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Abstract

We discuss the gravitational effects on Dirac particles which propagate in Kerr geometry.

In particular, we provide a simple framework for studying the gravitational effects on a

Dirac particle with infinitesimal mass. We perform our calculations in the slowly rotating,

weak field limit. The two-component Weyl equations with the corrections arising from

the infinitesimal mass and the gravitational field are obtained from the covariant Dirac

equation. Our approach is also applied to neutrino oscillations in the presence of the

gravitational field.
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Chapter 1

Introduction

The discoveries of a quantum concept and a new space-time concept are great achievements

in physics in this century. The former concept was systematized as a theory, together

with quantum mechanics, while the latter was first introduced by Einstein in the form of

special relativity in 1905, and the space-time theory involving gravity, general relativity,

was completed in 1916. On the other hand, one of the great physical problems in this

century is to unify the theories of the forces of nature. The various physical phenomena we

know can be explained by these theories. The electromagnetic interaction and the weak

interaction have been unified with the Weinberg-Salam theory [1], [2]. Moreover, attempts

to incorporate the strong interaction into a wider theory seem to be successful with the

so-called Grand Unified Theories (GUTs) [3]. These interactions except the gravitational

interaction are described in terms of the quantum theory. Although the gravitational

interaction was the first force to be investigated classically, it was the most difficult one

to be quantized. Many physicists have pursued the quantization of the gravitational field

with intense vigor over the past half of a century, and a considerable number of results are

gained. However, a satisfactory quantum theory of gravity is not yet completed. Hence

gravity appears to stand apart from the other three forces.

Next, we shall see what circumstances the quantum theory of gravity becomes impor-

tant under. Since the gravitational force is weaker than the other three forces by a factor

of about 1040, the gravitational interaction can be ignored in ordinary particle acceler-

ator experiments. However, at an energy scale of about 1019 GeV, the gravitational in-

teraction becomes dominant. To see this, let us recall that the Newtonian gravitational

force is given by F = Gm1m2/r
2, where the gravitational constant G is approximately
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(1.2× 1019 GeV)
−2

in the system of natural units (h̄ = c = 1). Note that the mass of a

particle can be regarded as the energy divided by c2. Therefore, if the particle has the so-

called Planck energy, 1019 GeV, then the gravitational force will be comparable to the other

forces. The Compton wavelength corresponding to this energy scale, 10−35 m, is called the

Planck length. These are, of course, far beyond the range of our instruments. However, at

the singularity at the center of a black hole, or at the instant of the Big Bang, the quantum

corrections will become important. Do we always have to consider these extreme situa-

tions to the problems in which gravity cannot be separated from the quantum theory? In

other words, do the physical phenomena in which gravitational effects and quantum effects

appear simultaneously occur only under these extreme situations? The answer is “No”.

There also exist these physical phenomena under ordinary situations, where there seems

to be no need to consider the quantization of the gravitational field. One of the represen-

tative examples is the so-called Colella-Overhauser-Werner (COW) experiment [4] using a

neutron interferometer (for a review see [5]). This kind of experiment has become possible

by the grace of recent progress in technology, and at the same time the other experiments

which have been described as thought experiments have also become realizable.

The COW experiment was the first experiment that measures the gravitational effects

on a wave function. The gravitational effects on this elegant experiment were often com-

pared with the Aharonov-Bohm (AB) effect [6]. Aharonov and Bohm suggested that even

if electromagnetic fields vanish, there exist the effects of the electromagnetic potentials on

quantum interference. Hence this effect is called AB effect. On the other hand, the COW

experiment showed the effect of the gravitational potential of Earth on quantum interfer-

ence. This effect and the detectability were first suggested by Overhauser and Colella [7],

and the effect was verified by Colella, Overhauser and Werner [4] using a neutron interfer-

ometer. Although their analysis, which was based on inserting the Newtonian gravitational

potential into the Schrödinger equation, was so simple, this experiment was conceptually

very important in the history of the quantum theory. After the COW experiment had been

done, another effect arising from the rotation of Earth was discussed by Page [8]. The ex-

perimental verification of this effect was provided by Werner, Staudenmann and Colella [9].

This theoretical expression was also derived by various authors using various methods [10],

[11], [12]. Furthermore, the general relativistic effects including these effects were derived

by Kuroiwa, Kasai and Futamase [13] starting with the covariant Klein-Gordon equation,

which describes a spinless particle. However, a neutron has spin-1/2 and is described by
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the Dirac equation. Under this consideration, Wajima, Kasai and Futamase [14] have de-

rived the general relativistic effects including the spin effects by using the covariant Dirac

equation.

On the other hand, gravitational effects on another physical phenomenon, neutrino os-

cillations, have been much discussed recently [15], [16], [17], [18], [19], [20], [21]. The

COW experiment and this have common ground that the gravitational effects appear in

the quantum interference. However, there are some differences between the two. In the

former case, the gravitational effects on a single mass eigenstate are investigated, and the

spatial spread of the wave function plays a significant role. On the other hand, in the

latter case, the existence of the different mass eigenstates and the linear superposition are

important. Moreover, it is another important difference whether the related particle is

non-relativistic or ultra-relativistic.

It seems that the controversy about the gravitationally induced neutrino oscillation

phases arises. Ahluwalia and Burgard [15] state that the phases amount to approximately

20 % of the kinematic counterparts in the vicinity of a neutron star. Nevertheless, the

definition of the neutrino energy and the derivation of the phases were not clear in the

original paper [15]. The other groups [17], [18], [20], [21] have obtained similar results for

a radially propagating neutrino; the results seem to be different from that in Ref. [15].

However, the authors of Ref. [17] assume that the different mass eigenstates are produced

at different times. This assumption seems to be questionable because the relative phase

between the two mass eigenstates initially becomes arbitrary. These papers except Ref.

[20] are based on the previous work [22], in which the classical action is taken as a quan-

tum phase. Therefore, the effects arising from the spin of the particle are not considered in

these papers. On the other hand, the authors of Ref. [20] use the covariant Dirac equation,

but they also calculate the classical action along the particle trajectory in the end.

In this situation, we shall provide a simple framework different from the previous work

for studying the gravitational effects on a Dirac particle with infinitesimal mass such as

a neutrino. (The experimental confirmation which shows that neutrinos have nonzero

mass is not yet obtained. However, the recent experimental report [23] seems to suggest

neutrinos to be massive.) In particular, we consider the propagation of the particle in

the Kerr geometry, by which the external field of a rotating star can be described. We

do not merely calculate the classical action along the particle trajectory, but start from

the covariant Dirac equation. We shall perform our calculations in the slowly rotating,
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weak field limit, and derive the two-component Weyl equations with the corrections arising

from the small mass and the gravitational field. Furthermore, we shall discuss the neutrino

oscillations in the presence of the gravitational field.

The organization of this thesis is as follows. In Chapter 2, we summarize the covariant

formalism of general fields and derive the covariant Dirac equation from the viewpoint

of the strong Principle of Equivalence. In Chapter 3, we consider the gravitational field

arising from a rotating object, and specify the metric and the coordinates in terms of the

(3+1) formalism. In the last part of this chapter, we discuss the covariant Dirac equation

in this field, and derive an equation of the Schrödinger-type. In Chapter 4, following the

discussion of Ref. [14], we derive the Schrödinger equation with general relativistic cor-

rections for a non-relativistic particle, and summarize the general relativistic effects on a

quantum interferometer. In Chapter 5, we derive the Weyl equations with general rela-

tivistic corrections for a ultra-relativistic particle, and discuss the gravitationally induced

neutrino oscillation phases. Finally, we shall give a summary and conclusion in Chapter 6.

We use the following notation; Latin indices i, j, k, and so on generally run over three

spatial coordinate labels 1, 2, 3 or x, y, z, Latin indices a, b, c, and so on over the four

space-time inertial coordinate labels 0, 1, 2, 3 or t, x, y, z, and Greek indices α, β, γ, and

so on over the four coordinate labels in a general coordinate system. Furthermore, we use

the metric signature (+,−,−,−).
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Chapter 2

Covariant formalism

In this chapter, we review the covariant formalism of general fields including spinors. We

shall derive the covariant Dirac equation in the last part of this chapter. (See also Ref.

[24], [25], [26].)

In the case of tensor equations, we replace all Lorentz tensors T a···
b··· with objects Tα···

β···
which behave like tensors under general coordinate transformations to derive the general-

relativistic equations from the special-relativistic ones. Moreover, we replace all derivatives

∂a with covariant derivatives∇α, and replace ηab with gαβ. The equations are then generally

covariant. Thus we can make equations describing scalar fields or tensor fields generally

covariant forms. This method actually works only for objects which behave like tensors

under Lorentz transformations, and not for spinor fields describing spin-1/2 particles. How

then can we incorporate spinors into general relativity? The clue to the question lies in a

fact that spinors are well defined in the Minkowski space-time.

We now consider locally inertial coordinate systems at every space-time point, and define

general fields involving spinors in these coordinate systems. By relating the locally inertial

coordinate systems to general non-inertial coordinate systems, we shall extend the theories

of the fields into the curved space-time. From the viewpoint of the strong Principle of

Equivalence, which states that all the laws of nature in a locally inertial coordinate system

take the same form as in unaccelerated Cartesian coordinate systems in the absence of

gravitation, this approach is reasonable.
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2.1 Covariant differentiation

To begin with, let us introduce the so-called tetrad, or vierbein formalism. We erect a set

of locally inertial coordinates ξ a
X

at every space-time point X. The metric in any general

non-inertial coordinate system is then

gαβ(x) = e(a)
α(x) e

(b)
β(x) ηab, (2.1)

where

e(a)
α(X) ≡

(
∂ξ a

X
(x)

∂xα

)

x=X

. (2.2)

If we change the general non-inertial coordinates from xα to x′α, then e(a)
α changes according

to

e(a)
α → e′(a)

α =
∂xβ

∂x′α
e
(a)

β. (2.3)

Thus, the tetrad e(a)
α forms four covariant vector fields.

Given any contravariant vector field Aα(x), we can use the tetrad to refer its components

to the locally inertial coordinate system ξ a
X

at x:

Ãa ≡ e(a)
αAα, (2.4)

which behaves like scalars under general coordinate transformations. We can do the same

with general tensor fields:

Ãa ≡ e α
(a) Aα, (2.5)

B̃a
b ≡ e(a)

α e β
(b) Bα

β, etc, (2.6)

where

e α
(a) ≡ ηab gαβ e

(b)
β. (2.7)

Furthermore, it is easy to show that the tetrad satisfies the relations

e α
(a) e

(a)
β = δα

β, (2.8)

e α
(a) e(b)

α = δ b
a . (2.9)

We have shown how to derive objects which behave like scalars under general coordinate

transformations. Since the Principle of Equivalence requires that special relativity should
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apply in locally inertial frames, the scalar field components Ãa, B̃a
b, and so on, which are

defined in an arbitrarily chosen locally inertial coordinate system, must behave like vectors

or tensors with respect to Lorentz transformations Λa
b(x) at x:

Ãa(x) → Λa
b(x) Ãb(x), (2.10)

B̃a
b(x) → Λa

c(x) Λ d
b (x) B̃c

d(x), etc, (2.11)

where

ηabΛ
a
c(x)Λb

d(x) = ηcd. (2.12)

Similarly, the tetrad e(a)
α changes according to

e(a)
α(x) → Λa

b(x) e(b)
α(x). (2.13)

In general, an arbitrary field ψ̃m defined in a locally inertial coordinate system will change

in the following way:

ψ̃m(x) → ∑
n

[U (Λ(x))]mn ψ̃n(x), (2.14)

where U (Λ(x)) is a matrix representation of the Lorentz group. For example, if ψ̃ is a

covariant vector Ãa, the U (Λ(x)) is simply

[U (Λ(x))] b
a = Λ b

a (x), (2.15)

whereas for a contravariant tensor T̃ ab,

[U (Λ(x))]ab
cd = Λa

c(x) Λb
d(x). (2.16)

An ordinary derivative is, of course, a coordinate vector in the sense that it transforms

as a vector under a general coordinate transformation x → x′:

∂

∂xα
→ ∂

∂x′α
=

∂xβ

∂x′α
∂

∂xβ
. (2.17)

We can also use the tetrad to form a coordinate scalar derivative:

e α
(a)

∂

∂xα
. (2.18)

This coordinate scalar derivative corresponds to the ordinary derivative defined in locally

inertial coordinate systems. Although this is actually a coordinate scalar, it does not have
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simple transformation properties under position-dependent Lorentz transformations when

it acts on general fields. Given a general field ψ̃, we have the following transformation rule

under the Lorentz transformation rule (2.14):

e α
(a) (x)

∂

∂xα
ψ̃(x) → Λ b

a (x) e α
(b) (x)

∂

∂xα

{
U (Λ(x)) ψ̃(x)

}

= Λ b
a (x) e α

(b) (x)

[
U (Λ(x))

∂

∂xα
ψ̃(x) +

{
∂

∂xα
U (Λ(x))

}
ψ̃(x)

]
.

(2.19)

In order to extend the theory in flat space-time into curved space-time, what we have to

do is to make an operator D̃a which under a position-dependent Lorentz transformation

Λa
b(x), satisfies the transformation rule

D̃aψ̃(x) → Λ b
a (x)U (Λ(x)) D̃bψ̃(x). (2.20)

Thus D̃aψ̃ behaves like a tensor with one extra covariant rank under position-dependent

Lorentz transformations. By replacing ∂aψ̃ in field equations in flat space-time with D̃aψ̃,

we can obtain the field equations which are independent of the choice of locally inertial

coordinate systems.

Considering Eq. (2.19), we can construct a coordinate-scalar Lorentz-vector derivative

D̃a of the form

D̃a ≡ e α
(a)

[
∂

∂xα
− Γα

]
, (2.21)

where Γα is a matrix satisfying the Lorentz transformation rule

Γα(x) → U (Λ(x)) Γα(x) U−1 (Λ(x)) +

[
∂

∂xα
U (Λ(x))

]
U−1 (Λ(x)) . (2.22)

In fact, we can obtain the transformation rule (2.20) under this definition.

The coordinate-scalar Lorentz-vector derivative D̃a is a covariant derivative with respect

to the position-dependent Lorentz transformations. The introduction of this derivative

allows us to extend the discussion of general fields involving spinors into curved space-

time. Therefore, we can obtain the general field equations in curved space-time.

2.2 Connection

In this section, we shall investigate the structure of the connection Γα introduced in the

last section.

10



For the purpose of this, it will be sufficient to consider infinitesimal Lorentz transforma-

tions close to the identity:

Λa
b(x) = δa

b + ωa
b(x), |ωa

b| ¿ 1. (2.23)

Since the Lorentz transformation Λa
b(x) is restricted by the condition (2.12), to first order

in ω, we have

ωab(x) = −ωba(x), (2.24)

where the indices on ω are lowered or raised with η. Under this transformation, the matrix

representation D (Λ(x)) must be written as

U (1 + ω(x)) = 1 +
1

2
ωab(x) σab, (2.25)

where σab are a set of constant matrices, which can always be chosen as an antisymmetric

tensor:

σab = −σba. (2.26)

For example, if we consider a covariant vector Ãa, then we have

[σab]
d

c = ηacδ
d

b − ηbcδ
d

a , (2.27)

and for a contravariant tensor T̃ ab, we have

[σab]
cd

ef = δ c
a ηbeδ

d
f − δ c

b ηaeδ
d
f + δ d

a ηbfδ
c
e − δ d

b ηafδ
c
e. (2.28)

Furthermore, the matrices σab satisfy the commutation relations:

[σab, σcd] = ηcbσad − ηcaσbd + ηdbσca − ηdaσcb (2.29)

with square brackets denoting the usual commutator

[A,B] ≡ AB −BA. (2.30)

The details are summarized in Appendix A.

Using the transformation rule (2.22), we see that under the infinitesimal Lorentz trans-

formation (2.23), the connection Γα transforms according to

Γα(x) → Γα(x) +
1

2
ωab(x) [σab, Γα(x)] +

1

2
σab

∂

∂xα
ωab(x). (2.31)

11



We now assume that the connection Γα has the form:

Γα(x) =
1

2
Cab

α(x) σab, (2.32)

where the Latin indices on C are, of course, lowered or raised with η, whereas the Greek

index with g. In this case, Cab
α(x) is antisymmetric in a and b. Using the transformation

rule (2.31) and the commutation relations (2.29), we obtain the following transformation

rule of Cab
α(x):

Cab
α(x) → Cab

α(x) + ωa
c(x)Ccb

α(x) + ωb
c(x)Cac

α(x) +
∂

∂xα
ωab(x). (2.33)

Until now, we have investigated the transformation property of the connection Γα. Next,

we turn our attention to the relation between the connection Γα and the tetrad e(a)α.

The coordinate-scalar Lorentz-vector derivative D̃a is a covariant derivative with respect

to local Lorentz transformations. This derivative D̃a is different from the covariant deriva-

tive ∇α used in tensor analysis. Nevertheless, there must be some relation between the

two. In order to investigate the relation, we consider the case in which the derivative D̃a

acts on the tetrad e(a)α. Using Eq. (2.27), we have

D̃a e(b)α = e µ
(a)

[
∂

∂xµ
e(b)α − 1

2
Cef

µ [σef ]
c

b e(c)α

]

= e µ
(a)

[
∂

∂xµ
e(b)α − ηbc Ccd

µ e(d)α

]
. (2.34)

However, we have not considered the generally covariant index α. The tetrad e(a)α behaves

like not only a Lorentz-vector, but also a coordinate-vector. Hence we have to consider the

property as a coordinate-vector as well. We know the covariant derivative of a coordinate

covariant vector. We now introduce a total covariant derivative D̃a defined as

D̃a e(b)α = e µ
(a)

[
∂

∂xµ
e(b)α − ηbc Ccd

µ e(d)α − Γν
αµ e(b)ν

]
, (2.35)

where Γν
αµ is the Christoffel symbol. We can do the same with the tetrad e(a)

α:

D̃a e(b)
α = e µ

(a)

[
∂

∂xµ
e(b)

α − ηcd Cbc
µ e(d)

α − Γν
αµ e(b)

ν

]
. (2.36)

By the way, the covariant derivative of the metric gαβ vanishes:

∇µ gαβ ≡ 0. (2.37)
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Hence, from Eq. (2.1) we find

0 = ∇µ gαβ

= e(a)
µ D̃a gαβ

= e(a)
µ

[(
D̃ae

(b)
α

)
e(b)β + e(b)

α

(
D̃ae(b)β

)]
. (2.38)

The simplest solution of this equation is

D̃a e(b)
α = D̃a e(b)α = 0. (2.39)

From now on, we regard this solution as a fundamental condition. Using this condition,

we can find the relation between the connection Γα and the tetrad e(a)α. From Eqs. (2.35)

and (2.36), we obtain

Cab
α(x) = −ηacηbd e λ

(c) ∇α e(d)λ. (2.40)

Therefore, the connection Γα is given by

Γα(x) = −1

2
σabgµν e µ

(a) ∇α e ν
(b) . (2.41)

Note that under the infinitesimal Lorentz transformations (2.23), the tetrad e(a)α transforms

according to

e(a)α(x) → e(a)α(x) + ω b
a (x) e(b)α(x), (2.42)

and, hence, we have

e λ
(a) (x)∇α e(b)λ(x) → e λ

(a) (x)∇α e(b)λ(x) + ω c
a (x) e λ

(c) (x)∇α e(b)λ(x)

+ ω c
b (x) e λ

(a) (x)∇α e(c)λ(x)− ∂

∂xα
ωab(x). (2.43)

Therefore, we see that Cab
α(x) given by Eq. (2.40) satisfies the transformation rule (2.33).

2.3 Dirac equation in curved space-time

In this section, we shall use the covariant derivative D̃a discussed in the previous sections

to derive the Dirac equation in curved space-time.

Let us consider the Dirac equation in locally inertial coordinates systems. This equation

takes the well-known form with respect to locally inertial coordinates ξ a
X

:
[
ih̄γ(a) ∂

∂ξ a
X

−mc

]
Ψ̃ (ξ) = 0, (2.44)
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where the Dirac matrices γ(a) satisfy the relations

γ(a)γ(b) + γ(b)γ(a) = 2 ηab, (2.45)

and Ψ̃ is the Dirac spinor defined in locally inertial coordinate systems.

In order to extend Eq. (2.44) into curved space-time, we replace the derivative ∂/∂ξ a
X

with covariant derivative D̃a:
[
ih̄γ(a)e α

(a)

(
∂

∂xα
− Γα

)
−mc

]
Ψ (x) = 0, (2.46)

It is convenient to introduce a generally covariant derivative Dα defined as

Dα ≡ ∂

∂xα
− Γα (2.47)

and generally covariant Dirac matrices γα defined as

γα ≡ γ(a)e α
(a) . (2.48)

Using these definitions, we can derive the Dirac equation in the generally covariant form

[ih̄γαDα −mc] Ψ (x) = 0. (2.49)

Furthermore, we find that the covariant Dirac matrices γα satisfy the relations

γαγβ + γβγα = 2 gαβ. (2.50)

In the case of spinors, we have

σab =
1

4

[
γ(a), γ(b)

]
. (2.51)

(See Appendix A.) Therefore, from Eq. (2.41) we obtain the so-called spin connection

Γα = −1

8

[
γ(a), γ(b)

]
gµν e µ

(a) ∇α e ν
(b) . (2.52)

Finally, let us confirm that the covariant Dirac equation derived above gives the natural

extension of the Klein-Gordon equation.

We now multiply Eq. (2.49) by the operator
[
ih̄γβDβ + mc

]
on the left. Then we have

[
h̄2γαDαγβDβ + m2c2

]
Ψ = 0. (2.53)
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Using a generally covariant total derivative Dα:

Dα ≡ e(a)
αD̃a, (2.54)

we can write

γαDαγβDβΨ

= γα
[(
Dαγβ

)
DβΨ + γβ (DαDβΨ)

]

= γαγβDαDβΨ

=
(
gαβ +

1

2

[
γα, γβ

])
DαDβΨ

=
(
gαβDαDβ +

1

4

[
γα, γβ

]
[Dα,Dβ]

)
Ψ, (2.55)

where we have used the following relation:

Dαγβ = γ(a)Dα e β
(a) = 0. (2.56)

Moreover, we can derive
1

4

[
γα, γβ

]
[Dα,Dβ] = −1

4
R, (2.57)

where R is the Ricci scalar. (See Appendix B for the details of the calculations.) Therefore,

we obtain the following equation in curved space-time:

[
h̄2gαβDαDβ + m2c2 − 1

4
h̄2R

]
Ψ = 0. (2.58)

This shows the non-minimally coupled generalization of the Klein-Gordon equation. Fur-

thermore, it is shown that this equation for a massless particle is invariant under conformal

transformations. (See Appendix C.)

In the case of a scalar field Φ, however, we have

[
h̄2gαβ∇α∇β + m2c2

]
Φ = 0, (2.59)

because σab vanish. Nevertheless, if we demand that the equation for a massless particle

becomes conformally invariant, then we derive the following Klein-Gordon equation:

[
h̄2gαβ∇α∇β − 1

6
h̄2R

]
Φ = 0. (2.60)

(See Appendix C for the details.)
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2.4 Another approach

We have obtained the covariant Dirac equation in the last section. In this section, however,

we provide another approach. Using this approach, we can derive the covariant Dirac

equation again.

In this approach, natural generalization is applied to spinors as well as tensors. The

spinors are connected with space-time through the relations

γαγβ + γβγα = 2 gαβ. (2.61)

These relations are the natural generalization of the relations

γ(a)γ(b) + γ(b)γ(a) = 2 ηab. (2.62)

Moreover, we have to generalize the covariant differentiation in tensor analysis. For the

sake of the generalization, it is necessary to introduce four 4 × 4 matrices Γα, which are

called a spin connection. Using this quantity, we can define the total generally covariant

derivative of the covariant Dirac matrices γα as

Dαγβ =
∂

∂xα
γβ − Γµ

βαγµ − Γαγβ + γβΓα. (2.63)

The spin connection Γα is uniquely determined up to an additive multiple of the unit matrix

by

Dαγβ = 0. (2.64)

This condition corresponds to the identity

∇αgµν ≡ 0. (2.65)

We now introduce the constant Dirac matrices γ(a) defined as

γ(a) = e(a)
αγα. (2.66)

The Dirac matrices γ(a), of course, satisfy the relations (2.62). Using this quantity, from

Eqs. (2.63) and (2.64) we find

γ(b)∇αe
(b)

β − Γα γ(b) e
(b)

β + e
(b)

β γ(b) Γα = 0. (2.67)
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Contracting this with e β
(a) , we derive

[
Γα, γ(a)

]
= γ(b) e β

(a) ∇α e
(b)

β. (2.68)

From this, we can derive

Γα = −1

8

[
γ(a), γ(b)

]
gµν e µ

(a) ∇α e ν
(b) + aαI, (2.69)

where aα is arbitrary and I is the unit matrix. (See Appendix D for the derivation of

Eq. (2.69).) In order to derive Eq. (2.69), we have utilized the fact that the following 16

matrices are linearly independent:

ΓA =
{
I , γ(a) , σ̃ab , γ(5)γ(a) , γ(5)

}
, (2.70)

where σ̃ab are given by

σ̃ab = 2iσab =
i

2

[
γ(a), γ(b)

]
, (2.71)

and γ(5) is defined as

γ(5) = γ(5) = −i γ(0)γ(1)γ(2)γ(3). (2.72)

(See Appendix E for the proof of the linear independence.)
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Chapter 3

Covariant Dirac equation in Kerr
geometry

We now consider the gravitational field arising from a rotating object. We assume that

the external field of this object is described by the Kerr metric. In particular, we restrict

ourselves to the slowly rotating, weak field limit, and specify the metric and the coordi-

nates in terms of the (3+1) formalism. Furthermore, we shall derive an equation of the

Schrödinger-type from the covariant Dirac equation (2.49) in the last part of this chapter.

3.1 Space-time

To start, let us consider the following line element called the Boyer-Lindquist form:

ds2 =
1

ρ2

(
∆− a′2 sin2 θ

)
c2dt2 +

4ma′

ρ2
r′ sin2 θcdtdφ

− ρ2

∆
dr′2 − ρ2dθ2 − 1

ρ2

[(
r′2 + a′2

)2 − a′2∆ sin2 θ
]
sin2 θdφ2, (3.1)

∆ ≡ r′2 − 2mr′ + a′2, (3.2)

ρ2 ≡ r′2 + a′2 cos2 θ, (3.3)

where using the mass of the rotating object, M , m is defined as follows:

m ≡ GM

c2
, (3.4)
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and a′ is the Kerr parameter expressed in terms of the mass M and angular momentum J :

a′ ≡ J

Mc
. (3.5)

Assuming that the rotating object is a sphere of radius R with uniform density, we have

a′ ≡ J

Mc
=

2

5c
R2ωS, (3.6)

where ω
S

denotes the angular velocity of this object. (If the rotating object deviates from a

sphere, or has an inhomogeneous density distribution, then the numerical factor 2/5 might

be changed by a factor of order unity.)

The slow rotation approximation up to first order in a′, gives

ds2 =
(
1− 2m

r′

)
c2dt2 +

4ma′

r′
sin2 θcdtdφ

−
(
1− 2m

r′

)−1

dr′2 − r′2dθ2 − r′2 sin2 θdφ. (3.7)

Next, we perform the two continuous coordinate transformations

r′ = r
(
1 +

m

2r

)
, (3.8)





x′ = r sin θ cos φ,

y′ = r sin θ sin φ,

z′ = r cos θ,

(3.9)

so that we obtain

ds2 =

(
1− m

2r

)2

(
1 + m

2r

)2 c2dt2 +
4ma

r3
(
1 + m

2r

)2 (x′dy′ − y′dx′) dt

−
(
1 +

m

2r

)4 (
dx′2 + dy′2 + dz′2

)
, (3.10)

where a is defined as a = ca′. Moreover, the weak field limit up to O(1/c2), gives

ds2 =

(
c2 + 2 φ + 2

φ2

c2

)
dt2 +

4GMa

c2r3
(x′dy′ − y′dx′) dt

−
(

1− 2
φ

c2

) (
dx′2 + dy′2 + dz′2

)
, (3.11)
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where φ is the Newtonian gravitational potential, φ = −GM/r.

Furthermore, we consider the case that the observer is revolving around this object in

a plane perpendicular to the rotation axis. Assuming that the angular velocity of the

observer, ω
O
, is constant, the relation between the observer’s rest frame (t, x, y, z) and the

asymptotically static coordinate frame (t, x′, y′, z′) is




x′ = x cos ω
O
t− y sin ω

O
t,

y′ = x sin ω
O
t + y cos ω

O
t,

z′ = z.

(3.12)

Performing this coordinate transformation, we obtain the following line element:

ds2 =

[
c2 + 2φ− ω2

O

(
x2 + y2

)
+ 2

φ2

c2
+

8GMR2

5c2r3
ω

O
ω

S

(
x2 + y2

)
+ 2

φ

c2
ω2

O

(
x2 + y2

)]
dt2

−
[
ω

O
− 2

φ

c2
ω

O
− 4GMR2

5c2r3
ω

S

]
(xdy − ydx) dt−

(
1− 2

φ

c2

) (
dx2 + dy2 + dz2

)
,

(3.13)

where we have used Eq. (3.6). Using this metric, we can calculate the Christoffel symbol.

The results are shown in Appendix F.

3.2 (3+1) decomposition

The covariant Dirac equation (2.49) has beautiful space-time symmetry. However, it is

sometimes convenient to break the symmetrical form of this equation. In particular, this

will be useful for investigating the time evolution of a certain physical quantity.

For the purpose of this, we use the (3+1) formalism. In the (3+1) formalism, the metric

gαβ is split as follows:

g00 = N2 − γijN
iN j, (3.14)

g0i = −γijN
j ≡ −Ni, (3.15)

gij = −γij, (3.16)

where N is the lapse function, N i is the shift vector, and γij is the spatial metric on the

3D hypersurface. We define γij as the inverse matrix of γij. Then gαβ is also split as

g00 =
1

N2
, (3.17)
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g0i = −N i

N2
, (3.18)

gij =
N iN j

N2
− γij. (3.19)

Using the metric (3.13) derived in the last section, we can write the lapse function, the

shift vector and the spatial metric in the following way:

N = c

(
1 +

φ

c2
+

φ2

2c4

)
, (3.20)

Nx = −
(
ω

O
− 4GMR2

5c2r3
ω

S

)
y, (3.21)

Ny =

(
ω

O
− 4GMR2

5c2r3
ω

S

)
x, (3.22)

N z = 0, (3.23)

γij =

(
1− 2

φ

c2

)
δij. (3.24)

3.3 Equation of Schrödinger-type

In this section, we shall derive an equation of the Schrödinger-type from the covariant Dirac

equation (2.49). For the purpose of this, we choose the tetrad

e µ
(0) = c

(
1

N
,−N i

N

)
, (3.25)

e µ
(k) =

(
0, e i

(k)

)
, (3.26)

where the spatial triad e i
(k) is defined as

γij e i
(k) e j

(l) = δkl. (3.27)

From Eqs. (3.20)–(3.24), we derive

e 0
(0) = 1− φ

c2
, (3.28)

e 1
(0) =

(
ω

O
− φ

c2
ω

O
− 4GMR2

5c2r3
ω

S

)
y, (3.29)
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e 2
(0) = −

(
ω

O
− φ

c2
ω

O
− 4GMR2

5c2r3
ω

S

)
x, (3.30)

e 3
(0) = 0, (3.31)

e i
(j) =

(
1 +

φ

c2

)
δ i
j . (3.32)

From this, we can also calculate the components of the spin connection. (See Appendix

G.)

Using our choice of the tetrad, the covariant Dirac matrices γα are written as

γ0 = γ(a)e 0
(a) = γ(0) c

N
, (3.33)

γi = γ(a)e i
(a) = −γ(0) c

N
N i + γ(j)e i

(j). (3.34)

Hence the covariant Dirac equation (2.49) becomes

ih̄γ(0) c

N

∂

∂t
Ψ =

[(
−γ(0) c

N
N i + γ(j)e i

(j)

) (
−ih̄

∂

∂xi
+ ih̄Γi

)
+ ih̄γ(0) c

N
Γ0 + mc

]
Ψ. (3.35)

Multiplying this by γ(0)cN , we derive the equation of the Schrödinger-type:

ih̄
∂

∂t
Ψ = HΨ

=
[(

γ(0)γ(j)cNe i
(j) −N i

)
(pi + ih̄Γi) + ih̄Γ0 + γ(0)mc2N

]
Ψ, (3.36)

where pi is the momentum operator in flat space-time, and we have used
(
γ(0)

)2
= 1/c2.

If we adopt the standard representation as the constant Dirac matrices, then in flat space-

time, we have the well-known form

ih̄
∂

∂t
Ψ =

(
cα · p + mc2β

)
Ψ. (3.37)

On the other hand, if we use the Weyl representation, then for a massless particle we derive

the Weyl equations

ih̄
∂

∂t
ψ = ±cσ · pψ, (3.38)

where ψ denotes the two-component spinor. (See also Appendix G.)
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Chapter 4

Non-relativistic limit

In this chapter, we restrict ourselves to the non-relativistic limit, that is, the case that the

rest energy of the particle is much larger than the kinetic energy. In this case, it will be

sufficient to expand the Hamiltonian with respect to 1/c, because the ratio of the kinetic

energy to the rest energy, p/mc, is much smaller than unity.

We shall obtain the non-relativistic Hamiltonian by performing the Foldy-Wouthuysen-

Tani(FWT) [27], [28] transformation. Furthermore, we shall consider the gravitational

effects on quantum interferometry experiments, and investigate the gravitationally induced

phase difference in the quantum interferometer. Note that the quantum interferometry

experiments in the laboratory are done on Earth. Thus we can choose

ω
S

= ω
O

= ω. (4.1)

4.1 Non-relativistic Hamiltonian

Before performing the FWT transformation, we redefine the spinor and the Hamiltonian

in the following way:

Ψ′ = γ1/4Ψ, H ′ = γ1/4Hγ−1/4, (4.2)

where γ is the determinant of the spatial metric:

γ = det (γij) . (4.3)

Since the invariant scalar product is

(ψ, ϕ) ≡
∫

ψϕ
√

γd3x, (4.4)
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the definition of the scalar product becomes the same as that in flat space-time under this

redefinition:

〈ψ′, ϕ′〉 ≡
∫

ψ′ϕ′d3x. (4.5)

It is sometimes convenient to adopt this definition of the scalar product.

We shall obtain the non-relativistic Hamiltonian by applying the FWT transformation

to the Hamiltonian H ′. Performing this transformation, we can obtain the “even” operator

up to the order of our interest:

H̃ ′ = UH ′U†

=


 H̃+ 0

0 H̃−


 + O

(
1

c4

)
. (4.6)

The spinor is also divided into each of the two-component spinors:

Ψ̃ =


 Φ

χ


 , (4.7)

where Φ and χ is called the “large” and “small” component, respectively.

Next, we define the reduced Hamiltonian as follows:

H+ ≡ H̃+ −mc2. (4.8)

Using this, we obtain the Schrödinger equation with general relativistic corrections for the

“large” component in the form

ih̄
∂

∂t
Φ = H+Φ

=

[
p2

2m
+ mφ− ω · (L + S)

+
1

c2

(
4GMR2

5r3
ω · (L + S)− p4

8m3
+

1

2
mφ2 +

3

2m
p · φp

)

+
1

c2

(
3GM

2mr3
L · S +

6GMR2

5r5
S · [r × (r × ω)]

)]
Φ, (4.9)

where S = h̄σ/2 is the spin of the particle with the Pauli spin matrices σ. The details

of the calculations are summarized in Appendix H. Furthermore, following the canonical

quantization procedure, we can obtain this non-relativistic Hamiltonian with S = 0, again.

(See Appendix I.)
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4.2 Gravitational effects on quantum interferometer

In this section, we consider the gravitational effects on quantum interferometer experiments,

and investigate the gravitationally induced phase difference in the quantum interferometer.

In particular, we shall derive the phase difference from the non-relativistic Hamiltonian

derived in the last section.

4.2.1 Quantum interferometer experiments

Before we discuss the gravitationally induced phase difference, we briefly review the prin-

ciple of the quantum interferometer.

The neutron interferometer is a typical one. The neutron interferometer is a extraordi-

nary piece of experimental equipment which allows us to check the basic ideas of quantum

mechanics in the laboratory. One of the most important attributes of the neutron interfer-

ometer is its conceptual simplicity. We here present a simplified model of the interferometer.

The simplest type of the interferometer is constructed from a single crystal. The schematic

drawing of the interferometer is shown in Fig. 4.1. The incident neutron beam is split into

two coherent sub-beams at point A. This split occurs as a result of Bragg scattering off the

atomic planes perpendicular to the face of the crystal. At points B and C, the sub-beams

are redirected. Finally, they interfere at point D.

4.2.2 Gravitationally induced phase difference

The non-relativistic Hamiltonian in Eq. (4.9) can be written as

H+ = H0 +
∑

k

∆Hk, (4.10)

where H0 corresponds to the Hamiltonian for a non-relativistic particle which propagates

in flat space-time:

H0 =
p2

2m
. (4.11)

If we use Φ0 satisfying the Schrödinger equation

ih̄
∂

∂t
Φ0 = H0Φ0, (4.12)
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Figure 4.1: The neutron interferometer.

then the Schrödinger equation (4.9) is formally solved in the following way:

Φ = Φ0 exp

(
i
∑

k

βk

)
, (4.13)

βk = −1

h̄

∫ t

∆Hkdt. (4.14)

Therefore, for the two neutron beams which follow the path ABD and the path ACD,

respectively, the phase difference at point D is

∆βk = βk (path ACD) − βk (path ABD) = −1

h̄

∮
∆Hkdt. (4.15)

(See Fig. 4.1.) Let us evaluate the phase difference arising from each correction term in

order.

First, the gravitational potential term ∆H1 = mφ gives the phase shift

∆β1 =
m2gAλ

2πh̄2 sin θ, (4.16)

where g is the acceleration of gravity, A is the area inside the interferometry loop; A is

given by A = dh sin θ (See Fig. 4.1), λ is the de Broglie wavelength, and θ is the rotation
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angle of the interferometer relative to the horizontal plane. The effect arising from this

phase shift was first predicted by Overhauser and Colella [7], and observed with a neutron

interferometer [4].

Next, we consider the term ∆H2 = −ω · L, which represents the coupling between the

rotation of Earth and the angular momentum. The phase shift arising from this term is

∆β2 =
2m

h̄
ω ·A, (4.17)

where

A =
1

2

∮
r × dr (4.18)

is the area vector of the interferometry loop. This phase shift is caused by the inertial

force, and hence it dose not depend on gravity. The phase shift (4.17) was first derived

by Page [8] from the analogy with the Sagnac effect in optical interferometry, and later

by other authors using various methods [10], [11], [12]. The experimental verification was

provided in Ref. [9]. The Sagnac effect was observed also in atomic interferometry [29].

The third contribution arises from a general relativistic effect called Lense-Thirring effect:

∆β3 = −4GMR2m

5c2h̄
ω ·

∮ r × dr

r3

=
2m

5h̄

rg

R

[
ω − 3

(
R

R
· ω

)
R

R

]
·A, (4.19)

where R is the position vector of the interferometer from the center of Earth, and rg ≡
2GM/c2 is the Schwarzschild radius of Earth. This is very similar to the Biot-Savart law

in the classical electromagnetism. The phase difference (4.19) was derived in Ref. [13].

We here find that the phase difference (4.19) depends on the orientation. In particular, we

have

∆β3 =
1

5

rg

R
∆β2 on the equator (R⊥ω) , (4.20)

whereas

∆β3 = −2

5

rg

R
∆β2 on the North Pole (R‖ω) . (4.21)

Therefore, if we carry out the experiments in different places on Earth, then we can separate

this effect from the Newtonian effect in principle. Until now, the Lense-Thirring effect has

not yet been observed in any interferometer experiments. This is of course due to the

smallness. (The phase shift arising from the Lense-Thirring effect is rg/R ∼ 10−9 times

smaller than that due to the Sagnac effect.)
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The fourth correction term ∆H4 = p4/(8m3c2) is a purely special relativistic correction

to the kinematic energy. Since this term is independent of the path, the phase difference

in the interferometer experiments is not produced.

The fifth correction term ∆H5 = mφ2/(2c2) can be regarded as the red shift correction

to the potential energy. The phase difference is

∆β5 = −1

2

rg

R
∆β1. (4.22)

The sixth contribution ∆H6 = 3p · φp/(2mc2) is the redshift correction to the kinetic

energy. The phase difference is

∆β6 =
3

2

(
λC

λ

)2

∆β1, (4.23)

where λC is the Compton wavelength.

The last two corrections have same rotation angle dependence as ∆β1. Therefore, as far

as the experiments are done only in different rotation angles, these effects are not separable

from the Newtonian effect.

Finally, we consider the spin corrections. If the spin of the particle is constant along the

paths in the interferometer, then the term −ω · S does not produce the phase difference.

On the other hand, the remaining correction terms have typically the relative orders of

magnitude to the orbital angular momentum, λ/l, where λ is the de Broglie wavelength

and l is a typical size of the interferometer loop. For the neutron interferometers of the

first generation, the typical values are λ ∼ 10−8cm and l ∼ 10cm. Hence, for such interfer-

ometers, the effects of the spin corrections are generally 10−9 times smaller than those of

the orbital angular momentum terms.
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Chapter 5

Ultra-relativistic limit

We now turn our attention to the ultra-relativistic limit, in which the rest energy of the

particle is much smaller than the kinetic energy. (We now consider the observer’s frame.)

In this limit, the energy the particle itself has is expanded with respect to c because the

ratio of the rest energy to the kinetic energy, mc/p, is much smaller than unity, whereas

objects arising from the gravitational field are expanded with respect to 1/c. Hence we

cannot consider the expansion only with respect to c. We here consider the slowly rotating,

weak field approximation up to first orders in φ/c2 and ω, respectively. On the other hand,

we expand the energy the particle itself has up to O (m2c4/pc).

By performing a unitary transformation similar to the FWT transformation, we shall

obtain the ultra-relativistic Hamiltonian. Furthermore, we shall consider the gravitational

effects on neutrino oscillations, and investigate the gravitationally induced neutrino oscil-

lation phases. For this analysis, we ignore the observer’s angular velocity ω
O
:

ω
S
≡ ω, ω

O
= 0. (5.1)

This assumption is valid for a neutrino propagating from a distant star.

5.1 Ultra-relativistic Hamiltonian

To begin with, we redefine the spinor and the Hamiltonian as in Sec. 4.1:

Ψ′ = γ1/4Ψ, H ′ = γ1/4Hγ−1/4. (5.2)
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Next, we perform a unitary transformation to derive the ultra-relativistic Hamiltonian

which is the “even” operator up to the order of our interest. From this, we have

H̃ ′ = UH ′U†

=


 HR 0

0 HL


 +

[
O

(
m3c6

p2c2

)
or O

(
φ2

c4
, ω2

)]
. (5.3)

The spinor is also divided into each of the two-component spinors:

Ψ̃ =


 ψR

ψL


 , (5.4)

where the subscript R and L denote the right-handed and the left-handed component,

respectively.

We restrict our attention to the left-handed component. Then the equation for the

left-handed component is given by

ih̄
∂

∂t
ψL = HLψL

= −
[
cσ · p +

1

c2
(cσ · p φ + φ cσ · p)

− 1

c2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)

+
1

2
m2c3σ · p

p2
+

1

c2

1

8
m2c3

{
σ · p
p2

φ + φ
σ · p
p2

−
(
σ · p φ

1

p2
+

1

p2
φ σ · p

)}

+
1

c2

1

8
m2c2

{(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)
1

p2

− 2
σ · p
p2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)
σ · p
p2

+
1

p2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)}]
ψL.

(5.5)

The details of the calculations are given in Appendix J. It is sometimes convenient to

rewrite the Hamiltonian in Eq. (5.5) in the following form:

HL = −
[{

1 +
1

c2

(
φ + p · φp

1

p2
+ 2

GM

r3
L · S 1

p2

)}
cp

σ · p
p

30



− 1

c2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)

+

{
1 +

1

c2

1

4

(
φ− 1

p2
φp2 +

1

p2
p · φp− p · φp

1

p2

+ 2
1

p2

GM

r3
L · S − 2

GM

r3
L · S 1

p2

)}
m2c3

2p

σ · p
p

+
1

c2

1

8
m2c2

{(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)
1

p2

− 2
σ · p
p2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)
σ · p
p2

+
1

p2

(
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

)}]
.

(5.6)

From this, we find how the spin-orbit coupling, the coupling between the total angular

momentum and the rotation of the gravitational source, or the coupling between the spin

and the rotation is coupled to the infinitesimal mass. In radial propagation, the orbital

angular momentum vanishes. Therefore, in this case the spin effects coupled only to the

rotation appear. If we set ω = 0, then there is no spin effect in radial propagation. This

consequence is consistent with the previous work [26].

5.2 Gravitational effects on neutrino oscillations

In this section, we consider the gravitational effects on neutrino oscillations, and investi-

gate the gravitationally induced neutrino oscillation phases. First, we shall reconsider the

neutrino oscillations in flat space-time. Second, we shall discuss the gravitational effects,

and derive the phase shift directly from the ultra-relativistic Hamiltonian.

5.2.1 Neutrino oscillations in flat space-time

Now, we briefly review neutrino oscillations in flat space-time. (See, e.g., Refs. [30], [31],

[32].)

If neutrinos are not massless, then their mass matrix will be nondiagonal and complex

as in the case for quarks. This means that the flavor eigenstates, which are denoted by
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|να〉, can be represented as linear superpositions of the mass eigenstates denoted by |νi〉:

|να〉 =
∑

i

Uαi |νi〉 , (5.7)

where U is a unitary matrix, by which we can transform the mass matrix into a diagonal

form. (See Appendix K for the details of possible neutrino mixing schemes.) For three

interacting neutrinos, U can be parametrized like the Kobayashi-Maskawa (KM) matrix

[33] for quark mixing angles:

U =




c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 − s2c3e

iδ

−s1s2 c1s2s3 − c2s3e
iδ c1s2s3 − c2c3e

iδ


 , (5.8)

where ci ≡ cos θi and si ≡ sin θi.

If at time t = 0, a beam of pure να states is produced, the initial state is a superposition

of the mass eigenstates as

|να(0)〉 =
∑

i

Uαi |νi〉 . (5.9)

The time evolution of a mass eigenstate |νi〉 is determined by the Dirac equation for a freely

propagating neutrino with definite mass mi. From the Dirac equation, we can obtain

ih̄
∂

∂t
ψiL (x, t) = −

√
p2c2 + m2

i c
4
σ · p

p
ψiL (x, t) , (5.10)

where ψiL (x, t) = 〈x|νi〉t. (The “phenomenological” neutrinos are left-handed.) The

details of the calculations are given in Appendix L. In the ultra-relativistic limit (mc2/pc ¿
1), we have

√
p2c2 + m2

i c
4 ' pc +

m2
i c

3

2p
. (5.11)

Hence, the Dirac equation is written as

ih̄
∂

∂t
ψiL (x, t) = −

[
pc +

m2
i c

3

2p

]
σ · p

p
ψiL (x, t) . (5.12)

We now regard the second term in the square brackets in Eq. (5.12) as a perturbation,

and assume that the spinor ψiL is written as

ψiL (x, t) = eiΦ(t) ψ0iL (x, t) , (5.13)
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where ψ0iL is the unperturbed quantity satisfying the equation

ih̄
∂

∂t
ψ0iL (x, t) = −cσ · p ψ0iL (x, t) . (5.14)

Furthermore, we assume
σ · p

p
ψ0iL (x, t) = −ψ0iL (x, t) , (5.15)

and

p ψ0iL (x, t) = p ψ0iL (x, t) . (5.16)

(For simplicity, each state ψ0iL is assumed to have same momentum p.) Under these

assumptions, substituting Eq. (5.13) into Eq. (5.12), we obtain

Φ(t) = − 1

h̄

∫ t

0

m2
i c

3

2p
dt

= − m2
i c

3

2h̄p
t (5.17)

Therefore, we derive

〈x|νi〉t = ψiL (x, t) = e−i
m2

i
c3

2h̄p
t ψ0iL (x, t) . (5.18)

This is equivalent to

|νi〉t = e−i
m2

i
c3

2h̄p
t e−i pc

h̄
t |νi〉 . (5.19)

Consequently, we obtain

|να(t)〉 =
∑

i

Uαi e−i
m2

i
c3

2h̄p
t e−i pc

h̄
t |νi〉 . (5.20)

The amplitude for observing an initially created flavor eigenstate |να〉 as the (different

or same) flavor eigenstate |νβ〉 at some future time t is

〈νβ|να(t)〉 =
∑

i

UαiU
∗
βi e−i

m2
i

c3

2h̄p
t e−i pc

h̄
t. (5.21)

Hence, the probability for a transition from the state |να〉 to the state |νβ〉 is

Pνα→νβ
(t) = |〈νβ|να(t)〉|2 =

∑

i,j

UαiU
∗
βiU

∗
αjUβj exp


−i

(
m2

i −m2
j

)
c3

2h̄p
t


 . (5.22)
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For example, the probability of an electron neutrino remaining an electron neutrino after

a time t, or after traveling a distance d ' ct, is

Pνe→νe(t) = 1− 4 cos2 θ1 sin2 θ1 cos2 θ3 sin2

[
(m2

1 −m2
2) c3

4h̄p
t

]

− 4 cos2 θ1 sin2 θ1 sin2 θ3 sin2

[
(m2

1 −m2
3) c3

4h̄p
t

]

− 4 sin4 θ1 sin2 θ3 cos2 θ3 sin2

[
(m2

2 −m2
3) c3

4h̄p
t

]
. (5.23)

It is convenient to define the oscillation lengths

lij =
4πh̄pc

∆m2
ijc

3
' 2.5

(
pc

MeV

) (
eV2/c4

∆m2
ij

)
m, (5.24)

where ∆m2
ij =

∣∣∣m2
i −m2

j

∣∣∣. When we use the oscillation lengths, the probability of observing

an electron neutrino at a distance d ' ct from the source is given by

Pνe→νe(t) = 1− 4 cos2 θ1 sin2 θ1 cos2 θ3 sin2

(
π

d

l12

)

− 4 cos2 θ1 sin2 θ1 sin2 θ3 sin2

(
π

d

l13

)

− 4 sin4 θ1 sin2 θ3 cos2 θ3 sin2

(
π

d

l23

)
. (5.25)

Similarly, we can obtain the probability for the other transitions.

5.2.2 Gravitationally induced neutrino oscillation phases

Next, we discuss the gravitationally induced neutrino oscillation phases. As we saw in the

last subsection, the most important one in the neutrino oscillations is the phase difference

of the two different mass eigenstates. Hence we restrict our attention to the phase shifts of

the mass eigenstates.

We now regard terms arising from the small mass and the gravitational field as pertur-

bations. Then the equation for the left-handed component obtained in the last section is

considered as

ih̄
∂

∂t
ψL = (H0L + ∆HL) ψL, (5.26)
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where H0L denotes the unperturbed Hamiltonian H0L = −cσ ·p, and ∆HL the corrections

arising from the small mass and the gravitational field. This equation corresponds to Eq.

(5.12). From the perturbative point of view, it is plausible that the particle trajectory is

taken in the unperturbed system. Then we can consider the radial propagation, in which

the spin-orbit coupling vanishes.

Following the discussion of the last subsection, we again assume that the spinor ψL is

given by

ψL (x, t) = eiΦ(t) ψ0L (x, t) , (5.27)

where ψ0L satisfies Eq. (5.14), that is, the equation

ih̄
∂

∂t
ψ0L (x, t) = H0Lψ0L (x, t) . (5.28)

Substituting Eq. (5.27) into Eq. (5.26) and using Eq. (5.28), we obtain

Φ = −1

h̄

∫ t

∆HLdt. (5.29)

In order to derive the phase practically, we use the assumptions (5.15) and (5.16) again.

Furthermore, we here replace the remaining q-numbers with the c-numbers. This is a kind

of semi-classical approximation. From this, except for the spin effects, we derive

∆HL = 2
φ

c2
cp +

m2c3

2p
. (5.30)

Now, let us consider the case that the neutrino is produced at time t = tA, and detected

at time t = tB. Then the phase the neutrino acquires is

Φ = −1

h̄

∫ tB

tA

(
2

φ

c2
cp +

m2c3

2p

)
dt. (5.31)

We pay attention to the term related to m2, because neutrino oscillations take place as a

result of the mass square difference. This term reduces to

− m2c3

2h̄p
(tB − tA) . (5.32)

Furthermore, let the two different mass eigenstates have common momentum p and propa-

gate along a same path. Then the relative phase ∆Φij of the two different mass eigenstates,

|νi〉 and |νj〉, is given by

∆Φij =
∆m2

ijc
3

2h̄p
(tB − tA) , (5.33)
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where p is interpreted as the momentum the neutrinos have at initial time.

Finally, we shall show that the result obtained above is consistent with the result which

would be derived from the classical action. Using the classical action, the quantum phase

is given by

Φ = − 1

h̄

∫ B

A
pµdxµ

= − 1

h̄

∫ B

A

(
Edt + pidxi

)
, (5.34)

where E ≡ pt. Since we now consider the case that two different mass eigenstates have

same momentum, we are particularly interested in the first term. (The phase difference

between the two mass eigenstates arises from the first term.)

Considering the metric (3.13), we find that the space-time has a Killing vector Xα∂α =

∂/∂t. Indeed, using Xα = (1, 0, 0, 0), we derive

LXgαβ = Xµ ∂

∂xµ
gαβ + gαµ

∂

∂xβ
Xµ + gβµ

∂

∂xα
Xµ

= ∇βXα +∇αXβ

= 0, (5.35)

where LX denotes the Lie derivative with respect to Xα. Furthermore, since ∇βXα +

∇αXβ = 0, along the geodesic (pα∇αpβ = 0) we obtain

pα∇α

(
pβXβ

)
= pα

(
∇αpβ

)
Xβ + pαpβ∇αXβ

=
1

2
pαpβ (∇βXα +∇αXβ)

= 0. (5.36)

Hence, pαXα is constant and, therefore, pt = E is also constant along the geodesic.

In order to derive Eq. (5.33) again, it will be sufficient to consider the isotropic form of

the Schwarzschild metric (because the effects arising from the rotation of the gravitational

source is coupled to the spin). We now consider the radial propagation (say the x direction).

Then, from the mass shell condition

gαβpαpβ = m2c2, (5.37)

we obtain

E =
1 + φ

2c2(
1− φ

2c2

)3 px(x)c


1 +

(
1− φ

2c2

)4
m2c2

p 2
x (x)




1
2

. (5.38)
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If we assume that for any x, px(x) À mc, then we have

E ' 1 + φ
2c2(

1− φ
2c2

)3 px(x)c +

(
1 +

φ

2c2

) (
1− φ

2c2

)
m2c3

2px(x)
+ · · · . (5.39)

Moreover, the weak field approximation gives

E ' px(x)c + 2
φ

c2
px(x)c +

m2c3

2px(x)
+ · · · . (5.40)

Here, since the left-hand side of Eq. (5.40) is constant, we can evaluate the right-hand side

at an arbitrary point. Therefore, We derive

E ' px(xA)c + 2
φ

c2
px(xA)c +

m2c3

2px(xA)
+ · · · . (5.41)

From this, we can obtain the same result as Eq. (5.33) (where p = px(xA)) again.
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Chapter 6

Summary and conclusion

In this thesis, we have studied the gravitational effects on Dirac particles. In particular, we

have considered the particles propagating in the Kerr geometry, and restricted ourselves

to the slowly rotating, weak field limit. First, following the discussion of Ref. [14], we

have summarized the effects of the general relativistic gravity on a non-relativistic particle.

There we have obtained the Schrödinger equation with the general relativistic corrections,

and from this we have derived the gravitationally induced phase difference in a quantum

interferometer. Next, we have discussed the gravitational effects on a Dirac particle with

infinitesimal mass. By performing a unitary transformation similar to the FWT transfor-

mation, we have obtained the two-component Weyl equations with the corrections arising

from the small mass and the gravitational field from the covariant Dirac equation. Thereby,

it has become clear how the spin-orbit coupling, the coupling between the total angular

momentum and the rotation of the gravitational source, or the coupling between the spin

and the rotation is coupled to the infinitesimal mass. Furthermore, we have discussed the

gravitationally induced neutrino oscillation phases, and derived the phase difference of the

two different mass eigenstates in radial propagation except for the spin effects.

We have not pursued the spin effects on the neutrino oscillation phases. However, it is

interesting to investigate the effects of the spin-orbit coupling (which is associated with the

non-radial propagation) and the dragging of inertia on the neutrino oscillations. To add

to this, the relation to experiments and the quantitative estimation will be the subjects of

further investigation.

Although it seems to be difficult to provide the verification of these effects with current

experimental detectability, we think that the investigation of the topics in which both quan-
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tum effects and gravitational effects come into play is important. Progress in technology

may make the verification of the effects possible.
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Appendix A

Representations of the Lorentz
group

We now investigate the Lorentz transformations in a more general way. Under the general

Lorentz transformation rule, a general field denoted by ψm transforms under a Lorentz

transformation Λa
b according to

ψ′m =
∑
n

[U (Λ)]mn ψn. (A.1)

In order for a Lorentz transformation Λ1 followed by a Lorentz transformation Λ2 to give

the same result as the Lorentz transformation Λ1Λ2, it is necessary that the matrices U (Λ)

should furnish a representation of the Lorentz group, that is,

U (Λ1) U (Λ2) = U (Λ1Λ2) . (A.2)

In fact, the U -matrices given by Eqs. (2.15) and (2.16) satisfy the group multiplication

rule (A.2).

Next, we consider the infinitesimal Lorentz group which consists of Lorentz transforma-

tions infinitesimally close to the identity, that is,

Λa
b = δa

b + ωa
b, |ωa

b| ¿ 1, (A.3)

where

ωab = −ωba. (A.4)
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For such a transformation, the matrix representation U (Λ) must be infinitesimally close

to the identity:

U (1 + ω) = 1 +
1

2
ωabσab, (A.5)

where σab are antisymmetric in a and b.

The matrices σab must be constrained by the group multiplication rule (A.2). It is

convenient first to apply this rule to the product Λ (1 + ω) Λ−1:

U(Λ)U(1 + ω)U(Λ−1) = U
(
1 + ΛωΛ−1

)
. (A.6)

Up to first order in ω, this reduces to

1 +
1

2
ωabU(Λ)σabU(Λ−1) = 1 +

1

2
ωabσcdΛ

c
aΛ

d
b. (A.7)

Thus we have

U(Λ)σabU(Λ−1) = σcd Λc
aΛ

d
b. (A.8)

If we now set Λ = 1 + ω and Λ−1 = 1− ω, then we have

ωcd (σabσcd − σcdσab) = ωcd (2 ηcbσad + 2 ηcaσdb) , (A.9)

that is,

ωcd [σab, σcd] = ωcd (ηcbσad − ηcaσbd + ηdbσca − ηdaσcb) . (A.10)

This will be satisfied provided that σ satisfies the commutation relations

[σab, σcd] = ηcbσad − ηcaσbd + ηdbσca − ηdaσcb. (A.11)

The problem of finding the general representations of the infinitesimal homogeneous Lorentz

group is equivalent to finding all matrices that satisfy the commutation relations (A.11).

Finally, we shall consider the Dirac spinors. In flat space-time, the Dirac spinors satisfy

the Dirac equation (
ih̄γ(a)∂a −mc

)
Ψ = 0. (A.12)

In order to investigate the behavior of this equation under the Lorentz group, let us define

the transformation rule of the spinors under a Lorentz transformation Λ as follows:

Ψ′(x′) = S(Λ)Ψ(x), (A.13)
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where S(Λ) is a matrix representation of the Lorentz group. Using this definition, Eq.

(A.12) is written as

(
ih̄ S(Λ)γ(a)S−1(Λ) (Λ−1) b

a ∂b′ −mc
)

Ψ′ = 0, (A.14)

where we have multiplied the Dirac equation by S(Λ) on the left. In order for the Dirac

equation to be covariant under the Lorentz transformations, the following relations must

be satisfied:

S(Λ)γ(a)S−1(Λ) (Λ−1) b
a = γ(b), (A.15)

that is,

S(Λ)γ(a)S−1(Λ) = (Λ−1)a
b γ(b). (A.16)

Here, we consider the infinitesimal Lorentz transformations (A.3) again. Then S(Λ) must

be written in the form

S(Λ) = 1 +
1

2
ωabσab. (A.17)

From Eq. (A.16), we derive the following condition:

1

2
ωab

[
σab , γ(c)

]
= −ωc

dγ
(d). (A.18)

This condition is satisfied by setting

σab =
1

4

[
γ(a) , γ(b)

]
. (A.19)

(See also Appendix D for this derivation.) It is easy to check that the matrices (A.19) do

satisfy Eq. (A.11).
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Appendix B

Non-minimal coupling

Now, we shall derive Eq. (2.57). The left-hand side of Eq. (2.57) is written as

1

4

[
γα, γβ

]
[Dα,Dβ]

=
1

4

[
γα, γβ

]
[∇α − Γα,∇β − Γβ]

=
1

4

[
γα, γβ

]
(∇βΓα −∇αΓβ + ΓαΓβ − ΓβΓα) , (B.1)

where Γα is given by Eq. (2.52). Using Eq. (2.52) and the relation

∇α∇β e(a)µ −∇β∇α e(a)µ = −Rλ
µαβ e(a)λ, (B.2)

we can write

∇βΓα −∇αΓβ + ΓαΓβ − ΓβΓα =
1

4
γµγνRµναβ, (B.3)

where Rµναβ is the Riemann tensor. Thus we derive

1

4

[
γα, γβ

]
[Dα,Dβ] =

1

8
γαγβγµγνRαβµν . (B.4)

Furthermore, if we utilize the identity

Rαβµν + Rαµνβ + Rανβµ = 0, (B.5)

then we have

γαγβγµγνRαβµν = − 6R− 2 γαγβγµγνRαβµν , (B.6)
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that is,
1

8
γαγβγµγνRαβµν = − 1

4
R. (B.7)

Therefore, we can derive Eq. (2.57):

1

4

[
γα, γβ

]
[Dα,Dβ] = − 1

4
R. (B.8)
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Appendix C

Conformal invariance

Let us consider conformal transformations:

gαβ → ḡαβ = Ω2gαβ. (C.1)

An equation for a field ψ is said to be conformally invariant if there exists a number s such

that ψ is a solution with the metric gαβ if and only if ψ̄ = Ωsψ is a solution with the metric

ḡαβ. Then s is called the conformal weight of the field. (See, e.g., Ref. [34].)

Under these transformations, the spin connection, the Christoffel symbol, the Riemann

tensor, the Ricci tensor and the Ricci scalar transform, respectively, according to

Γα → Γ̄α = Γα − 1

2
γαγβ∇β ln Ω +

1

2
∇α ln Ω, (C.2)

Γα
µν → Γ̄α

µν = Γα
µν + 2 δα

(µ∇ν) ln Ω− gµνg
αβ∇β ln Ω, (C.3)

Rα
βµν → R̄α

βµν = Rα
βµν + 2 δα

[ν∇µ]∇β ln Ω− 2 gασgβ[ν∇µ]∇σ ln Ω

+ 2 δα
[µ∇ν] ln Ω · ∇β ln Ω− 2 gβ[µ∇ν] ln Ω · gασ∇σ ln Ω

− 2 δα
[µ gν]β · gσλ ∇σ ln Ω∇λ ln Ω, (C.4)

Rβν → R̄βν = Rβν − 4∇ν∇β ln Ω− gβν gσλ∇σ∇λ ln Ω

+ 2∇β ln Ω∇ν ln Ω− 2 gβν gσλ∇σ ln Ω∇λ ln Ω,

(C.5)

R → R̄ = Ω−2
[
R− 6 gαβ∇α∇β ln Ω− 6 gαβ∇α ln Ω∇β ln Ω

]
. (C.6)
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We shall now show that for a massless particle, Eq. (2.58) is conformally invariant. If

Ψ̄ = ΩsΨ, using Eqs. (C.2) and (C.6) we have

[
h̄2ḡαβD̄αD̄β − 1

4
h̄2R̄

]
Ψ̄

= Ωs−2
[
h̄2gαβDαDβ − 1

4
h̄2R

+ 2
(
s +

3

2

)
h̄2gαβ(∇α ln Ω)Dβ +

(
s +

3

2

)
h̄2gαβ(∇α∇β ln Ω)

+

{(
s +

3

2

)2

−
(
s +

3

2

)}
h̄2gαβ(∇α ln Ω) (∇β ln Ω)

]
Ψ. (C.7)

Therefore, for a massless particle, Eq. (2.58) becomes conformally invariant provided that

s = −3/2.

Next, we consider scalar fields. In curved space-time, the equation for a scalar field Φ is

[
h̄2gαβ∇α∇β + m2c2

]
Φ = 0. (C.8)

However, this equation for a massless particle is not conformally invariant. In fact, we have

ḡαβ∇̄α∇̄βΦ̄

= Ωs−2
[
gαβ∇α∇β + 2 (s + 1) Ω−1gαβ(∇αΩ)∇β

+s Ω−1gαβ(∇α∇βΩ) + s (s + 1) Ω−2gαβ(∇αΩ) (∇βΩ)
]
Φ. (C.9)

Hence no choice of s will make ḡαβ∇̄α∇̄βΦ̄ vanish whenever gαβ∇α∇βΦ vanishes. (We now

consider a 4-dimensional manifold.)

However, it is possible to modify Eq. (C.8) so that it becomes conformally invariant.

First, if we choose s = −1, then the (∇αΩ)∇βΦ term and the (∇αΩ)(∇βΩ)Φ term will

vanish. Using this choice, we find

[
ḡαβ∇̄α∇̄β − cR̄

]
Φ̄

= Ω−3
[
gαβ∇α∇β − cR− (1− 6c) Ω−1gαβ(∇α∇βΩ)

]
Φ. (C.10)

Thus, if we choose c = 1/6, then the (∇α∇βΩ) term is eliminated. Therefore, the equation

for the scalar field Φ, [
h̄2gαβ∇α∇β − 1

6
h̄2R

]
Φ = 0, (C.11)

is conformally invariant.
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Appendix D

Derivation of spin connection

We now provide the derivation of Eq. (2.69). For the purpose of this, we utilize the fact

that the following 16 matrices are linearly independent:

ΓA =
{
I , γ(a) , σ̃ab , γ(5)γ(a) , γ(5)

}
, (D.1)

where σ̃ab and γ(5) are given by Eqs. (2.71) and (2.72), respectively. (See Appendix E.)

From this, any 4 × 4 matrix is expressed by a linear combination of these 16 matrices.

Hence the matrices Γα satisfying Eq. (2.68) are also expressed in terms of these matrices.

What we have to do is to find ΓB satisfying the following relations:

[
ΓB , γ(a)

]
∝ γ(b). (D.2)

It is convenient to classify these lineally independent 16 matrices into five groups.





(A) I · · · 1

(B) γ(a) · · · 4

(C) σ̃ab · · · 6

(D) γ(5)γ(a) · · · 4

(E) γ(5) · · · 1

(D.3)

Let us calculate the commutator for each case.

• In the case of the group (A), we have

[
I , γ(a)

]
= 0. (D.4)
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• In the case of the group (B), we have
[
γ(a) , γ(b)

]
= 2 γ(a)γ(b) − 2 ηabI. (D.5)

• In the case of the group (C), we have
[
σ̃ab , γ(c)

]
= 2i ηbcγ(a) − 2i ηacγ(b). (D.6)

• In the case of the group (D), we have
[
γ(5)γ(a) , γ(b)

]
= 2 γ(5)ηab. (D.7)

• In the case of the group (E), we have
[
γ(5) , γ(a)

]
= 2 γ(5)γ(a). (D.8)

Therefore, the matrices Γα satisfying the relations (2.68) are written as linear combinations

of the matrices belonging to the groups (A) and (C):

Γα = A ab
α σ̃ab + aαI, (D.9)

where A ab
α is always chosen to be antisymmetric in a and b. Considering Eq. (D.4), we

find that aα is arbitrary.

Next, we shall derive A ab
α introduced in Eq. (D.9). From Eqs. (2.68) and (D.6), we have

− 4i ηac γ(d) A cd
α = γ(b) e β

(a) ∇α e
(b)

β. (D.10)

If we multiply this by γ(e) on the left, then we have

− 4i ηac γ(e)γ(d) A cd
α = γ(e)γ(b) e β

(a) ∇α e
(b)

β, (D.11)

whereas multiplying by γ(e) on the right, we have

− 4i ηac γ(d)γ(e) A cd
α = γ(b)γ(e) e β

(a) ∇α e
(b)

β. (D.12)

By adding these equations, we derive

− 4i ηac ηbd A cd
α = e β

(a) ∇α e(b)β. (D.13)

Hence we obtain

A ab
α =

i

4
ηacηbd e β

(c) ∇α e(d)β. (D.14)

Therefore, we can derive Eq. (2.69):

Γα = −1

8

[
γ(a), γ(b)

]
e β
(a) ∇α e(b)β + aαI. (D.15)
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Appendix E

Proof of linear independence

Here, we prove the following 16 matrices to be linearly independent:

ΓA =
{
I , γ(a) , σ̃ab , γ(5)γ(a) , γ(5)

}
, (E.1)

where σ̃ab and γ(5) are given by Eqs. (2.71) and (2.72), respectively. In this Appendix, we

use units in which c = 1.

To begin with, we investigate the trace of ΓA. It is convenient to use the relations

γ(5)γ(5) = I, (E.2)

γ(5)γ(a) + γ(a)γ(5) = 0. (E.3)

Using these properties, we can derive

Tr (I) = 4, (E.4)

Tr
(
γ(a)

)
= 0, (E.5)

Tr (σab) = 0, (E.6)

Tr
(
γ(5)γ(a)

)
= 0, (E.7)

Tr
(
γ(5)

)
= 0, (E.8)

that is,

ΓA =





4 (ΓA = I)

0 (ΓA 6= I)
. (E.9)
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Furthermore, we can show

ΓAΓB =





I or −I (A = B)

ΓC(6= I) or −ΓC(6= −I) (A 6= B)
. (E.10)

Next, we assume that the following relation exists:

∑

A

cAΓA = 0, (E.11)

where cA are numbers. When we multiply this by ΓB on the left and take the trace, we

derive

Tr

(
ΓB

∑

A

cAΓA

)
= ± 4cB. (E.12)

From this, we find that for any B,

cB = 0. (E.13)

Therefore, these 16 matrices must be linearly independent.
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Appendix F

Components of Christoffel symbol

We here show the components of the Christoffel symbol derived from the metric (3.13). Up

to the order of our interest, we obtain

Γ0
00 = 0 + O(1/c4), (F.1)

Γ0
01 =

1

c2
φ,1 − 1

c4

6GMR2

5r5
ω

O
ω

S
x

(
x2 + y2

)
+ O(1/c6), (F.2)

Γ0
02 =

1

c2
φ,2 − 1

c4

6GMR2

5r5
ω

O
ω

S
y

(
x2 + y2

)
+ O(1/c6), (F.3)

Γ0
03 =

1

c2
φ,3 − 1

c4

6GMR2

5r5
ωOω

S
z

(
x2 + y2

)
+ O(1/c6), (F.4)

Γ0
11 =

1

c4

12GMR2

5r5
ω

S
xy + O(1/c6), (F.5)

Γ0
12 = − 1

c4

6GMR2

5r5
ω

S

(
x2 − y2

)
+ O(1/c6), (F.6)

Γ0
13 =

1

c4

6GMR2

5r5
ω

S
yz + O(1/c6), (F.7)

Γ0
22 = − 1

c4

12GMR2

5r5
ω

S
xy + O(1/c6), (F.8)

Γ0
23 = − 1

c4

6GMR2

5r5
ω

S
zx + O(1/c6), (F.9)

Γ0
33 = 0 + O(1/c6), (F.10)

Γ1
00 = φ,1 − ω2

O
x
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+
1

c2

[
4φφ,1 + ω2

O
x (xφ,1 + yφ,2) +

8GMR2

5r3
ω

O
ω

S
x− 12GMR2

5r5
ω

O
ω

S
x

(
x2 + y2

)]

+ O(1/c4), (F.11)

Γ1
01 =

1

c2
ω

O
yφ,1 + O(1/c4), (F.12)

Γ1
02 = −ω

O
+

1

c2

[
ω

O
xφ,1 + 2ω

O
yφ,2 +

4GMR2

5r3
ω

S
− 6GMR2

5r5
ω

S

(
x2 + y2

)]
+ O(1/c4),

(F.13)

Γ1
03 =

1

c2

[
2ω

O
yφ,3 − 6GMR2

5r5
ω

S
yz

]
+ O(1/c4), (F.14)

Γ1
11 = − 1

c2
φ,1 + O(1/c4), (F.15)

Γ1
12 = − 1

c2
φ,2 + O(1/c4), (F.16)

Γ1
13 = − 1

c2
φ,3 + O(1/c4), (F.17)

Γ1
22 =

1

c2
φ,1 + O(1/c4), (F.18)

Γ1
23 = 0 + O(1/c4), (F.19)

Γ1
33 =

1

c2
φ,1 + O(1/c4), (F.20)

Γ2
00 = φ,2 − ω2

O
y

+
1

c2

[
4φφ,2 + ω2

O
y (xφ,1 + yφ,2) +

8GMR2

5r3
ω

O
ω

S
y − 12GMR2

5r5
ω

O
ω

S
y

(
x2 + y2

)]

+ O(1/c4), (F.21)

Γ2
01 = ω

O
+

1

c2

[
−2ω

O
xφ,1 − ω

O
yφ,2 − 4GMR2

5r3
ω

S
+

6GMR2

5r5
ω

S

(
x2 + y2

)]
+ O(1/c4),

(F.22)

Γ2
02 = − 1

c2
ω

O
xφ,2 + O(1/c4), (F.23)

Γ2
03 =

1

c2

[
−2ω

O
xφ,3 +

6GMR2

5r5
ω

S
zx

]
+ O(1/c4), (F.24)

Γ2
11 =

1

c2
φ,2 + O(1/c4), (F.25)

Γ2
12 = − 1

c2
φ,1 + O(1/c4), (F.26)
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Γ2
13 = 0 + O(1/c4), (F.27)

Γ2
22 = − 1

c2
φ,2 + O(1/c4), (F.28)

Γ2
23 = − 1

c2
φ,3 + O(1/c4), (F.29)

Γ2
33 =

1

c2
φ,2 + O(1/c4), (F.30)

Γ3
00 = φ,2 +

1

c2

[
4φφ,3 + ω2

O

(
x2 + y2

)
φ,3 − 12GMR2

5r5
ω

O
ω

S
z

(
x2 + y2

)]
+ O(1/c4), (F.31)

Γ3
01 =

1

c2

[
−ω

O
yφ,3 +

6GMR2

5r5
ω

S
yz

]
+ O(1/c4), (F.32)

Γ3
02 =

1

c2

[
ω

O
xφ,3 − 6GMR2

5r5
ω

S
zx

]
+ O(1/c4), (F.33)

Γ3
03 = 0 + O(1/c4), (F.34)

Γ3
11 =

1

c2
φ,3 + O(1/c4), (F.35)

Γ3
12 = 0 + O(1/c4), (F.36)

Γ3
13 = − 1

c2
φ,1 + O(1/c4), (F.37)

Γ3
22 =

1

c2
φ,3 + O(1/c4), (F.38)

Γ3
23 = − 1

c2
φ,2 + O(1/c4), (F.39)

Γ3
33 = − 1

c2
φ,3 + O(1/c4). (F.40)
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Appendix G

Components of spin connection

We now calculate the components of the spin connection. The spin connection is given by

Eq. (2.52):

Γα = −1

8

[
γ(a), γ(b)

]
gµν e µ

(a) ∇α e ν
(b) . (G.1)

Using the tetrad (3.28)–(3.32) and the components of the Christoffel symbol derived in

Appendix F, up to the order of our interest, we obtain

Γ0 = − 1

8
εijk ω i

O
γ[jk] − 1

4
γ[0i]φ,i

− 1

8c2

[
GM

r3
εijk [r × (r × ω

O
)]i γ[jk]

− 4GMR2

5r3
εijk ω i

S
γ[jk] − 6GMR2

5r5
εijk [r × (r × ωS)]i γ[jk]

]
, (G.2)

Γ1 = − 1

8c2
(φ,2 ε3jk − φ,3 ε2jk) γ[jk]

+
3GMR2

10c2r5
ω

S

[
−2xy γ[01] +

(
x2 − y2

)
γ[02] − yz γ[03]

]
, (G.3)

Γ2 = − 1

8c2
(φ,3 ε1jk − φ,1 ε3jk) γ[jk]

+
3GMR2

10c2r5
ω

S

[(
x2 − y2

)
γ[01] + 2xy γ[02] + zx γ[03]

]
, (G.4)

Γ3 = − 1

8c2
(φ,1 ε2jk − φ,2 ε1jk) γ[jk]

+
3GMR2

10c2r5
ω

S

[
−yz γ[01] + zx γ[02]

]
, (G.5)
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where εijk is the Levi-Civita antisymmetric tensor (ε123 = +1), γ[ab] is defined as

γ[ab] =
[
γ(a), γ(b)

]
, (G.6)

and the angular velocity vectors ω
O
, ω

S
are, respectively,

ω
O

= (0, 0, ω
O
) , (G.7)

ω
S

= (0, 0, ω
S
) . (G.8)

It is convenient to introduce the following 4×4 matrices similar to the Pauli spin matrices:

ρ1 =


 0 I

I 0


 , ρ2 =


 0 −iI

iI 0


 , ρ3 =


 I 0

0 −I


 , (G.9)

where I is the 2× 2 unit matrix. These matrices satisfy the relations

ρiρj = δij + iεijkρk. (G.10)

We now adopt the standard representation as the Dirac matrices:

γ(0) =
1

c


 I 0

0 −I


 , γ(i) =


 0 σi

−σi 0


 , (G.11)

where σi are the well-known Pauli matrices. Then we have

γ[0i] =
2

c
ρ1 σi, (G.12)

γ[ij] = − 2i εijk σk. (G.13)

Hence we obtain

ih̄Γ0 = − ω
O
· S +

1

2c
ρ1 σ · (pφ)

+
1

c2

[
4GMR2

5r3
ω

S
· S − GM

r3
S · [r × (r × ω

O
)] +

6GMR2

5r5
S · [r × (r × ω

S
)]

]
,

(G.14)

ih̄Γ1 = − h̄

2c2
(φ,2 σ3 − φ,3 σ2)

+
ih̄

c3
ρ1

3GMR2

5r5
ω

S

[
−2xy σ1 +

(
x2 − y2

)
σ2 − yz σ3

]
, (G.15)
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ih̄Γ2 = − h̄

2c2
(φ,3 σ1 − φ,1 σ3)

+
ih̄

c3
ρ1

3GMR2

5r5
ω

S

[(
x2 − y2

)
σ1 + 2xy σ2 + zx σ3

]
, (G.16)

ih̄Γ3 = − h̄

2c2
(φ,1 σ2 − φ,2 σ1)

+
ih̄

c3
ρ1

3GMR2

5r5
ω

S
[−yz σ1 + zx σ2] , (G.17)

where p is the momentum operator in flat space-time, and S = h̄σ/2 is the spin of the

particle.

On the other hand, if we adopt the Weyl representation as the Dirac matrices:

γ(0) =
1

c


 0 I

I 0


 , γ(i) =


 0 −σi

σi 0


 , (G.18)

then we have

γ[0i] =
2

c
ρ3 σi, (G.19)

γ[ij] = − 2i εijk σk. (G.20)

Hence we obtain

ih̄Γ0 = − ω
O
· S +

1

2c
ρ3 σ · (pφ)

+
1

c2

[
4GMR2

5r3
ω

S
· S − GM

r3
S · [r × (r × ω

O
)] +

6GMR2

5r5
S · [r × (r × ω

S
)]

]
,

(G.21)

ih̄Γ1 = − h̄

2c2
(φ,2 σ3 − φ,3 σ2)

+
ih̄

c3
ρ3

3GMR2

5r5
ω

S

[
−2xy σ1 +

(
x2 − y2

)
σ2 − yz σ3

]
, (G.22)

ih̄Γ2 = − h̄

2c2
(φ,3 σ1 − φ,1 σ3)

+
ih̄

c3
ρ3

3GMR2

5r5
ω

S

[(
x2 − y2

)
σ1 + 2xy σ2 + zx σ3

]
, (G.23)

ih̄Γ3 = − h̄

2c2
(φ,1 σ2 − φ,2 σ1)

+
ih̄

c3
ρ3

3GMR2

5r5
ω

S
[−yz σ1 + zx σ2] . (G.24)
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Appendix H

Non-relativistic Hamiltonian

We now use the standard representation (G.11) for the Dirac matrices. Then, the compo-

nents of the spin connection are given by Eqs. (G.14) – (G.17). From this, we obtain

H = ρ3mc2 + cρ1σ · p + ρ3mφ− ω · (L + S)

+
1

c
ρ1

[
−1

2
σ · (pφ) + 2φ σ · p

]

+
1

c2

[
1

2
ρ3mφ2 +

4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
, (H.1)

where ρi are defined by Eq. (G.9). Moreover, the Hamiltonian H ′ redefined by Eq. (4.2)

is then

H ′ = ρ3mc2 + cρ1σ · p + ρ3mφ− ω · (L + S)

+
1

c
ρ1 (σ · p φ + φ σ · p)

+
1

c2

[
1

2
ρ3mφ2 +

4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
. (H.2)

Next, we perform the FWT transformation to derive the non-relativistic Hamiltonian for

the “large” component. First, we use the unitary operator

U1 = exp
(
iρ2

σ · p
2mc

)
, (H.3)

so that we can eliminate the odd term of O(c). Using the useful formula

eiSHe−iS = H + i [S, H] +
i2

2!
[S, [S, H]] +

i3

3!
[S, [S, [S, H]]] + · · · (H.4)
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and the relation (G.10), we obtain the transformed Hamiltonian U1H
′U†1 :

U1H
′U†1 = ρ3mc2 + ρ3

(
p2

2m
+ mφ

)
− ω · (L + S)

+
1

c
ρ1

[
1

2
(σ · p φ + φ σ · p)− 1

3m2
(σ · p)3

]

+
1

c2

[
ρ3

(
1

2
mφ2 − p4

8m3
+

3

2m
p · φp +

3GM

2mr3
L · S

)

+
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
. (H.5)

Second, we use

U2 = exp

(
iρ2

3m2 (σ · p φ + φ σ · p)− 2 (σ · p)3

12(mc)3

)
, (H.6)

which makes the odd terms of O(1/c) vanish. Using this unitary operator, we finally obtain

UH ′U† = ρ3mc2 + ρ3

(
p2

2m
+ mφ

)
− ω · (L + S)

+
1

c2

[
ρ3

(
1

2
mφ2 − p4

8m3
+

3

2m
p · φp +

3GM

2mr3
L · S

)

+
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
, (H.7)

where U is given by U = U2U1.
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Appendix I

Canonical quantization

Now, we shall follow the canonical quantization procedure to derive the Schrödinger equa-

tion involving general relativistic corrections for a non-relativistic particle.

I.1 Classical Hamiltonian

Let us consider a particle which has the mass m and propagates in the gravitational field

described by Eqs. (3.20) – (3.24) with the condition (4.1). The relativistic Lagrangian for

this particle is

L = −mc
ds

dt

= −mc
√

gµν ẋµẋν

= −mc
√

N2 − γij (N i + ẋi) (N j + ẋj) , (I.1)

where the dot over xµ denotes the differentiation with respect to t. We can now define the

canonical momentum as

pi =
∂L

∂ẋi
. (I.2)

Using this, we obtain the reduced classical Hamiltonian in the form

H = piẋ
i − L−mc2

= N
√

m2c2 + γijpipj −N ipi −mc2. (I.3)

60



As mentioned previously, we consider a non-relativistic particle, whose rest energy is

much larger than the kinematic one. Then we have

γijpipj ¿ m2c2. (I.4)

The non-relativistic Hamiltonian up to the order of our interest is

H = −N ipi +
(

N

c
− 1

)
mc2 +

N

c


γijpipj

2m
− (γijpipj)

2

8m3c2


 + O

(
1

c4

)
. (I.5)

I.2 Quantum Hamiltonian

We have obtained the non-relativistic classical Hamiltonian in the last section. Next, we

follow the canonical quantization procedure to derive the quantum Hamiltonian. What we

have to do is to replace the momentum pi in the classical Hamiltonian with the momentum

operator p̂i. The canonical variables, xi and p̂i, satisfy the canonical commutation relation

[
xi, p̂j

]
= ih̄δi

j. (I.6)

In addition, the momentum operator p̂i is hermitian and, therefore, satisfies the relation

(p̂iψ, ϕ) = (ψ, p̂iϕ) , (I.7)

where the round brackets denote the inner product which is invariant under the spatial

coordinate transformations:

(ψ, ϕ) ≡
∫

ψ∗ϕ
√

γd3x. (I.8)

Considering the definition of the inner product, we adopt the momentum operator

p̂i = −ih̄γ−1/4 ∂

∂xi
γ1/4 ≡ γ−1/4piγ

1/4. (I.9)

This momentum operator p̂i, of course, satisfies the commutation relation (I.6).

By replacing pi in the classical Hamiltonian (I.5) with p̂i, we obtain the quantum Hamil-

tonian

H = γ−1/4

[
p2

2m
+ mφ− ω ·L

+
1

c2

(
4GMR2

5r3
ω ·L− p4

8m3
+

1

2
mφ2 +

3

2m
p · φp

)]
γ1/4, (I.10)
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where we have taken the appropriate ordering to make the Hamiltonian hermitian. (Al-

though there can be various ways to the ordering, we have particularly chosen the one

which leads to the result derived from the covariant Dirac equation.) The Schrödinger

equation is then

ih̄
∂

∂t
Φ = HΦ. (I.11)

We now follow the same discussions as in Sec. 4.1, and redefine the wave function and

the Hamiltonian in the following way:

Φ′ = γ1/4Φ, H ′ = γ1/4Hγ−1/4. (I.12)

Under this redefinition, we obtain

ih̄
∂

∂t
Φ′ = H ′Φ′

=

[
p2

2m
+ mφ− ω ·L

+
1

c2

(
4GMR2

5r3
ω ·L− p4

8m3
+

1

2
mφ2 +

3

2m
p · φp

)]
Φ′. (I.13)
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Appendix J

Ultra-relativistic Hamiltonian

Now, we shall obtain the ultra-relativistic Hamiltonian in Eq. (5.5).

If we adopt the Weyl representation (G.18) as the Dirac matrices, then the components

of the spin connection are given by Eqs. (G.21) – (G.24). Using this result, up to the order

of our interest, we obtain

H = ρ3cσ · p + ρ3

[
−1

2
cσ ·

(
p

φ

c2

)
+ 2

φ

c2
cσ · p

]

+
1

c2

[
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
+ ρ1mc2 + ρ1mc2 φ

c2
,

(J.1)

where ρi are defined by Eq. (G.9). Moreover, the Hamiltonian redefined by Eq. (5.2) is

then

H ′ = ρ3cσ · p + ρ3

(
cσ · p φ

c2
+

φ

c2
cσ · p

)

+
1

c2

[
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
+ ρ1mc2 + ρ1mc2 φ

c2
.

(J.2)

By performing a unitary transformation similar to the FWT transformation, we shall

derive the ultra-relativistic Hamiltonian for the left-handed component. We here divide

the unitary transformation into several steps. First, we use the unitary operator

U1 = exp

(
iρ2

1

2
mc2 cσ · p

c2p2

)
, (J.3)
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which is introduced to eliminate the odd term proportional to mc2. Using the formula

(H.4) and the relation (G.10), we obtain the transformed Hamiltonian

U1H
′U†1 = ρ3cσ · p + ρ3

(
cσ · p φ

c2
+

φ

c2
cσ · p

)
+ A + ρ1mc2 φ

c2

− ρ1
1

2
mc2

[
cσ · p

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)
+

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)
cσ · p

]

+ iρ2
1

2
mc2

(
cσ · p
c2p2

A− A
cσ · p
c2p2

)
+ ρ3

1

2
m2c4 cσ · p

c2p2

− ρ3
1

8
m2c4

[
1

c2p2

φ

c2
cσ · p + cσ · p φ

c2

1

c2p2
−

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)]

− 1

8
m2c4

(
A

1

c2p2
− 2

cσ · p
c2p2

A
cσ · p
c2p2

+
1

c2p2
A

)
, (J.4)

where A is given by

A =
1

c2

[
4GMR2

5r3
ω · (L + S) +

6GMR2

5r5
S · [r × (r × ω)]

]
. (J.5)

Second, in order to eliminate the fifth term in Eq. (J.4), we use the unitary operator

U2 = exp

[
−iρ2

1

2
mc2

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)]
. (J.6)

Using this unitary operator, we obtain

U2U1H
′U†1 U

†
2 = ρ3cσ · p + ρ3

(
cσ · p φ

c2
+

φ

c2
cσ · p

)
+ A + ρ1mc2 φ

c2

+ iρ2
1

2
mc2

(
cσ · p
c2p2

A− A
cσ · p
c2p2

)
+ ρ3

1

2
m2c4 cσ · p

c2p2

− ρ3
1

8
m2c4

[
1

c2p2

φ

c2
cσ · p + cσ · p φ

c2

1

c2p2
−

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)]

− 1

8
m2c4

(
A

1

c2p2
− 2

cσ · p
c2p2

A
cσ · p
c2p2

+
1

c2p2
A

)
. (J.7)

Finally, we use the two unitary operators U3 = eiS3 and U4 = eiS4 where S3 and S4 satisfy,

respectively, the relations

i [S3, ρ3cσ · p] = − ρ1mc2 φ

c2
, (J.8)
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i [S4, ρ3cσ · p] = − iρ2
1

2
mc2

(
cσ · p
c2p2

A− A
cσ · p
c2p2

)
. (J.9)

We here assume the existence of these unitary operators, which make the remaining odd

terms vanish. (We need not find the concrete forms of these unitary operators, because

the extra terms arising from these unitary transformations are higher oder terms.) Using

these unitary operators, we obtain the transformed Hamiltonian UH ′U† which is even up

to the order of our interest:

UH ′U† = ρ3cσ · p + ρ3

(
cσ · p φ

c2
+

φ

c2
cσ · p

)
+ A

+ ρ3
1

2
m2c4 cσ · p

c2p2

− ρ3
1

8
m2c4

[
1

c2p2

φ

c2
cσ · p + cσ · p φ

c2

1

c2p2
−

(
cσ · p
c2p2

φ

c2
+

φ

c2

cσ · p
c2p2

)]

− 1

8
m2c4

(
A

1

c2p2
− 2

cσ · p
c2p2

A
cσ · p
c2p2

+
1

c2p2
A

)
, (J.10)

where U is given by U = U4U3U2U1.
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Appendix K

Neutrino mixing schemes

Now, we shall consider possible neutrino mixing schemes. In particular, we consider the

general case of n neutrino flavors. There exist several distinct schemes for neutrino mixing,

whereas only one scheme for quark mixing is possible. This arises from the fact that

neutrinos are electrically neutral. In contrast to quarks, neutrinos which have definite

masses can be of Majorana-type as well as Dirac-type. Moreover, the number of massive

Majorana neutrinos can exceed the number of lepton flavors.

Let us classify neutrino mixing schemes according to the type of mass terms. For the

purpose of this, we now introduce the following columns:

νL = (νlL) =




νeL

νµL

ντL

...




, νR = (νl′R) =




νeR

νµR

ντR

...




, (K.1)

where l and l′ run over n values: e, µ, τ, · · ·. Although the right-handed fields νl′R do not

enter the interaction Lagrangian of the standard electroweak theory, these fields may be

present in the mass terms.

Before constructing the possible neutrino mass terms, we briefly review the charge con-

jugation of spinor fields. The Dirac equation describing a spinor field ψ with electric charge

−e (in flat space-time) is given by

(
iγ(a) ∂

∂xa
− eγ(a)Aa −m

)
ψ = 0, (K.2)
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where Aa denote electromagnetic potentials. (In this Appendix, we use units in which

h̄ = c = 1.) If we write the spinor field with the opposite charge as ψc. then we have
(
iγ(a) ∂

∂xa
+ eγ(a)Aa −m

)
ψc = 0. (K.3)

In order to investigate the relation between ψ and ψc, we take the hermitian conjugate and

then the transpose of Eq. (K.2). From this, we obtain
[
−γ(a)T

(
i

∂

∂xa
+ eAa

)
−m

] (
γ(0)T ψ∗

)
= 0, (K.4)

where we have used the relation

γ(0)γ(a)†γ(0) = γ(a). (K.5)

It can be shown that for any representation of the Dirac matrices, there exists a matrix C

such that

Cγ(a)T C−1 = − γ(a). (K.6)

If we use the standard representation for the Dirac matrices, then we find the following

solution for C:

C = iγ(2)γ(0) =


 0 −iσ2

−iσ2 0


 , (K.7)

which satisfies the relations

− C = C−1 = CT = C†. (K.8)

Using Eq. (K.6), we derive the following equation from Eq. (K.4):
(
iγ(a) ∂

∂xa
+ eγ(a)Aa −m

)
C

(
γ(0)T ψ∗

)
= 0. (K.9)

Comparing this with the equation for ψc, up to a phase, we find

ψc = eiφC
(
γ(0)T ψ∗

)
= eiφCψ

T
, (K.10)

where ψ = ψ†γ(0). From now on, however, we ignore the phase factor eiφ. Finally, it should

be noted that applying the C matrix to a particle field, we obtain the antiparticle field.

Let us consider the charge conjugation of νL and νR:

(νL)c ≡ Cν T
L , (νR)c ≡ Cν T

R . (K.11)
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Using Eqs. (K.8) and (K.11), we derive

(νL)c = − ν T
L C−1, (νR)c = − ν T

R C−1. (K.12)

Moreover, we can show that (νL)c is a right-handed field, and (νR)c a left-handed one. In

fact, using the projection operator PR = 1
2

(
1 + γ(5)

)
, we have

PR (νL)c =
1

2

(
1 + γ(5)

)
(νL)c

= C
[
νL

1

2

(
1 + γ(5)

)]T

= Cν T
L

= (νL)c , (K.13)

where we have used the relations

C−1γ(5)C = γ T
(5), (K.14)

νL
1

2

(
1 + γ(5)

)
= νL. (K.15)

Similarly, we can obtain

PL (νR)c = (νR)c , (K.16)

where PL = 1
2

(
1− γ(5)

)
.

Let us proceed to the construction of the possible neutrino mass terms in terms of νL,

(νL)c, νR, and (νR)c. First, using only the fields νL and νR, we can construct the mass term

in the form

LD = − νRMDνL + h.c., (K.17)

where (h.c.) denotes the hermitian conjugate of foregoing terms. This mass term is invari-

ant under the global gauge transformations νL → eiΛνL, νR → eiΛνR. This invariance will

lead to the conservation of the lepton charge L =
∑

l=e,µ,τ Ll. The mass term LD is called

a Dirac mass term. Second, if we use the fields νL and (νL)c, then we have

LM = − 1

2
(νL)cM

MνL + h.c. (K.18)

In this case, the mass term is not invariant under the global gauge transformations. The

mass term LM is called a Majorana mass term. Finally, the most general neutrino mass

term is given by

LD+M = − 1

2
(νL)cM

M
L νL − 1

2
νRMM

R (νR)c − νRMD
1 νL + h.c., (K.19)
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where the possible term (νL)cM
D
2 (νR)c can be reduced to the third term, because we have

(νL)cM
D
2 (νR)c = − ν T

L C−1MD
2 Cν T

R

= νR

(
MD

2

)T
νL. (K.20)

(The fields ν are anticommuting fields.) As in the case of the Lagrangian LM , no global

gauge transformations under which the Lagrangian LD+M would be invariant exist. The

Lagrangian LD+M is called a Dirac-Majorana mass term. Furthermore, the matrices MD,

MM , MM
L , MM

R , and MD
1 introduced above are n× n complex matrices.

Let us discuss the neutrino mixing arising from these three types of neutrino mass terms

in order.

K.1 Dirac mass term

We now consider the Dirac mass term

LD = − νRMDνL + h.c.

= − ∑

l,l′=e,µ,τ,···
ν l′RMD

l′lνlL + h.c. (K.21)

Let us diagonalize the matrix MD to make the mass term LD the standard form. For this

purpose, we shall show that an arbitrary complex matrix M can always be diagonalized by

a biunitary transformation. To show this, we consider the matrix MM†, which is evidently

hermitian. Considering the eigenvalue equation

M†−→x i = µi
−→x i, (K.22)

we have

−→x †i MM†−→x i =
(
M†−→x i

)†
M†−→x i

= |µi|2−→x
†
i
−→x i, (K.23)

Hence the matrix MM† has positive eigenvalues. (For simplicity, we assume |µi|2 ≡ m2
i >

0.) From this, it follows that the matrix MM† can be written as

MM† = V m2V †, (K.24)
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where V †V = V V † = 1 and (m2)ij = m2
i δij. Furthermore, if we set mij = + (m2

i )
1/2

δij,

then we obtain

M = V mU†, (K.25)

where U† = m−1V †M . Using Eq. (K.25), we find that U is a unitary matrix:

U†U = m−1V †MM†V m−1 = 1. (K.26)

Thus the matrix MD is also written as

MD = V mU†. (K.27)

Inserting Eq. (K.27) into the Lagrangian LD, we derive

LD = − ν ′Rmν ′L + h.c.

= − ν ′mν ′

= −
n∑

k=1

mkνkνk, (K.28)

where

ν ′L = U†νL, ν ′R = V †νR, ν ′ = ν ′L + ν ′R =




ν1

ν2

...

νn




. (K.29)

From this, we see that νk is a field with the definite mass mk. Indeed, since for freely

propagating neutrinos the total Lagrangian L is given by

L = νL iγ(a) ∂

∂xa
νL + νR iγ(a) ∂

∂xa
νR − νRMDνL − νL

(
MD

)†
νR

= ν ′
(
iγ(a) ∂

∂xa
−m

)
ν ′

=
n∑

k=1

νk

(
iγ(a) ∂

∂xa
−mk

)
νk, (K.30)

we can obtain the Dirac equations

(
iγ(a) ∂

∂xa
−mk

)
νk = 0. (K.31)
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It follows from the unitarity of the matrix U that the left-handed field νL is written as

νL = Uν ′L. (K.32)

Therefore, we obtain

νlL =
n∑

k=1

UlkνkL, l = e, µ, τ, · · · . (K.33)

Thus, in the case of the Dirac mass term LD, the left-handed fields of flavor neutrinos

are linear superpositions of the left-handed fields of neutrinos with definite masses. The

unitary matrix U is called a mixing matrix.

K.2 Majorana mass term

Next, we shall consider the Majorana mass term

LM = − 1

2
(νL)cM

MνL + h.c.

= − 1

2

∑

l,l′=e,µ,τ,···
(νl′L)cM

M
l′l νlL + h.c. (K.34)

In order to reduce the Lagrangian LM to the standard form, we diagonalize the matrix

MM . Here, it should be noted that the matrix MM is a symmetric matrix. In fact, we

have

(νL)cM
MνL = − ν T

L C−1MMνL

= −
(
ν T

L C−1MMνL

)T

= ν T
L C

(
MM

)T
νL

= − ν T
L C−1

(
MM

)T
νL

= (νL)c

(
MM

)T
νL. (K.35)

Hence, it follows that (
MM

)T
= MM . (K.36)

We now use the fact that a complex symmetric matrix M can always be written as

M =
(
U†

)T

mU†, (K.37)
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where U is a unitary matrix and mij = miδij (mi ≥ 0). To see this, we recall that an

arbitrary matrix M is expressed in the form

M = V mU†, (K.38)

where V V † = 1, UU† = 1, and mij = miδij (mi ≥ 0). For simplicity, we assume that

mi 6= mj for i 6= j, and that mi > 0. From Eq. (K.38), we have

MM† = V m2V †. (K.39)

On the other hand, using the relation

M = MT =
(
U†

)T

mV T , (K.40)

we have

MM† =
(
U†

)T

m2UT . (K.41)

Therefore, from Eqs. (K.39) and (K.41), we derive

UT V m2 = m2UT V. (K.42)

Since m2 is a diagonal matrix and mi 6= mj for i 6= j, UT V is also a diagonal matrix.

Furthermore, UT V is a unitary matrix. If we set S = UT V , then S can be written as

Sij = e2iαiδij, (K.43)

where αi are real constants. Using the expression V =
(
U†

)T
S, we obtain

M =
(
U†

)T

SmU†

=
(
U†

)T

S1/2mS1/2U†

=
(
S1/2U†

)T

mS1/2U†, (K.44)

where
(
S1/2

)
ij

= eiαiδij Therefore, if we redefine U† as U ′† = S1/2U†, then we can obtain

Eq. (K.37).

Inserting the expression

MM =
(
U†

)T

mU† (K.45)
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into the Lagrangian LM , we obtain

LM = − 1

2
(nL)cmnL − 1

2
nLm (nL)c , (K.46)

where

nL = U†νL, (nL)c = Cn T
L . (K.47)

Furthermore, if we define

χ = nL + (nL)c =




χ1

χ2

...

χn




, (K.48)

then the neutrino mass term LM is given by

LM = − 1

2
χmχ = − 1

2

n∑

k=1

mkχkχk. (K.49)

From this, we conclude that χk is the field of a neutrino with definite mass mk. Indeed,

the total Lagrangian for freely propagating neutrinos is

L = νL iγ(a) ∂

∂xa
νL − 1

2
(νL)cM

MνL − 1

2
νL

(
MM

)†
(νL)c

= nL iγ(a) ∂

∂xa
nL − 1

2
(nL)cmnL − 1

2
nLm (nL)c

=
1

2
nL iγ(a) ∂

∂xa
nL +

1

2
(nL)c iγ(a) ∂

∂xa
(nL)c −

1

2
(nL)cmnL − 1

2
nLm (nL)c

=
1

2
χ

(
iγ(a) ∂

∂xa
−m

)
χ

=
1

2

n∑

k=1

χk

(
iγ(a) ∂

∂xa
−mk

)
χk. (K.50)

Furthermore, it should be noted that the fields χk satisfy the relations

χk = Cχ T
k = (χk)c , k = 1, 2, · · · , n. (K.51)

This implies that χk are the fields of Majorana neutrinos.

Considering Eqs. (K.47) and (K.48), we obtain

νL = UχL, (K.52)
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that is,

νlL =
n∑

k=1

UlkχkL. (K.53)

Thus, in the case of the Majorana mass term, the left-handed fields of flavor neutrinos

are linear superpositions of the left-handed fields of Majorana neutrinos with definite

masses. Moreover, it should be emphasized that the 2n states with different helicity

of the n massive Majorana neutrinos correspond to the 2n neutrinos and antineutrinos

(νe, νµ, ντ , · · · , νe, νµ, ντ , · · ·).

K.3 Dirac-Majorana mass term

Finally, we consider the Dirac-Majorana mass term given by

LD+M = − 1

2
(nL)cM

D+MnL + h.c., (K.54)

where MD+M is a complex 2n× 2n matrix expressed as

MD+M =


 MM

L

(
MD

1

)T

MD
1 MM

R


 , (K.55)

and

nL =


 νL

(νR)c


 . (K.56)

From Eq. (K.55), it follows that the matrix MD+M is symmetric:

(
MD+M

)T
= MD+M . (K.57)

As in the last subsection, we assume that the eigenvalues of MD+M are not degenerate.

Then we have

MD+M =
(
U†

)T

mU†, (K.58)

where U is a 2n × 2n unitary matrix, and mij = miδij (mi ≥ 0). Using Eq. (K.58), we

obtain

LD+M = − 1

2
(n′L)cmn′L + h.c., (K.59)

where

n′L = U†nL. (K.60)
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Furthermore, if we use

χ = n′L + (n′L)c =




χ1

χ2

...

χ2n




, (K.61)

then we have

LD+M = − 1

2
χmχ

= − 1

2

2n∑

k=1

mkχkχk. (K.62)

The fields χk satisfy the relations

χk = Cχ T
k = (χk)c . (K.63)

Therefore, χk are the fields of Majorana neutrinos with definite masses.

From Eqs. (K.60) and (K.61), we find

nL = Un′L = UχL. (K.64)

It follows that

νlL =
2n∑

k=1

UlkχkL, (νl′R)c =
2n∑

k=1

Ul′kχkL, (K.65)

where the index l runs over n values: e, µ, τ, · · ·, whereas the index l′ takes the n lower

values: e, µ, τ, · · ·. It should be emphasized that the left-handed fields of flavor neutrinos

are linear superpositions of the left-handed components of 2n Majorana fields.
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Appendix L

Dirac equation in flat space-time

We now give the derivation of Eq. (5.10). For the purpose of this, we use the Weyl

representation (G.18) for the Dirac matrices. In flat space-time, the Dirac equation is

given by

ih̄
∂

∂t
Ψ =

(
ρ3cσ · p + ρ1mc2

)
Ψ, (L.1)

where ρi are defined by Eq. (G.9).

Next, we shall show that there exists a unitary operator U which satisfies the relation

U
(
ρ3cσ · p + ρ1mc2

)
U† = ρ3

√
p2c2 + m2c4

σ · p
p

. (L.2)

In order to derive the unitary operator U = eiS satisfying Eq. (L.2), we consider

U†ρ3

√
p2c2 + m2c4

σ · p
p

U. (L.3)

Using the useful formula

e−
i
2
aρ2ρ3e

i
2
aρ2 = ρ3 cos a + ρ1 sin a, (L.4)

we have

e−
i
2
aρ2 ρ3

√
p2c2 + m2c4

σ · p
p

e
i
2
aρ2 = (ρ3 cos a + ρ1 sin a)

√
p2c2 + m2c4

σ · p
p

, (L.5)

where we have assumed that a can be represented as a power series of σ ·p in the following

way:

a =
∑
n

an (σ · p)n . (L.6)
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The right-hand side of Eq. (L.5) must be equal to

ρ3cσ · p + ρ1mc2, (L.7)

and, therefore, we have

cos a =
pc√

p2c2 + m2c4
, (L.8)

sin a =
mc2

√
p2c2 + m2c4

σ · p
p

, (L.9)

tan a =
mc2

pc

σ · p
p

. (L.10)

From this, we derive

a = tan−1

(
mc2

pc

σ · p
p

)
. (L.11)

Therefore, using the unitary operator

U = exp

[
iρ2

1

2
tan−1

(
mc2

pc

σ · p
p

)]
, (L.12)

we obtain Eq. (L.2). Hence, there exists a unitary operator U satisfying Eq. (L.2).

If we set

Ψ′ = UΨ =


 ψR

ψL


 , (L.13)

then we can obtain Eq. (5.10) for the left-handed component.
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