
to the potential energy. The phase difference is

1r,
AfPs = —iﬁAﬁl. (4.22)

The sixth contribution AHg = 3p - ¢p/(2mc?) is the redshift correction to the kinetic

energy. The phase difference is

2
AP = ;) <)\/\C> Apy, (4.23)

where A\¢ is the Compton wavelength.

The last two corrections have same rotation angle dependence as AfJ;. Therefore, as far
as the experiments are done only in different rotation angles, these effects are not separable
from the Newtonian effect.

Finally, we consider the spin corrections. If the spin of the particle is constant along the
paths in the interferometer, then the term —w - .S does not produce the phase difference.
On the other hand, the remaining correction terms have typically the relative orders of
magnitude to the orbital angular momentum, A\/l, where A is the de Broglie wavelength
and [ is a typical size of the interferometer loop. For the neutron interferometers of the
first generation, the typical values are A ~ 10~8cm and [ ~ 10cm. Hence, for such interfer-
ometers, the effects of the spin corrections are generally 10~ times smaller than those of

the orbital angular momentum terms.
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Chapter 5
Ultra-relativistic limit

We now turn our attention to the ultra-relativistic limit, in which the rest energy of the
particle is much smaller than the kinetic energy. (We now consider the observer’s frame.)
In this limit, the energy the particle itself has is expanded with respect to ¢ because the
ratio of the rest energy to the kinetic energy, mc/p, is much smaller than unity, whereas
objects arising from the gravitational field are expanded with respect to 1/c. Hence we
cannot consider the expansion only with respect to c. We here consider the slowly rotating,
weak field approximation up to first orders in ¢/c? and w, respectively. On the other hand,
we expand the energy the particle itself has up to O (m?c*/pc).

By performing a unitary transformation similar to the FWT transformation, we shall
obtain the ultra-relativistic Hamiltonian. Furthermore, we shall consider the gravitational
effects on neutrino oscillations, and investigate the gravitationally induced neutrino oscil-

lation phases. For this analysis, we ignore the observer’s angular velocity w,,:
=0. (5.1)

This assumption is valid for a neutrino propagating from a distant star.

5.1 Ultra-relativistic Hamiltonian
To begin with, we redefine the spinor and the Hamiltonian as in Sec. 4.1:

V=~V H =AM Hy T (5.2)
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Next, we perform a unitary transformation to derive the ultra-relativistic Hamiltonian

which is the “even” operator up to the order of our interest. From this, we have

g = vgUl
3.6 2
B N AC e

The spinor is also divided into each of the two-component spinors:

T T
o () ”

where the subscript R and L denote the right-handed and the left-handed component,

respectively.
We restrict our attention to the left-handed component. Then the equation for the

left-handed component is given by
h 0 (B Hp
1N — =

ot " LrL

= _[cg.p+;(ca~p¢+¢60‘p)

(M @19+ s )
L Rt el (R R B
+;;m2c2{(%w-(L+S>+%S- rx (r ><w>1>p12
27 P (4051“7?332 (@1 8)+ M s w)]) _—
pl2 (%w.(L+S)+E€\fﬁS_ [r x (r xw)])H (I

(5.5)

The details of the calculations are given in Appendix J. It is sometimes convenient to

rewrite the Hamiltonian in Eq. (5.5) in the following form:

1 1 GM 1 oD
H;, = —[{1+2<¢+p-¢p2+23L-SQ>}cp 7p
C p r p p
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_ (L
c? 513 w-(L+8)+ 51

1<4GMR2 GGWS-[TX('PXUJ)]>

11 1 1 1
14+ —= — D+ D OD—D ID—
+{ + 37 <¢ de)p +T)2p ¢p—P ¢pr

23 o =
+21GML-S—2GML-S12>}mC 7P
b

p* e rd 2 P
+;1m262{<Ww~(L+S)+(ﬂ;\fﬁS-[rx ('r><c.u)]>p12
— 20-]0.21) <4G;\7iR2w (L+8S)+ (ﬁ;\ffﬂs- [r x (r x w)]) Up;p
+pl2(%w-(L—FS)—l—%S-[TX(rxw)])H.

(5.6)

From this, we find how the spin-orbit coupling, the coupling between the total angular
momentum and the rotation of the gravitational source, or the coupling between the spin
and the rotation is coupled to the infinitesimal mass. In radial propagation, the orbital
angular momentum vanishes. Therefore, in this case the spin effects coupled only to the
rotation appear. If we set w = 0, then there is no spin effect in radial propagation. This

consequence is consistent with the previous work [26].

5.2 Gravitational effects on neutrino oscillations

In this section, we consider the gravitational effects on neutrino oscillations, and investi-
gate the gravitationally induced neutrino oscillation phases. First, we shall reconsider the
neutrino oscillations in flat space-time. Second, we shall discuss the gravitational effects,

and derive the phase shift directly from the ultra-relativistic Hamiltonian.

5.2.1 Neutrino oscillations in flat space-time

Now, we briefly review neutrino oscillations in flat space-time. (See, e.g., Refs. [30], [31],
32].)
If neutrinos are not massless, then their mass matrix will be nondiagonal and complex

as in the case for quarks. This means that the flavor eigenstates, which are denoted by
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|Va), can be represented as linear superpositions of the mass eigenstates denoted by |;):
|Va> ::jijl]aihﬁ>, (5.7)

where U is a unitary matrix, by which we can transform the mass matrix into a diagonal
form. (See Appendix K for the details of possible neutrino mixing schemes.) For three
interacting neutrinos, U can be parametrized like the Kobayashi-Maskawa (KM) matrix

[33] for quark mixing angles:

C1 S1C3 S1S3
U= —sicy €1CoC3 — S953€" 1083 — socze |, (5.8)

—81S9  C1S983 — Co83€™  €18983 — CoCze™®

where ¢; = cosf; and s; = sin6;.
If at time £ = 0, a beam of pure v, states is produced, the initial state is a superposition

of the mass eigenstates as

v (0)) = Z Uai |vi) - (5.9)

The time evolution of a mass eigenstate |;) is determined by the Dirac equation for a freely

propagating neutrino with definite mass m;. From the Dirac equation, we can obtain

.0 — o-p
Zha%’L (x,t) = —\/p?c? + m2ct 5 vir (x, 1), (5.10)

where ;1 (x,t) = (x|r;),. (The “phenomenological” neutrinos are left-handed.) The

details of the calculations are given in Appendix L. In the ultra-relativistic limit (mc?/pc <

1), we have
2.3

\/D?c? + mict ~ pe + mzlf . (5.11)
p

Hence, the Dirac equation is written as

m?c?’] Gz;pw (z,1). (5.12)

.0 _
zhawm (x,t) = — [chr 2

We now regard the second term in the square brackets in Eq. (5.12) as a perturbation,

and assume that the spinor ;7 is written as
Uir (m,t) = €W Yy, (1), (5.13)
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where 1)y, is the unperturbed quantity satisfying the equation

L 0 _
m&ﬁboz‘L (xz,t) = —co - P VoL, (z,1) . (5.14)
Furthermore, we assume
o
p@bou: (x,t) = =L (x, 1), (5.15)
and
P Yoir (2, 1) = poir (1) . (5.16)

(For simplicity, each state 1y, is assumed to have same momentum p.) Under these

assumptions, substituting Eq. (5.13) into Eq. (5.12), we obtain

1 2.3
bt) = — [Ty
hJo 2p
m2c3
= — t 5.17
oy (5.17)
Therefore, we derive
Am203
<33|I/i>t = wiL <$,t) = 6_2 2h7’ I/JOZ'L (az,t) . (518)
This is equivalent to
m2C3 . pc
i), = e e 1) (5.19)
Consequently, we obtain
' 2 3 -
|Va (1) ZU e e R 1) (5.20)

The amplitude for observing an initially created flavor eigenstate |v,) as the (different

or same) flavor eigenstate |v3) at some future time ¢ is

2.3

(Wslva(t) Z UniU €2t e (5.21)

Hence, the probability for a transition from the state |v,) to the state |vg) is

. .(mi — m?) ?
P8 = 0D = S Uil exp | -] (522
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For example, the probability of an electron neutrino remaining an electron neutrino after

a time t, or after traveling a distance d ~ ct, is
P, _..(t) = 1—4cos®0;sin® 6 cos® f3sin” l
— 4 cos? 0, sin? 0; sin? 0 sin? [(m
— 4sin* A, sin” A5 cos® B sin? [(m%—mg)c:‘tl : (5.23)
It is convenient to define the oscillation lengths
= A 2 () (o o2

where Am?; = ‘m? — m?‘ When we use the oscillation lengths, the probability of observing

an electron neutrino at a distance d ~ ct from the source is given by
20 w2 20 win? d
P, ... (t) = 1—4cos”#sin” 0 cos” O sin T
12
20 20 w20 win d
— 4 cos” 0 sin” # sin” A5 sin wl—
13
c A a2 20 win? d
— 4 sin” 0 sin” 05 cos” O3 sin ] (5.25)
23

Similarly, we can obtain the probability for the other transitions.

5.2.2 Gravitationally induced neutrino oscillation phases

Next, we discuss the gravitationally induced neutrino oscillation phases. As we saw in the
last subsection, the most important one in the neutrino oscillations is the phase difference
of the two different mass eigenstates. Hence we restrict our attention to the phase shifts of
the mass eigenstates.

We now regard terms arising from the small mass and the gravitational field as pertur-
bations. Then the equation for the left-handed component obtained in the last section is

considered as 9
Zhaw[l - (HOL + AHL) wLa (526)
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where Hy;, denotes the unperturbed Hamiltonian Hy;, = —co - p, and AH, the corrections
arising from the small mass and the gravitational field. This equation corresponds to Eq.
(5.12). From the perturbative point of view, it is plausible that the particle trajectory is
taken in the unperturbed system. Then we can consider the radial propagation, in which
the spin-orbit coupling vanishes.
Following the discussion of the last subsection, we again assume that the spinor 1, is
given by
U (x,t) = W g (1), (5.27)

where 1)y, satisfies Eq. (5.14), that is, the equation

ihaalf¢0L (:1:, t) = H0L1/10L (33, t) . (528)

Substituting Eq. (5.27) into Eq. (5.26) and using Eq. (5.28), we obtain
1t
o = —%/ AHydt. (5.29)

In order to derive the phase practically, we use the assumptions (5.15) and (5.16) again.
Furthermore, we here replace the remaining g-numbers with the c-numbers. This is a kind
of semi-classical approximation. From this, except for the spin effects, we derive
2.3
c

[0) m
AHp, =2 ) )
L=250+ o (5.30)

Now, let us consider the case that the neutrino is produced at time t = t4, and detected

at time ¢ = tg. Then the phase the neutrino acquires is

1 s ¢ m2e3
b =—— 2— dt. 31
i ( cch—i- 2% ) (5.31)

We pay attention to the term related to m?, because neutrino oscillations take place as a
result of the mass square difference. This term reduces to

m2c?

2hp

Furthermore, let the two different mass eigenstates have common momentum p and propa-

(tp —ta). (5.32)

gate along a same path. Then the relative phase A®,; of the two different mass eigenstates,
|v;) and |v;), is given by
Am?c3
Aq)lj = Y
2hp

(tg —ta), (5.33)
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where p is interpreted as the momentum the neutrinos have at initial time.
Finally, we shall show that the result obtained above is consistent with the result which
would be derived from the classical action. Using the classical action, the quantum phase

is given by

1 (B
o = — - /A pudt
B

_ —; [ (e + puta) (5.34)

where £ = p;. Since we now consider the case that two different mass eigenstates have

same momentum, we are particularly interested in the first term. (The phase difference
between the two mass eigenstates arises from the first term.)

Considering the metric (3.13), we find that the space-time has a Killing vector X9, =

0/0t. Indeed, using X* = (1,0,0,0), we derive

0
Lxgos = XM——ga ap=——=XH" X#
XJop D stY " Oxb +gﬂ”0:17°‘
= VgXa—l—vaXﬁ
— 0, (5.35)

where Lx denotes the Lie derivative with respect to X“. Furthermore, since VgX, +

VoXjs = 0, along the geodesic (p®V,p® = 0) we obtain
PV (P°X5) = p* (Vap®) X5+ p°p"VaXs

PP’ (VaXa + VaXp)

S|

(5.36)

Hence, p*X,, is constant and, therefore, p, = E' is also constant along the geodesic.

In order to derive Eq. (5.33) again, it will be sufficient to consider the isotropic form of
the Schwarzschild metric (because the effects arising from the rotation of the gravitational
source is coupled to the spin). We now consider the radial propagation (say the x direction).

Then, from the mass shell condition

9" paps = m*c?, (5.37)
we obtain )
1+ % ) Y m2e |2
E=—2 1 1 - . 5.38
TR I (1-52) fie 0:3%)
2c
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If we assume that for any x, p,(x) > me, then we have

1+ % ¢ o m2c?
E~ oy ;)3 pa(@)e+ <1 + 202) (1 - 2(:2) RIS (5.39)

Moreover, the weak field approximation gives

m2e3

2p. ()

Here, since the left-hand side of Eq. (5.40) is constant, we can evaluate the right-hand side

E :px(m)c+22pm(x)c+ +-- (5.40)

at an arbitrary point. Therefore, We derive

m2e3

2p:c ($A)

E~p,(rs)c+2 ipx(a:A)ch 4 (5.41)

From this, we can obtain the same result as Eq. (5.33) (where p = p,(z4)) again.
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Chapter 6

Summary and conclusion

In this thesis, we have studied the gravitational effects on Dirac particles. In particular, we
have considered the particles propagating in the Kerr geometry, and restricted ourselves
to the slowly rotating, weak field limit. First, following the discussion of Ref. [14], we
have summarized the effects of the general relativistic gravity on a non-relativistic particle.
There we have obtained the Schrédinger equation with the general relativistic corrections,
and from this we have derived the gravitationally induced phase difference in a quantum
interferometer. Next, we have discussed the gravitational effects on a Dirac particle with
infinitesimal mass. By performing a unitary transformation similar to the FW'T transfor-
mation, we have obtained the two-component Weyl equations with the corrections arising
from the small mass and the gravitational field from the covariant Dirac equation. Thereby,
it has become clear how the spin-orbit coupling, the coupling between the total angular
momentum and the rotation of the gravitational source, or the coupling between the spin
and the rotation is coupled to the infinitesimal mass. Furthermore, we have discussed the
gravitationally induced neutrino oscillation phases, and derived the phase difference of the
two different mass eigenstates in radial propagation except for the spin effects.

We have not pursued the spin effects on the neutrino oscillation phases. However, it is
interesting to investigate the effects of the spin-orbit coupling (which is associated with the
non-radial propagation) and the dragging of inertia on the neutrino oscillations. To add
to this, the relation to experiments and the quantitative estimation will be the subjects of
further investigation.

Although it seems to be difficult to provide the verification of these effects with current
experimental detectability, we think that the investigation of the topics in which both quan-
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tum effects and gravitational effects come into play is important. Progress in technology

may make the verification of the effects possible.
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Appendix A

Representations of the Lorentz

group

We now investigate the Lorentz transformations in a more general way. Under the general
Lorentz transformation rule, a general field denoted by 1, transforms under a Lorentz

transformation A% according to

In order for a Lorentz transformation A; followed by a Lorentz transformation A, to give
the same result as the Lorentz transformation AjAs, it is necessary that the matrices U (A)

should furnish a representation of the Lorentz group, that is,

In fact, the U-matrices given by Eqgs. (2.15) and (2.16) satisfy the group multiplication
rule (A.2).
Next, we consider the infinitesimal Lorentz group which consists of Lorentz transforma-

tions infinitesimally close to the identity, that is,
Aab - 5ab + wab, ‘wab| << 1, (Ag)

where
Wb — —Wpg- (A4)
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For such a transformation, the matrix representation U (A) must be infinitesimally close
to the identity:

1
U(l+w)=1+ 3 Wwo g, (A.5)

where 0, are antisymmetric in ¢ and b.
The matrices o, must be constrained by the group multiplication rule (A.2). It is

convenient first to apply this rule to the product A (1 4+ w) A~
UMU(L+w)UA) =U (14 AwA™). (A.6)
Up to first order in w, this reduces to
1+ ; WPU(N)opU(A™) =1+ ; w0 gA, A (A.7)
Thus we have
UAN)oaU(A™") = 00 A% A%, (A-8)
If we now set A =1 +w and A~! = 1 — w, then we have

cd(

w OabOcd — Ucdaab) = de (2 NebO ad +2 ncaadb) s (Ag)

that is,

wcd [

Oab, Ucd] = de (ncbgad — NeaObd + NabOca — 77da0—cb> . (A]-O)

This will be satisfied provided that o satisfies the commutation relations

[O-aba Ucd] = NcbOad — MNecaObd + NabOca — MNdaOch- (A]-l)

The problem of finding the general representations of the infinitesimal homogeneous Lorentz
group is equivalent to finding all matrices that satisfy the commutation relations (A.11).
Finally, we shall consider the Dirac spinors. In flat space-time, the Dirac spinors satisfy

the Dirac equation
(ihy 0, — me) ¥ = 0. (A.12)

In order to investigate the behavior of this equation under the Lorentz group, let us define

the transformation rule of the spinors under a Lorentz transformation A as follows:

V() = S(A)U(x), (A.13)



where S(A) is a matrix representation of the Lorentz group. Using this definition, Eq.
(A.12) is written as

(ih S(A)YDSHA) (A1), 0y — me) ¥ =0, (A.14)

where we have multiplied the Dirac equation by S(A) on the left. In order for the Dirac
equation to be covariant under the Lorentz transformations, the following relations must
be satisfied:

SAISTHA) (AT, =1, (A.15)

that is,
S(AYDSTHA) = (AT A, (A.16)

Here, we consider the infinitesimal Lorentz transformations (A.3) again. Then S(A) must

be written in the form

1
S(A) =1+ 5 w0y, (A.17)
From Eq. (A.16), we derive the following condition:
1 a C (&
iwab[a " ’Y()} = —w'y . (A.18)

This condition is satisfied by setting

o = L[5 0] (A.19)

(See also Appendix D for this derivation.) It is easy to check that the matrices (A.19) do
satisfy Eq. (A.11).
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Appendix B
Non-minimal coupling

Now, we shall derive Eq. (2.57). The left-hand side of Eq. (2.57) is written as

A
VaVg € = VaVa eap = =R ap €@,
we can write ]
V[;Fa — val—‘g + Farg — Fgra = 1 ’y'u’yVRw,ag,
where R,,qs is the Riemann tensor. Thus we derive

1 (0% 1 (07 v
1 %77 D, Dl = £ 7*v"4"7" Ragy

Furthermore, if we utilize the identity
Raﬁuu + Ra,uuﬁ + Rauﬂu = 07
then we have

WQWBVH,VVRQB#V =—6R—2 VQW ’Y#VVRa,B/w’
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that is,

1 1

NN BTN 7 __ =

3 VY Bapuw = — 1 R.
Therefore, we can derive Eq. (2.57):

1 1

Z A A8 - _ =

4[7 77| [P, Dg) = R
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Appendix C

Conformal invariance

Let us consider conformal transformations:
Gap — gaﬁ = QQQaﬂ (Cl)

An equation for a field 1 is said to be conformally invariant if there exists a number s such
that 1 is a solution with the metric g, if and only if ¢ = Q1) is a solution with the metric
Gap- Then s is called the conformal weight of the field. (See, e.g., Ref. [34].)

Under these transformations, the spin connection, the Christoffel symbol, the Riemann

tensor, the Ricci tensor and the Ricci scalar transform, respectively, according to

_ 1 1
I, - [,=TI,— E%;yﬂvﬁ InQ + 5 Voln Q, (C.2)
re, — e, =T%, +20%,V,)nQ - g,,g*"VsInQ, (C.3)

R, — R%,, =R, +20%,V, VsIinQ—2g¢"gs,V,V,nQ
+26%,V,InQ - VgInQ —2gg,V,)InQ- gV, InQ
—20%, 9597 Vo InQ V,InQ, (C.4)

Rs, — Rg,=Rp, —4V,VsInQ — gs, g7'V,VyInQ
+2VsInQV,InQ—2gs, ¢V, nQV, InQ,

R— R=Q7?[R-6g"V,VslnQ—6¢*"V,InQV;In Q. (C.6)
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We shall now show that for a massless particle, Eq. (2.58) is conformally invariant. If
U = Q¥ using Egs. (C.2) and (C.6) we have
125D, - i wR| v
_ [hzgaﬁpapﬂ - i H2R
+2 <s + ;’) 7?g*? (V4 In Q)Dps + <s + ;) h?g*(V,V5In Q)

+ {(5 4 ‘;’)2 - (3 + ‘;’) } h2g° (V.10 Q) (V1o Q)] v, (c.7)

Therefore, for a massless particle, Eq. (2.58) becomes conformally invariant provided that
s = —3/2.

Next, we consider scalar fields. In curved space-time, the equation for a scalar field ® is
g7V V5 + m*c*| & = 0. (C.8)
However, this equation for a massless particle is not conformally invariant. In fact, we have
GV V5@
= 072 IV, V2 (s 4+ 1) Q79 (V,0) Vs
+5 Q719" (Va V) 45 (s +1) Q2°(VaD) (V)| . (C.9)
Hence no choice of s will make g*°V,V3® vanish whenever ¢®°V,V 3® vanishes. (We now
consider a 4-dimensional manifold.)

However, it is possible to modify Eq. (C.8) so that it becomes conformally invariant.
First, if we choose s = —1, then the (V,Q)V3® term and the (V,Q)(V0Q)P term will
vanish. Using this choice, we find

[g‘w?oﬁg — CR} P
=07 [g°Va Vs — cR — (1 60) Q7' g™ (Vo V50)| @. (C.10)

Thus, if we choose ¢ = 1/6, then the (V,V32) term is eliminated. Therefore, the equation
for the scalar field ®,

1
[rfgaﬁvavg — SR ® =0, (C.11)

is conformally invariant.
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Appendix D

Derivation of spin connection

We now provide the derivation of Eq. (2.69). For the purpose of this, we utilize the fact

that the following 16 matrices are linearly independent:

M ={T, Y, 6> Y6 Y@ » Y65)} » (D.1)

where G, and 7 are given by Eqs. (2.71) and (2.72), respectively. (See Appendix E.)
From this, any 4 x 4 matrix is expressed by a linear combination of these 16 matrices.
Hence the matrices I, satisfying Eq. (2.68) are also expressed in terms of these matrices.

What we have to do is to find I'? satisfying the following relations:

[FB s ’V(a) } XX ’Y(b)~ (D2)

It is convenient to classify these lineally independent 16 matrices into five groups.

(A) I 1
B) Y 4
(C)  Gw 6 (D.3)
(D) )N 4
(E> Y(5) 1
Let us calculate the commutator for each case.
e In the case of the group (A), we have
113w | =0 (D.4)
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In the case of the group (B), we have

{7(&) > V) } = 2%a)V() — 2 Nasl.

In the case of the group (C), we have

[5ab s V(o) } = 20 NpeV(a) — 28 NacV(v)-

In the case of the group (D), we have

[7(5)%1) , ’Y(b)} = 2(5)ab-

In the case of the group (E), we have

1) Y@ ] = 27961-

(D.5)

(D.6)

(D.7)

(D.8)

Therefore, the matrices I',, satisfying the relations (2.68) are written as linear combinations

of the matrices belonging to the groups (A) and (C):
To=A" 6w+ aal,

(D.9)

where A% is always chosen to be antisymmetric in @ and b. Considering Eq. (D.4), we

find that a, is arbitrary.

Next, we shall derive A introduced in Eq. (D.9). From Egs. (2.68) and (D.6), we have

. ¢ b
— 4 Nac V(d) Aa 4= O] e(a)ﬁ Va 6( )ﬁ
If we multiply this by 7 on the left, then we have

— 41 Nac V(e)V(a) At = T(e)V(b) e(a)ﬁ Vae
whereas multiplying by 7y on the right, we have

cd

— 44 Nae Y(ayVe) Ao’ = V(b)V(e) e(a)ﬁ Vae
By adding these equations, we derive
— 4 e Mg ALY = e(a)ﬁ Va ew)s-
Hence we obtain ,
A = % eyt 6(656 Va €y
Therefore, we can derive Eq. (2.69):

(0)

®

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)



Appendix E

Proof of linear independence

Here, we prove the following 16 matrices to be linearly independent:

4 = {I, Ya) s Tab > V(5)V(a) > 7(5)}, (E.1)

where G4, and 7y are given by Eqgs. (2.71) and (2.72), respectively. In this Appendix, we
use units in which ¢ = 1.

To begin with, we investigate the trace of I'4. It is convenient to use the relations
V) ¥6) =1 (E.2)

Y6) V@) T V) V(5) = 0. (E.3)

Using these properties, we can derive

that is,
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Furthermore, we can show

g )1 or —I (A= B)
o ‘{ POGED) or IO 1) (A#B) (B0

Next, we assume that the following relation exists:
S ealt =0, (E.11)
A

where ¢4 are numbers. When we multiply this by I'” on the left and take the trace, we

derive

Tr (FB > cAFA> = + 4cp. (E.12)
A

From this, we find that for any B,

Therefore, these 16 matrices must be linearly independent.
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Appendix F

Components of Christoffel symbol

We here show the components of the Christoffel symbol derived from the metric (3.13). Up

to the order of our interest, we obtain

11000 = 0+ 0(1/04)a

'y = ;migRQwstOWdﬁ)’
% = ‘0146(;5%]%2% (% =) +0(1/e),
My = _01412G5%R2w3w+0(1/06)7
My = _;(ﬂ&»j\imwszﬁo(”&)v

F033 = 0+ O(l/cﬁ),

1 2
Doy = da—wyo
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(F.9)
(F.10)



+012 [4@571 + w?):v (w1 +yd2) +

+0(1/ch,

1
gwolﬂﬁ,l +0(1/ch,

1
—W, + 672 [woxqu + 2woy¢’2 T

012 lQWo Yoz —
561001/,
362+ 001/,
—36s 001/,

012¢,1 + 0(1/04)’
0+ O0(1/cY),
612¢71 +0(1/ch,

¢,2 - wiy

+612 [4¢¢72 +wly (zd) +yda) +

+0(1/c%),

1
Wo T+ =2 [—Zwoxqb; — WolP2 —

6GMR
515

2

1
—gwoxqﬁg +0(1/cY),

1
g [—2wo$¢73 +

cl2¢72 +0(1/ch,

_012¢,1 +0(1/cY,

6G M R?

5rd

4G M R? 6GM R?
w. —

12G M R? 2 2
WoWgl — Twowsx (3j + Yy )

(F.11)
(F.12)

wsyz} +0(1/cY,

53 s

s
513

AG M R? 6G M R?
W +

s (o 42) | onsen,
(F.13)

Hrbd

(F.14)

(F.15)
(F.16)
(F.17)

(F.18)
(F.19)
(F.20)

126 E

WoWsl¥ — 55

WoWe Y ($2 + 92)1

(F.21)

wezx| + O(1/c"),

53

573 s

oo (42| + 001/,
(F.22)

5y

(F.23)
(F.24)

(F.25)

(F.26)



0+0(1/c",
1
_§¢,2 + 0(1/64)7

1
_gqsﬁ + 0(1/04)7

1
gﬁb,Q + 0(1/64)7

1
G2+ 2 [4@?,3 + W(QD (372 + y2> b3 —

[ oy¢3 +
lw oha 6GMR2

0+O (1/c*),
§¢,3+O(1/C )7
04 0(1/c"),
56101/,

1

S0a-+0(1/c"),
1

—gqﬁ,g +0(1/ch,

1
—g¢,3 -+ 0(1/64)

515
2

w4+ouw>

w zx] +0(1/cY),

54

12GM R?

WoWgZ (:L'2 + y2>] +0(1/cY), (F.31)

(F.32)



Appendix G

Components of spin connection

We now calculate the components of the spin connection. The spin connection is given by

Eq. (2.52):
1
— = |~y@ () p v
Lo = 3 ['Y )Y ]gul/ €a) Va €p) - (G.1)

Using the tetrad (3.28)—(3.32) and the components of the Christoffel symbol derived in

Appendix F, up to the order of our interest, we obtain

1 - 1
Ty = —-eirwy 77— 1 g,

8
1 [GM .
[ngijk [ x (r x wg)]" A"

82
4G M R?

4GMR” g OGMR?
5r3

e A0 = S e o (r x w2 (62

1 .
[y = — 5 (9283 — b3 ) U

8¢

3GM R?

02,5 s {—2@/ AU 4 (x2 — y2) A0 gz 7[03]] , (G.3)
1 [j#]

ry = — @ (¢,3 €15k — ¢,1 €3jk) Y

3GM R?

st [(ZEQ — y2) ’Y[Ol] + 2$y '}/[02] + zx ’7[03]] s (G4)

c’r

1 )
3 = — 5 (¢1625k— b2e1n) AU

8¢
3GM R?

0c25 Ws {—yz ~OU 4 2 7[02]} : (G.5)
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where ¢;;;, is the Levi-Civita antisymmetric tensor (e123 = +1), Aol is defined as

Aot = 5@ 0] (G.6)

and the angular velocity vectors w,, w are, respectively,

w, = (0,0,w,), (G.7)
w, = (0,0,w,). (G.8)

It is convenient to introduce the following 4 x4 matrices similar to the Pauli spin matrices:

0 I 0 —if I 0
P1 (10)7 P2 (Z[ 0)7 P3 (0—1)7 ( )

where [ is the 2 X 2 unit matrix. These matrices satisfy the relations
pPiP; = (52'3' + Z'éfijkpk. (GlO)

We now adopt the standard representation as the Dirac matrices:

1({1 O ’ 0 o
0 _ * (1) — ’ G.11
g c(o —])’ gl (—aio)’ (G.11)

where o; are the well-known Pauli matrices. Then we have

, 2
A = - PO (G.12)
W = —2iey, on. (G.13)
Hence we obtain
. 1 B
ZhFO == —wO-S+?Cp10-(p¢)
1 [4AGM R? GM 6G M R?
CZ[ 57"3 wS-S_ rg S-[’PX(wao)}—i—TS.[rX(erS)]’
(G.14)
) h
ihly = — 202 (203 — ¢302)
ih  3GMR?
=3 P1 Tu)s {—QQ:y o1+ (x2 — y2) o9 — Yz 03|, (G.15)
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h

22

1hl'y

+ 3 p1
h
2c2

N ih  3GMR?
3 1 5y

5y

thl's =

W, [(xZ — y2) o1+ 2xy 09 + 2T 03} ,

wg [—yz o1 + zx 09,

(¢,3 01 — ¢,1 03)
ih  3GMR?

(G.16)

(p1 02— b2 01)

(G.17)

where P is the momentum operator in flat space-time, and S = ho /2 is the spin of the

particle.

On the other hand, if we adopt the Weyl representation as the Dirac matrices:

) =

then we have

Hence we obtain

1(0 1 - 0 —o;
- () — ! G.18
. ( I o ) ;Y ( o 0 ) , (G.18)
07 2
Y = — P30y, (G 19)
W = —2iei 0y (G.20)

: 1 _
ihly = —wO-S—l—%pga-(pgzﬁ)
1 [4AGMR? GM 6G M R?
C2|\5T3(JJS'S—T3‘S"[TX(TXU)O)}+ 55 S'[TX(TXWS)],
(G.21)
, h
thl'y = — 2¢2 (¢,2 03— @3 02)
i 3GMR?
tog T s [—Qxy o)+ (3:2 - y2) oy — Yz 03} , (G.22)
, h
thl'y = — @ (¢,3 01 — ¢,1 03)
i 3GMR?
+ 3 pngs [(3:2 — y2) o1+ 2xy 09 + 2T 03} ) (G.23)
, h
ihl's = — 22 (¢,1 02— @2 01)
i 3GMR?
t 3T Ws [—yz o1 + zx 09) . (G.24)
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Appendix H

Non-relativistic Hamiltonian

We now use the standard representation (G.11) for the Dirac matrices. Then, the compo-

nents of the spin connection are given by Egs. (G.14) — (G.17). From this, we obtain
H = psmc®+cpio-p+psmo —w-(L+8)
1 1
Fopr |0 (p0) + 200 P

11 , , AGMR? 6GMR?
= |z w- (L
+ 3 [2p3m¢ +—3 (L+8)+—3

S-rx(rxw)|, (HI)

where p; are defined by Eq. (G.9). Moreover, the Hamiltonian H’ redefined by Eq. (4.2)

is then

H = psmc® +cpo-p+psmo —w- (L+S)
1
+-p(o-Po+¢o-P)
11, AGMR? 6GM R?
g | gpmd” e gw (L S) 5 S [r x (rx w)]] - (H2)

Next, we perform the FWT transformation to derive the non-relativistic Hamiltonian for

the “large” component. First, we use the unitary operator

N o 7)
Uy = exp (@pg 2m]c)> , (H.3)

so that we can eliminate the odd term of O(c). Using the useful formula

i i

eHe ™ = H +i[S, H| + o (S, [S, H]] + 3 (S, [S,[S, H]]] + - - - (H.4)

o8



and the relation (G.10), we obtain the transformed Hamiltonian U1H’U1T:

=2
UlH'UlT = psmc® + ps (éjn + mgb) —w-(L+S)

1 1 1
+CP1[2(0'p¢+¢0'p)—3m2(0'11)3}
1 1 p? 3 3GM
(g = i+ e )
4G M R? 6GM R?
+ 53 w-(L+8S)+ - S-[rx(rxw)]]. (H.5)

Second, we use

3m2(0‘-p</5+(/50'p)_2(0"p)3>, (H.6)

U = exp (im 12(mc)3

which makes the odd terms of O(1/c) vanish. Using this unitary operator, we finally obtain

=2
vHUT = psmc® -+ ps (p +m¢> —w-(L+8)

2m
1 1 174 3 3GM
Al Zovio n it
4G]\/[R2 6G]\/[R2
+ 3 (L+8S)+ w5 S [rx(rx w)]] , (H.7)

where U is given by U = UyU;.
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Appendix I

Canonical quantization

Now, we shall follow the canonical quantization procedure to derive the Schrodinger equa-

tion involving general relativistic corrections for a non-relativistic particle.

I.1 Classical Hamiltonian

Let us consider a particle which has the mass m and propagates in the gravitational field
described by Eqs. (3.20) — (3.24) with the condition (4.1). The relativistic Lagrangian for
this particle is

L = —mc—
mcdt

= —mc\/ gty

= —mC\/NQ—’}/ij<Ni+fti)(Nj+i’j), (Il)

where the dot over z* denotes the differentiation with respect to . We can now define the

canonical momentum as

oL
i = Ao 1.2
Pi= 5 (L.2)
Using this, we obtain the reduced classical Hamiltonian in the form
H = pi'—L—mdc
= N\/m202 +pip; — N'pi — me?. (I.3)
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As mentioned previously, we consider a non-relativistic particle, whose rest energy is

much larger than the kinematic one. Then we have
Vpip; < m*c. (L4)

The non-relativistic Hamiltonian up to the order of our interest is

. N N
H=-Np+(——1)mc®+ —
b +<c )mc + c 2m 8m3c2

vijpz'pj . (Vijpipj)zl O ( 1 ) . (I.5)

I.2 Quantum Hamiltonian

We have obtained the non-relativistic classical Hamiltonian in the last section. Next, we
follow the canonical quantization procedure to derive the quantum Hamiltonian. What we
have to do is to replace the momentum p; in the classical Hamiltonian with the momentum

operator p;. The canonical variables, z¢ and p;, satisfy the canonical commutation relation
@', ;] = o' (L.6)
In addition, the momentum operator p; is hermitian and, therefore, satisfies the relation

(i, ) = (. D). (L7)

where the round brackets denote the inner product which is invariant under the spatial

coordinate transformations:
(V,0) = / VroAdi. (1.8)

Considering the definition of the inner product, we adopt the momentum operator

/4 — -1/

X o 11 O _
pi = —ily 1/4@’7 ooyt (L9)

This momentum operator p;, of course, satisfies the commutation relation (I1.6).

v

By replacing p; in the classical Hamiltonian (I.5) with p;, we obtain the quantum Hamil-

tonian

ﬁ2

1 <4GMR2 L Pl

w - + §m¢2 + iﬁ . ¢p>] A4, (I.10)

c? 513  8m3 2m
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where we have taken the appropriate ordering to make the Hamiltonian hermitian. (Al-
though there can be various ways to the ordering, we have particularly chosen the one
which leads to the result derived from the covariant Dirac equation.) The Schrodinger

equation is then
0
h—® = H®. I.11
ihos (L11)

We now follow the same discussions as in Sec. 4.1, and redefine the wave function and

the Hamiltonian in the following way:
' =AY, H' =~YVHy A (L12)
Under this redefinition, we obtain

ihéCD’ = H'9

ot
=9
= [p—i-mgzﬁ—w-L
2m
1 (4GMR? 1 3
(e L - Py ome Cpegpl|o. (113
02< 53 @ 8m3+2m¢ +2mp op ( )
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Appendix J

Ultra-relativistic Hamiltonian

Now, we shall obtain the ultra-relativistic Hamiltonian in Eq. (5.5).
If we adopt the Weyl representation (G.18) as the Dirac matrices, then the components
of the spin connection are given by Eqgs. (G.21) — (G.24). Using this result, up to the order

of our interest, we obtain

1
H = psco-p—+ps [—200' . <pqi> + 2% co - p]
¢ ¢
1 [4GMR? 6G M R*
= [57“3‘0 (L+S)+ TS’ S x (r X w)]] + prmc® + p1m62§;,

(J.1)

where p; are defined by Eq. (G.9). Moreover, the Hamiltonian redefined by Eq. (5.2) is
then

H' = pgca-p+p3<ca-p 5+ 2ca-p)
C C

1 [4(}]\/[}?2 6G M R?

3 w-(L+S)+ S - [rx (’rxw)]] +p1m02+p1m02f2.

c2

(J.2)

By performing a unitary transformation similar to the FWT transformation, we shall
derive the ultra-relativistic Hamiltonian for the left-handed component. We here divide
the unitary transformation into several steps. First, we use the unitary operator

1 P
U, = exp (ip22m0202'2p2p> ’ (J.3)
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which is introduced to eliminate the odd term proportional to mc?. Using the formula

(H.4) and the relation (G.10), we obtain the transformed Hamiltonian

UlH'Ul]L = p3co P+ ps3 (ca'pqz—l—qica-p) +A+p1mc2¢

_PI; Qlco' p(ca 219 ¢+¢ co 2p>+<ca'-2p¢+gbco"p>co_'p]

2 2 2 2P 22 2 2 2p?
o1 co-p co-p 1 2 400' D
— A—A———
+ 2p22mc ( 2 = ) + ,032 e
—p31m204 LQCU Pt o pqﬁ 1  (co-p¢ ¢co-p
] 2p? 2 2 2p? 2p? 2 2 ch
1 54 1 co-p co-D 1
- gm ¢ <A02p2 —2 021772 A CQTQQ + CQTQQA ) (J4)
where A is given by
1 [4GM R? 6G M R?

Second, in order to eliminate the fifth term in Eq. (J.4), we use the unitary operator

Uy = exp [—ipzémCQ (ca~p¢ + ¢ co Zpﬂ : (J.6)

02p2 c2 c2 Czﬁ

Using this unitary operator, we obtain

UgUlH'Ul]LUQ]L = p3co-P+ p3 (ca’-pi+ica-p>+A+p1mc2g

.1 S, fco-p co-p 1 5 4co-p

+2p2§mc ( o A—A o ) —|—p3§m c o

_p}frnQC4 Lgcaﬁ_i_co-pg 1 — Co-ﬁf_i_gco-ﬁ
33 272 2 2 c2p? 202 2 2 2p?
1 5, 1 co-p co-p 1

— g7n c <A02p2 -2 02ﬁ2 A 62]32 + 62]32A . (J.?)

Finally, we use the two unitary operators Us = ¢*? and U, = ¢** where S3 and S, satisfy,
respectively, the relations

i[Ss, psco - P| = — pymc® ¢2, (J.8)
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i [S4, psco - P| = — ipgimc2 (%A — ACCUQZ;QP> : (J.9)
We here assume the existence of these unitary operators, which make the remaining odd
terms vanish. (We need not find the concrete forms of these unitary operators, because
the extra terms arising from these unitary transformations are higher oder terms.) Using

these unitary operators, we obtain the transformed Hamiltonian UH'U T which is even up
to the order of our interest:

vHUT = p3co - P+ p3 (ca-pﬁ—i—ica-p) + A

c
n 1 4, ,co-D
—m-c
p32 02p2
L 541 1 ¢ _ _¢ 1 co-po  ¢co-p
_p3§m ¢ [CQPQCQCU.p+CU.p§62p2 - CQPQ g—i_g CQpQ
1 54 1 co-p co-p 1
_§m c <A02p2 -2 cQﬁQ A 02]32 —1—02?214 , (J.lO)

where U is given by U = U,U3UU,.
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Appendix K

Neutrino mixing schemes

Now, we shall consider possible neutrino mixing schemes. In particular, we consider the
general case of n neutrino flavors. There exist several distinct schemes for neutrino mixing,
whereas only one scheme for quark mixing is possible. This arises from the fact that
neutrinos are electrically neutral. In contrast to quarks, neutrinos which have definite
masses can be of Majorana-type as well as Dirac-type. Moreover, the number of massive
Majorana neutrinos can exceed the number of lepton flavors.

Let us classify neutrino mixing schemes according to the type of mass terms. For the

purpose of this, we now introduce the following columns:

VeL VeR
VuL VLR
vy = (ne) = g , vr=(wr)= g ) (K.1)

where [ and I’ run over n values: e, u,7,---. Although the right-handed fields vy z do not
enter the interaction Lagrangian of the standard electroweak theory, these fields may be
present in the mass terms.

Before constructing the possible neutrino mass terms, we briefly review the charge con-
jugation of spinor fields. The Dirac equation describing a spinor field ¢ with electric charge

—e (in flat space-time) is given by

(Ma) 831 — ey @4, - m> b =0, (K.2)
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where A, denote electromagnetic potentials. (In this Appendix, we use units in which

h=c=1.) If we write the spinor field with the opposite charge as .. then we have

0
(Z-W)W tey®A, - m) — (K.3)

In order to investigate the relation between v and 1., we take the hermitian conjugate and

then the transpose of Eq. (K.2). From this, we obtain

0
AT [ _ OT ) —
[ o (Zﬁw“ + eAa> m] (’y P ) =0, (K.4)
where we have used the relation
MOMO) NORISNVO} (K.5)

It can be shown that for any representation of the Dirac matrices, there exists a matrix C'
such that
CHITC™ = — 4@, (K.6)

If we use the standard representation for the Dirac matrices, then we find the following

C = iy®y0) = ( Voo ) , (K.7)

—iUg 0

solution for C"

which satisfies the relations

—o=c1=c"=cf, (K.8)
Using Eq. (K.6), we derive the following equation from Eq. (K.4):

0
i~(@) (@) 4 _ O)T, %) _
(2’7 Oz + ey A, m) C (fy WP ) = 0. (K.9)
Comparing this with the equation for ., up to a phase, we find
Ve = €°C (7(0)T¢*> =0y, (K.10)

where 1) = wT’y(O). From now on, however, we ignore the phase factor ¢®. Finally, it should
be noted that applying the C' matrix to a particle field, we obtain the antiparticle field.

Let us consider the charge conjugation of v;, and vg:
(vp), = Cp,”, (vr), = Cvg . (K.11)
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Using Eqs. (K.8) and (K.11), we derive
(vp).=—v/C  (vm).=—vg Ch (K.12)

Moreover, we can show that (vy), is a right-handed field, and (vg), a left-handed one. In

fact, using the projection operator Pg = % (1 + 7(5)), we have

1

Pr(vn), = 5 (1+m) ().
1 T
= [VL 5 (1 + 7(5))}
= Cr/
= (v),, (K.13)
where we have used the relations
C5C =) (K.14)
1 _
ULy (1 + 7(5)) =7r. (K.15)
Similarly, we can obtain
PL (VR)C = (VR)C7 <K16)

where Pp = % (1 — 7(5)).
Let us proceed to the construction of the possible neutrino mass terms in terms of vy,
(v1),., VR, and (vg),. First, using only the fields v, and vg, we can construct the mass term

in the form
LY = —vpMPyp 4+ hee., (K.17)

where (h.c.) denotes the hermitian conjugate of foregoing terms. This mass term is invari-

App. This invariance will

ant under the global gauge transformations v, — e vy, vp — €
lead to the conservation of the lepton charge L =3, , - L;. The mass term LP is called
a Dirac mass term. Second, if we use the fields v, and ()., then we have

1 ——
EM = — 5 (VL)CMMI/L -+ h.c. (K18)

In this case, the mass term is not invariant under the global gauge transformations. The
mass term £ is called a Majorana mass term. Finally, the most general neutrino mass

term is given by

1 —— 1
[OVM _ 5 (vp) MMy, — 5 vprMa (vr), — PrM{vr +hec., (K.19)
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where the possible term (v1) M3’ (vg), can be reduced to the third term, because we have

(UL)CMZD (VR>C - - VLT071M2DcvRT
T
= VR (M2D) VL. (KZO)

(The fields v are anticommuting fields.) As in the case of the Lagrangian £ no global

LPM would be invariant exist. The

gauge transformations under which the Lagrangian
Lagrangian £P*M is called a Dirac-Majorana mass term. Furthermore, the matrices M,
MM MM MY, and MP introduced above are n X n complex matrices.

Let us discuss the neutrino mixing arising from these three types of neutrino mass terms

in order.

K.1 Dirac mass term

We now consider the Dirac mass term

P = —ovpMPy, +he.
= — > wrMjup+he (K.21)
LlU'=e,pu,T, -

Let us diagonalize the matrix MP to make the mass term £ the standard form. For this
purpose, we shall show that an arbitrary complex matrix M can always be diagonalized by
a biunitary transformation. To show this, we consider the matrix M M Jf, which is evidently

hermitian. Considering the eigenvalue equation
MYZ, = w7, (K.22)
we have

Itz - (MT?Z)T Mz,

= |l ?T? (K.23)

Hence the matrix MM has positive eigenvalues. (For simplicity, we assume | ui|2 =m? >
0.) From this, it follows that the matrix M M T can be written as

MMT = vm2vT, (K.24)
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where VIV = VVT = 1 and (m?),; = m7d;;. Furthermore, if we set m;; = + (m2)"?6,;,

(]

then we obtain
M =vmUT, (K.25)

where UT = m~1v s, Using Eq. (K.25), we find that U is a unitary matrix:
Ul = mvivmtvm = 1. (K.26)
Thus the matrix M? is also written as
MP = vmUT, (K.27)

Inserting Eq. (K.27) into the Lagrangian £P, we derive

Ll = —Vpmv) +he.
= —vm)
= — Z MmglVilVg, (K28)
k=1
where

4!

/ T / —l_ / / / V2
vp =Ulv, vp=Vlvg, V=v+vp=1  |. (K.29)

Vn

From this, we see that v is a field with the definite mass my. Indeed, since for freely

propagating neutrinos the total Lagrangian £ is given by

@ O w0 _ _ T
L = ﬁLZ’)/()%I/L—FVRZ’}/()%VR—VRMDVL—VL(MD) VR

)

= V| % —m |V
n ) " 8

= ka (Z’)/( )8];‘1 — mk> Vg, (KSO)
k=1

we can obtain the Dirac equations

<Z'y(a) aia — mkz) V = 0. (K31)
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It follows from the unitarity of the matrix U that the left-handed field v is written as
v, =Uvj. (K.32)

Therefore, we obtain
Vi = ZUlkaL> ) =€ U, T, -". (K33)
k=1
Thus, in the case of the Dirac mass term £”, the left-handed fields of flavor neutrinos
are linear superpositions of the left-handed fields of neutrinos with definite masses. The

unitary matrix U is called a mixing matrix.

K.2 Majorana mass term

Next, we shall consider the Majorana mass term

1
£ = - 3 (I/L)CMMVL +h.c.
1 _
Y >, (o) Mplvi +hec. (K.34)
LlU=e,p,T,

In order to reduce the Lagrangian £ to the standard form, we diagonalize the matrix
MM . Here, it should be noted that the matrix M™ is a symmetric matrix. In fact, we

have

(vp) MMy, = —v, C MMy
T
= v C (MM) v,

= — VLTC_I (MM)T vy,
= ), (M) vy (K.35)
Hence, it follows that
(M) = ™. (K.36)

We now use the fact that a complex symmetric matrix M can always be written as
T
M= (UT) mut, (K.37)
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where U is a unitary matrix and m;; = m;d;; (m; > 0). To see this, we recall that an

arbitrary matrix M is expressed in the form
M=vmUT, (K.38)

where VVT = 1, vut = 1, and m;; = m;d;; (m; > 0). For simplicity, we assume that
m; # m; for i # j, and that m; > 0. From Eq. (K.38), we have

MMt =vm2vt, (K.39)
On the other hand, using the relation
T
M=M= (UT) mv7, (K.40)

we have
T
MMt = (UT) m2U7. (K.41)
Therefore, from Eqgs. (K.39) and (K.41), we derive
U'Vm? = m*U'Vv. (K.42)

2

Since m? is a diagonal matrix and m; # m; for i # j, UTV is also a diagonal matrix.

Furthermore, UTV is a unitary matrix. If we set S = UTV, then S can be written as
Si' = €2iai(5ij, (K43)

T
where «a; are real constants. Using the expression V' = (U T) S, we obtain

M o= (U’f)TSmUT
_ (UT>T51/2m51/2UT
<51/2UT)Tmsl/2UT, (K.44)

= e'™i§;; Therefore, if we redefine U Tas Ut = 12U T, then we can obtain

)

where (51/ 2)
Eq. (K.37).
Inserting the expression

MM — (UT>TmUT (K.45)
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into the Lagrangian £, we obtain

where

Furthermore, if we define

X1

X2
x=nr+ ). =] . |,

Xn

then the neutrino mass term £M is given by
v 1_ 1 & _
LY = — Sxmx = — 5 > MEXpXn-
2 2=

(K.46)

(K.47)

(K.48)

(K.49)

From this, we conclude that yj is the field of a neutrino with definite mass my. Indeed,

the total Lagrangian for freely propagating neutrinos is

) O 1 1_ t
L = 7 W( )8xa vy — B (VL>CMM’/L 5 Vg (MM) (vr).
O 1 1_
= np iyl )8x“nL ~3 (ng) mng, — 3 nrm (ng),
1 0 1 0 1
= 5 ﬁL i’Y(a)%nL + 5 (nL)c ny(a) 833'& (nL)c - 5 (nL>can -
= 1x(ino L —m)x
2 o
- Zn:n (iV(a) o mk) Xk-
2 = Ox®

(K.50)

Furthermore, it should be noted that the fields x; satisfy the relations

Xk:CykT:(Xk)ca k:1727"'7n'

This implies that x; are the fields of Majorana neutrinos.
Considering Eqs. (K.47) and (K.48), we obtain

vy = UXL7
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that is,
Vi, = Z UlkaL- (K53)

k=1
Thus, in the case of the Majorana mass term, the left-handed fields of flavor neutrinos
are linear superpositions of the left-handed fields of Majorana neutrinos with definite
masses. Moreover, it should be emphasized that the 2n states with different helicity

of the n massive Majorana neutrinos correspond to the 2n neutrinos and antineutrinos

(V67V,LL7VT7 T 7v67v,u7vT7 o )

K.3 Dirac-Majorana mass term
Finally, we consider the Dirac-Majorana mass term given by
1
LoHM 3 (np) MPMnp +hee., (K.54)

where MPTM is a complex 2n x 2n matrix expressed as
M p\T
MD+M — ML (Ml ) ’ <K55)
MY My
and

ng, = ( (':)c ) . (K.56)

From Eq. (K.55), it follows that the matrix MP™M is symmetric:

o)

= MPM (K.57)

As in the last subsection, we assume that the eigenvalues of MP+M are not degenerate.

Then we have

T
MPM (UT> mUT, (K.58)
where U is a 2n X 2n unitary matrix, and m;; = m;d;; (m; > 0). Using Eq. (K.58), we
obtain )
Lo — 3 (n},),mn}, + h.c., (K.59)
where
ny = Ulny. (K.60)
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Furthermore, if we use

X1
X2
x=ni+ @), =| (K.61)
X2n
then we have
o — 1*m
= 9 Xmx
1 2n
= — 5 kaykxk (K62)
k=1
The fields x, satisfy the relations
Xk =Cx = (Xa)e - (K.63)

Therefore, x, are the fields of Majorana neutrinos with definite masses.
From Egs. (K.60) and (K.61), we find

n, =Un}, =Uxyg. (K.64)
It follows that ) )
vr =Y Unxer,  (vwg), =Y UriXer, (K.65)
k=1 k=1
where the index [ runs over n values: e, u,T,---, whereas the index I’ takes the n lower

values: e, i, 7,---. It should be emphasized that the left-handed fields of flavor neutrinos

are linear superpositions of the left-handed components of 2n Majorana fields.
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Appendix L

Dirac equation in flat space-time

We now give the derivation of Eq. (5.10). For the purpose of this, we use the Weyl
representation (G.18) for the Dirac matrices. In flat space-time, the Dirac equation is
given by

.0 _ 9
zh@\lf = (ngO’ -Pp + pime ) v, (L.1)

where p; are defined by Eq. (G.9).
Next, we shall show that there exists a unitary operator U which satisfies the relation

U (ngO' P+ p1m02> Ut = p3\/ P2 + m2ct o;p. (L.2)

In order to derive the unitary operator U = e satisfying Eq. (L.2), we consider

UTP3\/T92C2 —|—m2c4af.pU. (L.3)

p

Using the useful formula
e_%“mpge%“p2 = p3cosa + psina, (L.4)
we have

i o-p i o -
e 2% pay/pAc? + m%‘*pp ez = (p3cosa + py sina) \/p3c? + m2ct pp, (L.5)

where we have assumed that a can be represented as a power series of o -p in the following

way:

a=Y a,(oc-p)". (L.6)
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The right-hand side of Eq. (L.5) must be equal to

psco - P+ pymc?, (L.7)
and, therefore, we have B
cosa = L, (L.8)
[F2c2 + m2ch
2 =
sina = e o;p’ (L.9)
[F2c? + m2ch P
2 =
tana = T—Cg (L.10)
pc p
From this, we derive
2 =
a=tan! T—Cafp ) (L.11)
pc p
Therefore, using the unitary operator
1 lo-p
U =exp [ipgtanl (mcapﬂ , (L.12)
2 pc D

we obtain Eq. (L.2). Hence, there exists a unitary operator U satisfying Eq. (L.2).

U =U0 = ( VR ) , (L.13)

(3

If we set

then we can obtain Eq. (5.10) for the left-handed component.

7



Bibliography

[1] S. Weinberg, Phys. Rev. Lett. 19 (1967), 1264.
[2] A. Salam, Elementary Particle Theory (Almquist and Forlag, Stockholm, 1968)
[3] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974), 438.
[4] R. Colella, A.W. Overhauser and S.A. Werner, Phys. Rev. Lett. 34 (1975), 1472.
[5] D.M. Greenberger, Rev. Mod. Phys. 55 (1983), 875.
[6] Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959), 485.
[7] A.W. Overhauser and R. Colella, Phys. Rev. Lett. 33 (1974), 1237.
8] L.A. Page, Phys. Rev. Lett. 35 (1975), 543.
9] S.A. Werner, J.-L. Staudenmann and R. Colella, Phys. Rev. Lett. 42 (1979), 1103.
[10] J. Anandan, Phys. Rev. D 15 (1977), 1448.
[11] M. Dresden and C.N. Yang, Phys. Rev. D 20 (1979), 1846.
[12] J.J. Sakurai, Phys. Rev. D 21 (1980), 2993.
[13] J. Kuroiwa, M. Kasai and T. Futamase, Phys. Lett. A 182 (1993), 330.
[14] S. Wajima, M. Kasai and T. Futamase, Phys. Rev. D 55 (1997), 1964.
[15] D.V. Ahluwalia and C. Burgard, Gen. Rel. and Grav. 28 (1996), 1161.

[16] D.V. Ahluwalia and C. Burgard, preprint: gr-qc/9606031.

78



[17] T. Bhattacharya, S. Habib and E. Mottola, preprint: gr-qc/9605074.

18] Y. Kojima, Mod. Phys. Lett. A 11 (1996), 2065.

[19] Y. Grossman and H.J. Lipkin, Phys. Rev. D 55 (1997), 2760.

[20] C.Y. Cardall and G.M. Fuller, Phys. Rev. D 55 (1997), 7960.

[21] N. Fornengo, C. Giunti, C.W. Kim and J. Song, Phys. Rev. D 56 (1997), 1895.
[22] L. Stodolsky, Gen. Rel. and Grav. 11 (1979), 391.

(23] Y. Totsuka (SuperKamiokande Collaboration), in the Proceedings of the 28th Inter-

national Symposium on Lepton Photon Interactions, Hamburg, Germany, 1997.
[24] S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, USA, 1972)

[25] N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space (Cambridge Univer-
sity Press, Cambridge, 1984)

[26] D.R. Brill and J.A. Wheeler, Rev. Mod. Phys. 29 (1957), 465.

[27] L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78 (1950), 29.

28] S. Tani, Prog. Theor. Phys. 6 (1951), 267.

[29] F. Riehle et al., Phys. Rev. Lett. 67 (1991), 177.

[30] B. Kayser, Phys. Rev. D 24 (1981), 110.

[31] S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59 (1987), 671.

[32] J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, USA, 1989)
[33] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973), 652.

[34] R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

79



