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Abstract

Superstring theory is a promising candidate for the unified theory including quantum grav-

ity. However, it is only formulated perturbatively. In order to make physical predictions

from superstring theory, its non-perturbative formulation is needed. Matrix models have

been proposed as candidates for such a formulation. The feature of the matrix models is

that space(-time) emerges dynamically from degrees of freedom of matrices. To establish

the matrix models completely as non-perturbative formulations of superstring theory, one

needs to elucidate a mechanism of emergence of space-times from the matrix models and

properties of those emergent space-times.

In this thesis, we study the following three topics to gain insight into the above issues.

The first one is concerning non-commutative spaces emerging from matrix models. We

study quantum aspects of a scalar field theory on the fuzzy sphere. By performing Monte

Carlo simulations, we show that theory is non-perturbatively renormalizable and that it

behaves as a conformal field theory at short distances on the phase boundary. Second,

we study the large-N volume independence, which states that large-N gauge theories are

independent of the volume of the space-times on which they are defined. We show that it

holds on group manifolds. Finally, we investigate properties of space-times emerging from

the type IIB matrix model, which is one of the above mentioned matrix models proposed

as non-perturbative formulations of superstring theory. We solve classical equations of

motion and find that our solutions give rise to the (3+1)-dimensional expanding space

with smooth structure and Dirac zero modes.
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Chapter 1

Introduction

1.1 Background

Superstring theory is expected to be the unified theory including quantum gravity. How-

ever, superstring theory is only formulated perturbatively, which causes some issues. First,

there are a lot of stable vacua which give various space-time dimensionalities, gauge groups,

and matter contents. Second, it is known that the cosmic singularity at the beginning of the

universe cannot be resolved within perturbative superstring theory [1–4]. Non-perturbative

formulation is needed in order to solve these issues. In the latter half of 1990s, several ma-

trix models were proposed as such a non-perturbative formulation of superstring theory.

Those matrix models include the type IIB matrix model [5], the matrix theory or the BFSS

matrix model [6], and the matrix string theory [7], which can be obtained formally by di-

mensional reduction of 10-dimensional N = 1 super Yang-Mills theory to d dimensions

with d = 0, 1, 2, respectively. In particular, the feature of the type IIB matrix model is

that space-time does not exist a priori but emerges dynamically from degrees of freedom

of matrices.

In order to establish the above matrix models completely as non-perturbative formula-

tions of superstring theory, it is needed to elucidate mechanism of emergence of space-times,

especially curved space-times [8], from matrix models and properties of those emergent

space-times.

In this thesis, to gain insights into the above issues, we study the following three

topics: renormalization in a scalar field theory on the fuzzy sphere, the large-N volume

independence on group manifolds, and classical solutions in the Lorentzian type IIB matrix

model. In the following, as background of the three topics, we review field theories on non-

commutative spaces, the large-N volume independence, and the Lorentzian type IIB matrix

model.
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Field theories on non-commutative spaces

It is known that non-commutative spaces naturally appear in matrix models [9,10]. Hence,

quantum properties of field theories on non-commutative spaces1 are quite non-trivial as

seen in below. The product for the fields is non-commutative and non-local, which is one

of the most important features of the theories. In perturbative expansion, IR divergences

originating from UV divergences are yielded due to this feature. This phenomenon is called

the UV/IR mixing [12] and is known to be an obstacle to perturbative renormalization.

In [13, 14], the UV/IR mixing in a scalar field theory on the fuzzy sphere2 was examined

perturbatively: the 1-loop self-energy differs from that in the ordinary theory on a sphere

by finite and non-local terms even in the commutative limit. This effect is sometimes called

the UV/IR anomaly [13].

The large-N volume independence

The large-N reduction or the large-N volume independence [34] is a mechanism of emer-

gence of space-time. It states that large-N gauge theories are independent of the vol-

ume of the space-times on which they are defined. In a narrow sense, this tells us that

large-N gauge theories are equivalent to the matrix models called the reduced models

that are obtained by dimensionally reducing the original theories to 0 dimension. It was

shown in [35,36] that the large-N reduction holds on group manifolds in the above narrow

sense3. Those works are important from the viewpoint of elucidating how curved space-

time emerges from matrix models because the large-N reduction have been considered

almost in flat spaces4.

The Lorentzian type IIB matrix model

It was shown in [56] by Monte Carlo simulation that the (3+1)-dimensional expanding

universe appears in the Lorentzian type IIB matrix model5. The time scale that has been

probed by simulation is typically of the order of the Planck scale. In order to see the uni-

1See, [11] for a review.
2The theory has been studied by Monte Carlo simulation in [15–22]. For related analytic studies of

the model, see [23–31]. A similar analysis for a scalar field theory on the non-commutative torus was

performed in [32,33].
3In [37], another type of the large-N reduction on group manifolds was shown.
4For other developments in the large-N reduction, see [38–55].
5For developments in numerical simulations of the Lorentzian type IIB matrix model, see [57–62], and

for numerical simulations of the Euclidean type IIB matrix model, see [63,64]. For other studies to obtain

cosmology from the type IIB matrix model, see, for example, [65–68].
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verse at late time compared to the Planckian time, we need to take the matrix size N to

be large. Furthermore, a recent study [61] showed that the (3+1)-dimensional space-time

obtained by Monte Carlo simulation is singular one essentially consisting of the Pauli ma-

trices. This singularity is attributed to the approximation made to avoid the sign problem

in the Monte Carlo simulation. In another recent study [62], a numerical simulation of the

bosonic type IIB matrix model was performed without such an approximation by using

the complex Langevin method. It was observed that there appears a space-time that de-

parts from the Pauli-matrix structure keeping the (3+1)-dimensional expanding behavior.

From this result, the authors of [62] conjectured that the (3+1)-dimensional space-time

with smooth structure is obtained in the large-N limit. As we mentioned in the above, the

matrix size should be large to see the late-time behavior and the structure of the (3+1)-

dimensional space-time. However, it is difficult to perform numerical simulations with

large matrix size. Thus, we need to consider another way to see the (3+1)-dimensional

space-time with large matrix size.

One expects to obtain the Standard Model particles from the type IIB matrix model

if it is really a non-perturbative formulation of superstring theory. In [69–71], matrix

configurations which can yield fermions in the Standard Model were given by hand6. We

should see whether matrix configurations which give the Standard Model fermions are

obtained dynamically.

1.2 Purposes and results

Field theories on non-commutative spaces are naturally realized by matrix models. Curved

space-times should also be realized by matrix models because the models include quantum

gravity. Thus, it is useful for establishing the type IIB matrix model as a non-perturbative

formulation of superstring theory to study properties of the field theories and mechanism

of emergence of curved space-times . Keeping this in mind, we study the three topics as

we mentioned in the previous section. In this section, we explain purposes and results of

the three topics.

6The fermions in the Standard Model are also obtained by considering the type IIB matrix model on the

non-commutative torus, which includes a model with unitary matrices [72,73] and a model with matrices

of infinite matrix size [74]. Note that the supersymmetry is broken in the unitary matrix model and the

matrix model with infinite matrix size is not suitable for the regularization of superstring theory.
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Renormalization in a scalar field theory on the fuzzy sphere

We study a scalar field theory on the fuzzy sphere [20–22]. We define the correlation

functions by using the Berezin symbol [75] constructed from the Bloch coherent state [76],

and calculate them non-perturbatively by Monte Carlo simulations. We show that the

2-point and 4-point correlation functions are made independent of the matrix size, which

is interpreted as a UV cutoff, by tuning a parameter in the theory and performing a wave

function renormalization. Our results strongly suggest that the field theory on the fuzzy

sphere is non-perturbatively renormalizable. Moreover, we identify the phase boundary by

measuring the susceptibility that is an order parameter for the Z2 symmetry and calculate

the 2-point and 4-point correlation functions on the boundary. We find that the correlation

functions at different points on the boundary agree so that the theories on the boundary are

universal as in ordinary field theories. Furthermore, we observe that the 2-point correlation

functions behave as those in a conformal field theory (CFT) at short distances but deviate

from it at long distances. It is non-trivial that the behavior of the CFT is seen because

field theories on non-commutative spaces are non-local ones.

The large-N volume independence on group manifolds

Next, we examine whether a phenomenon analogous to the large-N volume independence

occurs on group manifolds. We find that it indeed does in the sense that a large-N gauge

theory on a group manifold G is equivalent to the theory obtained by reducing it to a coset

space G/H where H is a subgroup of G [77].

Classical solutions in the Lorentzian type IIB matrix model

Finally, we solve classical equations of motion of the Lorentzian type IIB matrix model [78].

As we mentioned in the previous section, we need to take the matrix size to be large to

see the universe at late time compared to the Planckian time. On the other hand, at

late time, a classical approximation is expected to be valid because the action becomes

large due to the expansion of universe. We, therefore, solve classical equations7. Indeed,

solving classical equations of motion is easier than performing numerical simulations. A

systematic method of searching for classical solutions analytically was developed in [66]8.

However, one cannot obtain all classes of solutions with the method. Thus, we will develop

a numerical method for obtaining wider classes of solutions. Solving classical equations of

motion is non-trivial because there exists no time a priori in the type IIB matrix model,

7Our results on the Dirac zero modes also hold for the Euclidean model.
8See also, [67].
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so we apply the gradient decent method to solve classical equations of the type IIB matrix

model. We expect that there exist a specific classical solution which is smoothly connected

to the dominant configuration obtained in numerical simulations and describes our real

world. Here, we start with random initial configurations using the above method and

obtain a lot of solutions. We consider the common features possessed by our solutions to

reflect those of the specific solution.

In particular, we see whether the (3+1)-dimensional expanding universe with smooth

structure is reproduced as classical solutions in the Lorentzian type IIB matrix model, and

search for solutions which yield Dirac zero modes. For this purpose, we assume configu-

rations with a quasi-direct-product structure of (3+1) dimensions and 6 extra dimensions,

which is the most general structure preserving the (3+1)-dimensional Lorentz symme-

try [79].

We obtain the following results. First, in a typical solution, we show that the (3+1)-

dimensional space-time exhibits an expanding behavior with a smooth structure. Next,

we examine spectra of a counterpart of the 6-dimensional Dirac operator9 because zero

eigenvectors in extra dimensions correspond to Dirac zero modes in (3+1) dimensions. To

obtain Dirac zero modes, we introduce ansatz for matrix configurations, solve classical

equations of motion, and calculate eigenvalues of the 6-dimensional Dirac operator. We

find that the lowest eigenvalues decrease as the matrix size increases, and show that the

ratio of the lowest eigenvalues to the second lowest ones converges to 0 in the N → ∞
limit, which implies that we can obtain Dirac zero modes in the N →∞ limit. Moreover,

we see that wave functions corresponding to zero modes are localized at a point, which is

consistent with the picture of intersecting D-branes.

1.3 Organization

This thesis is organized as follows. In chapter 2, we review emergence of space-time from

matrix models. In chapter 3, we perform renormalization in a scalar field theory on the

fuzzy sphere, which is realized by a matrix model. In chapter 4, we show the large-N volume

independence on a group manifold. In chapter 5, we solve classical equations of motion

in the Lorentzian type IIB matrix model, and show that (3+1)-dimensional expanding

space-time with smooth structure emerges and Dirac zero modes in extra 6 dimensions

are obtained from classical solutions. Chapter 6 is devoted to conclusion and outlook.

In appendix A, we briefly review the Bloch coherent state and the Berezin symbol. In

9Here, a counterpart of the 6-dimensional Dirac operator is obtained by dimensionally reducing the

6-dimensional Dirac operator to 0 dimension.
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appendix B, we explain the UV/IR anomaly in a scalar field theory on the fuzzy sphere.

In cppendix C, we give the 3j and the 6j symbols that are related to the Clebsch-Gordan

coefficients. In Appendix D, we describe the method of numerical simulation used in our

study. In appendix E, we show definition of the band size introduced in section 5.2. Details

of some calculations are given in appendix F.
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Chapter 2

Review of emergence of space-time

from matrix models

In this chapter, we review emergence of space-time from matrix models. We explain non-

commutative spaces, the large-N reduction, and the type IIB matrix model in sections 2.1,

2.2, and 2.3, respectively.

2.1 Non-commutative spaces

Here, we review non-commutative spaces. In particular, the UV/IR mixing that we explain

in the following is an important property of non-commutative spaces.

2.1.1 Non-commutative plane

We consider the non-commutative plane, which is the simplest non-commutative space.

The extension to the non-commutative Rd is easy.

The coordinates x̂i (i = 1, 2) on the non-commutative plane are non-commutative:

[x̂1, x̂2] = iθ , (2.1.1)

where θ is a real number and the θ → 0 limit corresponds to the continuum limit. Note

that “ ˆ ” implies that coordinates are not ordinary numbers, but operators, or infinite-

dimensional matrices. We define conjugate momenta as follows:

p̂1 = θ−1x̂2 , p̂2 = −θ−1x̂1 . (2.1.2)

They satisfy the commutation relation

[p̂1, p̂2] = iθ−1 , (2.1.3)

and x̂i and p̂j satisfy the following relation:

[x̂i, p̂j] = iδi,j . (2.1.4)
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This looks the form of the canonical commutation relation for quantum mechanics of

the single particle system in two dimensions. However, we consider the Hilbert space

of 1-dimensional quantum mechanics because the momenta depend on the coordinates

according to (2.1.2).

Operator acting on this Hilbert space, f̂ , are expanded in terms of x̂i:

f̂ =

∫
d2k

(2π)2
f(k)eik·x̂ . (2.1.5)

For f̂ , one can define f(x) that is a function on R2:

f(x) =

∫
d2k

(2π)2
f(k)eik·x . (2.1.6)

The correspondence between f̂ and f(x) is given by

f̂ =

∫
d2k

(2π)2

∫
d2xf(x)e−ik·xeik·x̂ . (2.1.7)

From (2.1.4) and (2.1.5), one can show[
p̂i, f̂

]
=

∫
d2k

(2π)2

∫
d2x [−i∂xif(x)] e−ik·xeik·x̂ . (2.1.8)

Thus, one finds the following relation on R2:

[p̂i, ]←→ −i∂xi . (2.1.9)

The product is evaluated as

f̂ ĝ =

∫
d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2yf(x)g(y)e−ik·xe−il·yeik·x̂eil·x̂

=

∫
d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2yf(x)g(y)e−ik·xe−il·ye−

iθ
2
(k1l2−k2l1)ei(k+l)·x̂

=

∫
d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2y

[
e

iθ
2 (∂x1∂y2−∂x2∂y1)f(x)g(y)

]
e−ik·xe−il·yei(k+l)·x̂

=

∫
d2k

(2π)2

∫
d2x

[
e

iθ
2 (∂x1∂y2−∂x2∂y1)f(x)g(y)

]∣∣∣
y=x

e−ik·xeik·x̂ , (2.1.10)

where the following formula is used

eAeB = eA+Be[A,B]/2 , (2.1.11)

which is the Baker-Campbell-Hausdorff formula for [[A,B] , A] = [[A,B] , B]. Thus, one

obtains the correspondence:

f̂ ĝ ←→ f(x) ⋆ g(x) = e
iθ
2 (∂x1∂y2−∂x2∂y1)

∣∣∣
y=x

, (2.1.12)
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which implies that the product of operators corresponds to the star product, or the Moyal

product. The star product satisfies the associativity:

[f(x) ⋆ g(x)] ⋆ h(x) = f(x) ⋆ [g(x) ⋆ h(x)] (2.1.13)

because f(x) ⋆ g(x) 6= g(x) ⋆ f(x) and the product of operators satisfies the associativity(
f̂ ĝ
)
ĥ = f̂

(
ĝĥ
)
. In addition, the commutation relation using the star product is

1

iθ
[f(x), g(x)]⋆ = ∂x1f(x)∂x2g(x)− ∂x2f(x)∂x1g(x) +O(θ) . (2.1.14)

In order to calculate the trace of the operators, we use the following basis on the Hilbert

space:

x̂1 |x1〉 = x1 |x1〉 , x̂2 |x2〉 = x2 |x2〉 . (2.1.15)

By analogy with quantum mechanics, one obtains∫
dx1√
2πθ

∣∣x1〉〈x1∣∣ , ∫
dx2√
2πθ

∣∣x2〉〈x2∣∣ , (2.1.16)〈
x1
∣∣x2〉 = eiθ

−1x1x2 . (2.1.17)

Then, the trace is

Trf̂ =

∫
d2k

(2π)2

∫
d2x

∫
dx′1√
2πθ

f(x)e−ik·x
〈
x′1
∣∣eik·x̂∣∣x′1〉

=

∫
d2k

(2π)2

∫
d2x

∫
dx′1√
2πθ

∫
dx′2√
2πθ

f(x)e−ik·xe
iθ
2
k1k2

〈
x′1
∣∣eik·x̂1eik·x̂2∣∣x′2〉 〈x′2∣∣x′1〉

=

∫
d2k

(2π)2

∫
d2x

∫
d2x′

2πθ
f(x)e−ik·xe

iθ
2
k1k2ei(k1x

′
1+k2x

′
2)

=

∫
d2x

2πθ
f(x) . (2.1.18)

Namely, one finds the correspondence between the trace and the integral on R2:

Tr←→
∫

d2x

2πθ
. (2.1.19)

The RHS of (2.1.19) can be interpreted as phase space divided by 2πℏ by viewing θ in

(2.1.1) as ℏ. From the cyclicity of the trace, the integral of the star product satisfies∫
d2xf1(x) ⋆ f2(x) ⋆ · · · ⋆ fn(x) =

∫
d2xfn(x) ⋆ f1(x) ⋆ · · · ⋆ fn−1(x) . (2.1.20)

In particular, ∫
d2xf(x) ⋆ g(x) =

∫
d2xf(x)g(x) . (2.1.21)
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Figure 2.1: Planar diagram. Figure 2.2: Non-planar diagram.

Let us consider a field theory on the non-commutative plane. We start with the matrix

model:

SMM = 2πθTr

(
−1

2
[p̂i,Φ]

2 +
µ2

2
Φ2 +

λ

4
Φ4

)
. (2.1.22)

By using the above properties, one can rewrite the action of the matrix model to that of

a field theory on non-commutative plane:

SNCP =

∫
d2x

[
1

2
(∂xiϕ(x))

2 +
µ2

2
ϕ(x)2 +

λ

4
ϕ(x) ⋆ ϕ(x) ⋆ ϕ(x) ⋆ ϕ(x)

]
. (2.1.23)

The quadratic term in (2.1.23) agrees with that in the ordinary ϕ4 theory, but the inter-

action term does not because of the star product.

In order to see the UV/IR mixing, we calculate the 1-loop correction to the propagator

on the non-commutative plane. We consider (2.1.23) and rewrite it by Fourier modes:

SNCP = SNCP, free + SNCP, int , (2.1.24)

SNCP, free =

∫
d2p

(2π)2
d2q

(2π)2
(2π)2δ(2)(p+ q)

1

2

(
p2 + µ2

)
ϕ(p)ϕ(q) , (2.1.25)

SNCP, int =
λ

4

∫
d2p

(2π)2

∫
d2q

(2π)2

∫
d2r

(2π)2

∫
d2s

(2π)2
(2π)2δ(2)(p+ q + r + s)

× e−
iθ
2
[p1q2−p2q1+(p1+q1)(r2+s2)−(p2+q2)(r1+s1)+r1s2−r2s1]ϕ(p)ϕ(q)ϕ(r)ϕ(s) . (2.1.26)

The free propagator is the same as that in the ordinary field theory:

〈ϕ(p)ϕ(q)〉 = (2π)2δ(2)(p+ q)
1

p2 + µ2
. (2.1.27)

There exist two diagrams for the 1-loop correction, one is the planar diagram (Fig. 2.1)

and the other is the non-planar diagram (Fig. 2.2), and these diagrams are evaluated as

−2λ
∫

d2q

(2π)2
1

q2 + µ2
, (2.1.28)
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−λ
∫

d2q

(2π)2
e−iθ(p1q2−p2q1)

q2 + µ2
, (2.1.29)

respectively. In (2.1.29), there is a phase factor e−iθ(p1q2−p2q1), while there is no such factor

in (2.1.28). In general, the planar diagram in field theories on non-commutative spaces

agrees with that in corresponding theories on ordinary commutative spaces.

By using the Schwinger expression for the propagator

1

q2 + µ2
=

∫ ∞

0

dse−(q
2+µ2)s , (2.1.30)

we calculate (2.1.29):

(2.1.29) = −λ
∫ ∞

0

ds

∫
d2q

(2π)2
e−(q

2+µ2)s+iθ(p1q2−p2q1) = − λ

2π

∫ ∞

0

ds
1

2s
e−µ

2s− θ2p2

4s .

(2.1.31)

In the case of commutative spaces (θ = 0), this diverges logarithmically. We introduce a

UV cutoff Λ and insert a factor e−1/(4Λ2s) in the integral (2.1.31):

(2.1.31) = − λ

2π

∫ ∞

0

ds
1

2s
e−µ

2s− 1
4s

(θ2p2+1/Λ2) = − λ

2π
K0

(
µ

√
θ2p2 +

1

Λ2

)
, (2.1.32)

where K0(x) is the Bessel function of the second kind10 and its asymptotic expansion is

K0(x) =
∞∑
a=0

1

a!2

(x
2

)2a(
−γ +

a∑
b=1

1

b
− log

x

2

)
. (2.1.33)

Here, γ is the Euler’s number11. (2.1.32) is expanded as

(2.1.32) =
λ

2π

[
γ + log

(
µ

2

√
θ2p2 +

1

Λ2

)][
1 +O

(
µ

√
θ2p2 +

1

Λ2

)]
(2.1.34)

For θ = 0, (2.1.34) reproduces the UV logarithmic divergence. On the other hand, for

θ 6= 0, this is finite in the Λ → ∞ limit with p 6= 0, while it diverges in the IR regime

(p → 0). The IR divergence originates from the UV divergence in commutative spaces.

This is because the divergence is called the UV/IR mixing.

10The general form is Kν(x) =
1

2

(ν
2

)2 ∫ ∞

0

dtt−ν−1e−t−x2/4t.

11γ ≡ lim
n→∞

(
n∑

i=1

1

i
− log n

)
= 0.57721 . . . .
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2.1.2 Fuzzy sphere

Here, we introduce the fuzzy sphere, which is a typical example of compact non-commutative

spaces. A scalar field theory on it is realized by a matrix model with a finite matrix size.

The coordinates x̂i (i = 1, 2, 3) on the fuzzy sphere satisfy the SU(2) algebra

[x̂i, x̂j] = iρεijkx̂k . (2.1.35)

They act on the Hilbert space with finite dimensions and take the following form

x̂i = ρLi , (2.1.36)

where (2j+1)× (2j+1) matrices Li are generators of SU(2) algebra with spin-j represen-

tations, which obey the commutation relation

[Li, Lj] = iϵijkLk . (2.1.37)

One can show the following relation:

x̂21 + x̂22 + x̂23 = ρ2j(j + 1)12j+1 . (2.1.38)

(2.1.38) is indeed the equation defining the sphere with radius

R = ρ
√
j(j + 1) . (2.1.39)

The continuum and commutative limit is give as

ρ→ 0 , j →∞ , R = ρ
√
j(j + 1) : fixed . (2.1.40)

We use standard basis on (2j + 1)-dimensional Hilbert space:

|jr〉 (r = −j,−j + 1, . . . , j) . (2.1.41)

Li act on these basis as follows:

L± |jr〉 =
√
(j ∓ r)(j ± r + 1) |j r ± 1〉 , L3 |jr〉 = r |jr〉 , (2.1.42)

where L± ≡ L1 ± iL2.

An arbitrary operator on this Hilbert space, f̂ , is expanded

f̂ =
∑
r,r′

fr,r′ |jr〉 〈jr′| . (2.1.43)

12



We define the fuzzy spherical harmonics as more useful basis:

Ŷ
[j]
lm =

√
2j + 1

∑
r,r′

(−1)−j+r′C lm
j r j−r′ |jr〉 〈jr′| , (2.1.44)

where C lm
j r j−r′ are Clebsh-Gordan coefficients and 0 ≤ l ≤ 2j ,−l ≤ m ≤ l. Later, we can

see that 2j is a UV cutoff. (2.1.44) corresponds to the composition of two spin-j, and the

following commutation relations are satisfied:[
L±, Ŷ

[j]
lm

]
=
√

(l ∓m)(l ±m+ 1)Ŷ
[j]
lm±1 ,

[
L3, Ŷ

[j]
lm

]
= mŶ

[j]
lm . (2.1.45)

The Hermitian conjugate is given as(
Ŷ

[j]
lm

)†
= (−1)mŶ [j]

l−m . (2.1.46)

The orthonormal relation also holds

1

2j + 1
Tr

[(
Ŷ

[j]
lm

)†
Ŷ

[j]
l′m′

]
= δl,l′δm,m′ . (2.1.47)

Moreover, the product of two fuzzy spherical harmonics is

Ŷ
[j]
l2m2

Ŷ
[j]
l3m3

=
∑
l1,m1

Ĉ l1m1
l2m2 l3m3

Ŷ
[j]
l1m1

, (2.1.48)

where

Ĉ l1m1
l2m2 l3m3

≡ 1

2j + 1
Tr

[(
Ŷ

[j]
l1m1

)†
Ŷ

[j]
l2m2

Ŷ
[j]
l3m3

]
= (−1)l1+2j

√
(2j + 1)(2l2 + 1)(2l3 + 1) C l1m1

l2m2 l3m3

{
l1 l2 l3

j j j

}
, (2.1.49)

and

{
∗ ∗ ∗
∗ ∗ ∗

}
is a 6j symbol.

On the other hand, the angular momentum operators

L± ≡ L1 ± iL2 = e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
, L3 = −i

∂

∂φ
, (2.1.50)

act on the ordinal spherical harmonics Ylm(Ω) as

L±Ylm(Ω) =
√

(l ∓m)(l ±m+ 1)Ylm±1(Ω) , L3Ylm(Ω) = mYlm(Ω) . (2.1.51)

Here, Ω = (θ, φ) is a coordinate on the sphere. The complex conjugate and the orthonormal

relation of Ylm(Ω) are

Y ∗
lm(Ω) = (−1)mYl−m(Ω) , (2.1.52)

13



∫
dΩ

4π
Y ∗
lm(Ω)Yl′m′(Ω) = δl,l′δm,m′ , (2.1.53)

where dΩ ≡ sin θdθdφ is the invariant measure on the sphere. (2.1.51)–(2.1.53) correspond

to (2.1.45)–(2.1.47), respectively. Moreover, the product of two spherical harmonics is

Yl2m2(Ω)Yl3m3(Ω) =
∑
l1,m1

√
(2l2 + 1)(2l3 + 1)

2l1 + 1
C l1 0
l2 0 l3 0

C l1m1
l2m2 l3m3

Yl1m1(Ω) , (2.1.54)

where√
(2l2 + 1)(2l3 + 1)

2l1 + 1
C l1 0
l2 0 l3 0

C l1m1
l2m2 l3m3

=

∫
dΩ

4π
Y ∗
l1m1

(Ω)Yl2m2(Ω)Yl3m3(Ω) . (2.1.55)

In the j →∞ limit, one can show

Ĉ l1m1
l2m2 l3m3

→

√
(2l2 + 1)(2l3 + 1)

2l1 + 1
C l1 0
l2 0 l3 0

C l1m1
l2m2 l3m3

(2.1.56)

for l1, l2, l3 � j. Thus, (2.1.54) corresponds to (2.1.48). From the above, the fuzzy spherical

harmonics corresponds to the spherical harmonics in the continuum limit:

Ŷ
[j]
lm ←→ Ylm(Ω) , (2.1.57)

[Li, ]←→ Li , (2.1.58)

1

2j + 1
Tr←→

∫
dΩ

4π
. (2.1.59)

f̂ is expanded as

f̂ =

2j∑
l=0

l∑
m=−l

flmŶ
[j]
lm (2.1.60)

with the fuzzy spherical harmonics Ŷ
[j]
lm . From this relation, a function on S2 is defined by

f(Ω) =

2j∑
l=0

l∑
m=−l

flmYlm(Ω) . (2.1.61)

Thus, an operator on the Hilbert space is mapped to a function on the sphere. The upper

limit of summation with respect to l, 2j, corresponds to a UV cutoff. This regularization

keeps a rotational symmetry.

2.2 Large-N reduction

Although the large-N reduction [34] was originally shown in the lattice gauge theory,

we review the large-N reduction in ϕ3 matrix field theory. We demonstrate the large-N

reduction by using the momentum basis (section 2.2.1) as well as the coordinate basis

(section 2.2.2).

14



2.2.1 Large-N reduction based on the momentum basis

Here, we consider the ϕ3 matrix field theory:

S =

∫
dDxTr

{
1

2
[∂µϕ(x)]

2 +
m2

2
ϕ(x)2 +

κ

3
ϕ(x)3

}
, (2.2.1)

where ϕ(x) is an N × N Hermitian matrix-valued field. In order to obtain the reduced

model, we apply the following rule

ϕ(x)→ eiPµxµΦe−iPµxµ ,

∫
dDx→

(
2π

Λ

)D
= v , (2.2.2)

where Φ is an N × N Hermitian matrix independent of the space and Pµ (µ = 1, . . . , D)

are diagonal matrices:

Pµ =


p
(1)
µ

p
(2)
µ

. . .

p
(N)
µ

 . (2.2.3)

p
(i)
µ (i = 1, . . . , N) represent N points distributing uniformly in D-dimensional cube with

length Λ. Here, Λ corresponds to a UV cutoff of momenta and v corresponds to a volume

for unit lattice, so that the second relation of (2.2.2) coincides with the prescription in the

large- N reduction in the lattice theory where the volume V of space is replaced with the

volume v of a unit lattice. Namely, the following relation holds:

V = Nv . (2.2.4)

From (2.2.2), one can show

∂µϕ(x)→ eiPµxµi [Pµ,Φ] e
−iPµxµ . (2.2.5)

Then, the reduced model takes the form:

Sred = vTr

{
−1

2
[Pµ,Φ]

2 +
m2

2
Φ2 +

κ

3
Φ3

}
= v

{
1

2

∑
i,j

[(
p(i) − p(j)

)2
+m2

]
|Φij|2 +

κ

3

∑
i,j,k

ΦijΦjkΦki

}
. (2.2.6)

From the action of the reduced model, the propagator and the vertex are read off as

〈ΦijΦkl〉 =
1

v

δilδkj

(p(i) − p(j))2 +m2
, (2.2.7)
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Figure 2.3: 2-loop planar diagram for

the free energy.

Figure 2.4: 2-loop non-planar diagram

for the free energy.

and

vκδjkδlmδni , (2.2.8)

respectively. The preservation of momenta at the vertex is ensured by the product of

matrices.

Let us calculate the free energy perturbatively. There are two 2-loop diagrams; one is

a planar diagram (Fig. 2.3) and the other is a non-planar diagram (Fig. 2.4). The former

is calculated as follows:

Fig. 2.3 =
κ2

6
v2

1

v3

∑
i,j,k

1

(p(i) − p(k))2 +m2

1

(p(j) − p(i))2 +m2

1

(p(k) − p(j))2 +m2
. (2.2.9)

Here, we change variables

q1 = p(i) − p(k) , q2 = p(k) − p(j) , (2.2.10)

and use the relation valid in the large-N limit:

1

v

∑
i

= N

∫
dDq1
(2π)D

,
1

v

∑
j

= N

∫
dDq2
(2π)D

. (2.2.11)

Then, the summation over the index k gives N , so that

(2.2.9) = v
N2λ

6

∫
dDq1
(2π)D

dDq2
(2π)D

1

q21 +m2

1

q22 +m2

1

(q1 + q2)
2 +m2

, (2.2.12)

where λ ≡ κ2N is the ’t Hooft coupling constant. On the other hand, the non-planar

diagram is

Fig. 2.4 = v
N2λ

6

1

m6
× 1

V 2
. (2.2.13)
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The 2-loop diagrams for the free energy in the original theory (2.2.1) are also Figs. 2.3

and 2.4. (2.2.12)/v is equivalent to Fig. 2.3 divided by V in the original theory, while

(2.2.13) does not agree with Fig. 2.4 in the original theory. In the large-N limit (the ’t

Hooft limit or the planar limit), the non-planar diagram is suppressed by 1/N2 compared

to the planar diagram. Generally, only the planar diagram contributes to the free energy

in the large-N limit. In the reduced model, the limit

V = Nv →∞ (2.2.14)

is taken when summations over the index i are replaced with integrals over the momenta.

(2.2.13) is suppressed by 1/V 2 compared to (2.2.12).

Thus, one finds that the reduced model (2.2.6) reproduces the large-N limit of the

original theory in the following limit:

N →∞ , κ→ 0 , V = Nv →∞ , λ : fixed . (2.2.15)

The relation between F and Fred which are free energies in the original theory and the

reduced model, respectively, is
F

N2V
=
Fred

N2v
. (2.2.16)

For n-point correlation functions, the following relation holds:

1

Nn/2+1
〈Tr (ϕ(x1)ϕ(x2) · · ·ϕ(xn))〉 =

1

Nn/2+1

〈
Tr
(
ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)

)〉
red

, (2.2.17)

where

ϕ̂(x) = eiPµxµΦe−iPµxµ , (2.2.18)

and 〈· · ·〉 and 〈· · ·〉red denote expectation values in the original theory and the reduced

model, respectively.

2.2.2 Large-N reduction based on the coordinate basis

Here, we illustrate the large-N reduction by using the coordinate basis.

Again, we consider the ϕ3 matrix field theory (2.2.1). The propagator is

〈ϕij(x1)ϕkl(x2)〉 = D(x1 − x2)δilδjk , (2.2.19)

where the explicit form of D(x) is not necessary in the following. Let us again calculate

the free energy at the 2-loop level. One can show

Fig. 2.3 =
N2λ

6

∫
dDx1d

Dx2D(x1 − x2)3 , (2.2.20)
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and Fig. 2.4 = (2.2.20)/N2, which implies that only the planar diagram contributes in the

large-N limit.

The rule to obtain the reduced model is the same as (2.2.2). Here, we represent the

rule using the coordinate basis:

ϕ(x)→ eiP̂µxµΦ̂e−iP̂µxµ ,

∫
dDx→ v , (2.2.21)

where Φ̂ is a Hermitian operator acting on the function space on RD. momentum operators

P̂µ act on the coordinate basis |x〉 (x ∈ RD) as follows:

P̂µ |x〉 = i∂µ |x〉 , 〈x| P̂µ = −i∂µ 〈x| . (2.2.22)

One obtains the reduced model by applying the rule (2.2.21) to (2.2.1):

Sred = vTr

(
−1

2

[
P̂µ, Φ̂

]2
+
m2

2
Φ̂2 +

κ

3
Φ̂3

)
. (2.2.23)

We introduce the bi-local field representation:

ϕ(x, x′) ≡
〈
x
∣∣Φ̂∣∣x′〉 . (2.2.24)

From the Hermiticity of Φ̂, ϕ∗(x, x′) = ϕ(x′, x) is satisfied. (2.2.23) is rewritten by using

the bi-local representation:

Sred = v

∫
dDxdDx′

[
−1

2
ϕ(x, x′)

(
∂µ + ∂′µ

)2
ϕ(x′, x) +

m2

2
ϕ(x, x′)ϕ(x′, x)

]
+ v

∫
dDxdDx′dDx′′

κ

3
ϕ(x, x′)ϕ(x′, x′′)ϕ(x′′, x) . (2.2.25)

By changing variables

Xµ = xµ , ξµ = xµ − x′µ , (2.2.26)

it is useful to regard ϕ(x, x′) as the function of X and ξ, and then one finds the relation

(
∂µ + ∂′µ

)
ϕ(x, x′) =

∂

∂Xµ
ϕ(x, x′) . (2.2.27)

The propagator of the reduced model is given as

〈ϕ(x1, x′1)ϕ(x′2, x2)〉 =
1

v
D(x1 − x2)δ(D) ((x1 − x′1)− (x2 − x′2)) , (2.2.28)

which implies relative coordinates are preserved in the propagation.
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Figure 2.5: 2-loop planar diagram in the

bi-local representation for the free en-

ergy.

Figure 2.6: 2-loop non-planar diagram

in the bi-local representation for the free

energy.

Here, let us calculate the free energy at the 2-loop level in the reduced model. Figs.

2.5 and 2.6 are the planar diagram12 and the non-planar diagram, respectively. The planar

diagram is calculated as

Fig. 2.5 =
κ2

6v

∫
dDx1d

Dx′1d
Dx′′1d

Dx2d
Dx′2d

Dx′′2D(x1 − x2)δ(D) ((x1 − x′1)− (x2 − x′2))

×D(x′1 − x′2)δ(D) ((x′1 − x′′1)− (x′2 − x′′2))D(x′′1 − x′′2)δ(D) ((x′′1 − x1)− (x′′2 − x2))

=
κ2

6v
δ(D)(0)V 2

∫
dDx1d

Dx2D(x1 − x2)3 , (2.2.29)

where V 2 comes from degrees of freedom of x′1 and x′′1. Since

δ(D)(0) =
1

v
, V = Nv (2.2.30)

one finds the following relation:

(2.2.20)

N2V
=

(2.2.29)

N2v
(2.2.31)

in the N → ∞ , v → 0 , V → ∞ limit as before. On the other hand, the non-planar

diagram is

Fig. 2.6 =
κ2

6v

∫
dDx1d

Dx′1d
Dx′′1d

Dx2d
Dx′2d

Dx′′2D(x1 − x2)δ(D) ((x1 − x′1)− (x2 − x′2))

×D(x′1 − x′′2)δ(D) ((x′1 − x′′1)− (x′′2 − x2))D(x′′1 − x′2)δ(D) ((x′′1 − x1)− (x′2 − x′′2))

=
κ2

6v
δ(D)(0)

∫
dDx1d

Dx′1d
Dx2d

Dx′′2D(x1 − x2)D(x′1 − x′′2)D(x1 − x′′2) , (2.2.32)

which is suppressed by 1/V 2 compared to (2.2.29) in the V → ∞ limit as before. Thus,

one finds again (2.2.16). One can show again (2.2.17) in the same way.

12Although this diagram is no longer drawn in the plane, it is called the planar diagram.
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2.3 Type IIB matrix model

The action of the type IIB matrix model is formally given by the form of a dimensional

reduction of 10-dimensional N = 1 supersymmetric SU(N) Yang-Mills theory to 0 dimen-

sion. It takes the following form:

SIIB = Sb + Sf , (2.3.1)

Sb = − 1

4g2
Tr
([
AM , AN

]
[AM , AN ]

)
, (2.3.2)

Sf = −
1

2g2
Tr
(
Ψ̄ΓM [AM ,Ψ]

)
, (2.3.3)

where AM (M = 0, . . . , 9) and Ψ are N × N traceless Hermitian matrices and ΓM are

10-dimensional Gamma matrices. The model has SO(9,1) symmetry. AM and Ψ are

transformed as the Lorentz vector and the Majorana-Weyl spinor, respectively, under the

SO(9,1) transformation. The model possesses SU(N) symmetry:

A′
M = UAMU † , Ψ′ = UΨU † , (2.3.4)

where U ∈ SU(N). The model is also invariant under the following transformations:

δ(1)AM = iϵ̄1ΓMΨ , δ(1)Ψ =
i

2
ΓMN [AM , AN ] ϵ1 , (2.3.5)

δ(2)AM = 0 , δ(2)Ψ = ϵ21N×N , (2.3.6)

δTAM = cM1N×N , δTΨ = 0 , (2.3.7)

δGAM = i [Λ, AM ] , δGΨ = i [Λ,Ψ] . (2.3.8)

Here, ϵ1 and ϵ2 are 10-dimensional Majorana-Weyl spinors and Grassmann-odd parameters,

cM are 10-dimensional vectors and Grassmann-even parameters, 1N×N is theN×N identity

matrix, and Λ is an N ×N Hermitian matrix. Let generators of (2.3.5) – (2.3.7) be Q(1),

Q(2), and PM , respectively, and Q̃(i) (i = 1, 2) are defined by

Q̃(1) = Q(1) +Q(2) , Q̃(2) = i
(
Q(1) −Q(2)

)
. (2.3.9)

One can show that the following relation holds[
ϵ̄1Q̃

(i), ϵ̄2Q̃
(j)
]
= −2δij ϵ̄1ΓMϵ2PM (2.3.10)

up to terms proportional to equations of motion of Ψ ΓM [AM ,Ψ] = 0 and the gauge

transformation (2.3.8). This is the algebra of N = 2 supersymmetry in 10 dimensions

with PM identified with momenta. In this case, (2.3.7) represents the translation, and
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eigenvalues of AM are interpreted as coordinates. N = 2 supersymmetry is maximal

symmetry in 10 dimensions, so that the theory must include the graviton if the theory is

unitary and includes massless fields. Thus, the existence of this symmetry strongly suggests

that the type IIB matrix model includes gravity.

In the following, we show that the action is derived from the Green-Schwarz action of

the Nambu-Goto type for the type IIB superstring theory:

SNG = −T
∫
d2σ

[√
−1

2
ΣMNΣMN + iϵab∂aX

M
(
θ̄1ΓM∂bθ

1 + θ̄2ΓM∂bθ
2
)

+ ϵabθ̄1ΓM∂aθ
1θ̄2ΓM∂bθ

2

]
. (2.3.11)

Here, T is a tension of a string, σa (a = 1, 2) are coordinates of the world-sheet, θ1 and θ2

are 10-dimensional Majorana-Weyl spinors and have the same chirality in 10 dimensions

because we consider the type IIB superstring theory. ΣMN are defined by

ΣMN = ϵabΠM
a ΠN

b , (2.3.12)

ΠM
a = ∂aX

M − iθ̄1ΓM∂aθ1 + iθ̄2ΓM∂aθ
2 . (2.3.13)

By removing θ1 and θ2 and setting M to be 0, 1, . . . , 25, (2.3.11) reduces to the Numbu-

Goto action for the bosonic string.

(2.3.11) has 10-dimensional N = 2 supersymmetry:

δSUSYθ
i = ϵi , δSUSYX

M = iϵ̄1ΓMθ1 − ϵ̄2ΓMθ2 , (2.3.14)

and κ-symmetry:

δκθ
i = αi , δκX

M = iθ̄1ΓMα1 − θ̄2ΓMα2 . (2.3.15)

Here,

α1 =
(
1 + Γ̃κ1

)
, (2.3.16)

α2 =
(
1− Γ̃κ2

)
, (2.3.17)

Γ̃ = ΣMNΓ
MN

/
2

√
−1

2
ΣKLΣKL , (2.3.18)

and κ1 and κ2 are local Grassmann-odd parameters that are Majorana-Wely fermions.

One can show Γ̃2 = 1, and finds from (2.3.16) and (2.3.17) that each αi has half degrees of

freedom of local Majorana-Weyl fermion.

We fix the κ-symmetry by taking a gauge-fixing condition:

θ1 = θ2 = Ψ , (2.3.19)
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which preserves the 10-dimensional Lorentz symmetry since θi have the same chirality.

This gauge fixing leads (2.3.11) to

S̃NG = −T
∫
d2σ

[√
−1

2
σMNσMN + 2iϵab∂aX

MΨ̄ΓM∂bΨ

]
, (2.3.20)

where

σMN = ϵab∂aX
M∂bX

N . (2.3.21)

One can show that (2.3.20) still has N = 2 supersymmetry. The supersymmetric

transformation is obtained by combining with (2.3.14) and (2.3.15) such that the gauge-

fixing condition (2.3.19) is kept. Namely, we define the following transformation δ

δθi = (δSUSY + δκ) θ
i , δXM = (δSUSY + δκ)X

M , (2.3.22)

and take κi

κ1 =
−ϵ1 + ϵ2

2
, κ2 =

ϵ1 − ϵ2

2
(2.3.23)

so that δθ1 = δθ2. Here, we define ξ and ζ by

ξ =
ϵ1 + ϵ2

2
, ζ =

ϵ1 − ϵ2

2
, (2.3.24)

and then (2.3.22) implies

δ(1)XM = 4iζ̄ΓMΨ , δ(1)Ψ = −σMNΓ
MNζ

/
2

√
−1

2
σKLσKL , (2.3.25)

δ(2)XM = 0 , δ(2)Ψ = ξ . (2.3.26)

In order to rewrite S̃NG to the Schild action, we introduce the Poisson bracket

{X,Y }PB =
1
√
g
ϵab∂aX∂bY , (2.3.27)

where g = det gab and gab is the world-sheet metric. The Schild action is

SSch =

∫
d2σ
√
g

[
α

(
1

4

{
XM , XN

}2
PB
− i

2
Ψ̄ΓM {XM ,Ψ}PB

)
+ β

]
. (2.3.28)

From the equation of motion of
√
g, one finds

√
g =

1

2

√
α

β

√
(ϵab∂aXM∂bXN)2 . (2.3.29)

By substituting (2.3.29), one obtains

SSch =

∫
d2σ

[
− i
2
αϵab∂aXMΨ̄ΓM∂bΨ+

√
αβ

√
(ϵab∂aXM∂bXN)2

]
, (2.3.30)
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which agrees with S̃NG up to normalization of Ψ. In (2.3.28), symmetries of (2.3.25) and

(2.3.26) are realized by

δ(1)XM = iζ̄ΓMΨ , δ(1)Ψ = −1

2
{XM , XN}PB ΓMNζ , (2.3.31)

and

δ(2)XM = 0 , δ(2)Ψ = ξ , (2.3.32)

respectively.

The path integral for (2.3.28) is defined by

Z =

∫
D√gDXDΨe−SSch . (2.3.33)

(2.3.28) has the diffeomorphic invariance on the world-sheet:

δdiffX
M = ϵa∂aX

M , (2.3.34)

δdiffΨ = ϵa∂aΨ , (2.3.35)

δdiff
√
g = ∂a (ϵ

a√g) . (2.3.36)

In (2.3.33), we assume that the path-integral measure also has this invariance. By fixing
√
g, this invariance is partially gauge-fixed. From (2.3.36), ϵa are restricted as

∂a (ϵ
a√g) = 0 . (2.3.37)

The diffeomorphism with this restriction is the area preserving diffeomorphism. (2.3.37) is

solved

ϵa =
1
√
g
ϵab∂bρ(σ) , (2.3.38)

where ρ(σ) is an arbitrary function of σa, and (2.3.34) and (2.3.35) become

δapdX
M =

{
XM , ρ

}
PB

, (2.3.39)

δapdΨ = {Ψ, ρ}PB , (2.3.40)

which implies that the area preserving diffeomorphism is given by the Poisson bracket.

The algebra satisfied by the Poisson bracket is w∞-algebra.

Here, we regularize w∞-algebra by using SU(n) algebra. Then, the Poisson bracket and

the integral on the world-sheet are replaced by the commutator and the trace with respect

to n× n matrices, respectively:

{ , }PB −→ −i [ , ] ,
∫
d2σ

2π

√
g −→ Tr . (2.3.41)
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Fields on the world-sheet XM , Ψ, and ρ become n× n Hermitian matrices. Properties of

the Poisson bracket∫
d2σ
√
g {X,Y }PB = 0 ,

∫
d2σ
√
gX {Y, Z}PB =

∫
d2σ
√
gZ {X,Y }PB (2.3.42)

become properties of the trace

Tr([X,Y ]) = 0 , Tr(X [Y, Z]) = Tr(Z [X,Y ]) . (2.3.43)

By applying regularization (2.3.41) to (2.3.28), one obtains

S = 2παTr

(
−1

4
[AM , AN ]

2 − 1

2
Ψ̄ΓM [AM ,Ψ]

)
+ 2πβTr1 , (2.3.44)

where n×n Hermitian matrices AM correspond to fields on the world-sheet XM . The path

integral (2.3.33) becomes

Z =
∞∑
n=0

∫
dAdΨe−S , (2.3.45)

where

dA =
∏
M

[∏
i

d (AM)ii

][∏
i>j

dRe (AM)ij dIm (AM)ij

]
,

dΨ =
∏
α

[∏
i

d (Ψα)ii

][∏
i>j

dRe (Ψα)ij dIm (Ψα)ij

]
. (2.3.46)

The summation over n comes from
∫
Dg, which remains even after the gauge fixing

√
g =

const.. In this way, one obtains a matrix model.

By applying the regularization (2.3.41) to (2.3.39) and (2.3.40), one obtains

δAM = i
[
ρ,AM

]
, δΨ = i [ρ,Ψ] , (2.3.47)

where ρ is an arbitrary n×n Hermitian matrix. (2.3.47) agrees with (2.3.8) if n is replaced

with N . (2.3.31) and (2.3.32) become

δ(1)AM = iζ̄ΓMΨ, δ(1)Ψ =
i

2
[AM , AN ] Γ

MNζ , (2.3.48)

and

δ(2)AM = 0, δ(2)Ψ = ξ , (2.3.49)

respectively. If n is replaced with N , (2.3.48) and (2.3.49) agree with (2.3.5) and (2.3.6),

respectively. (2.3.44) and (2.3.45) are invariant under (2.3.47), (2.3.48) and (2.3.49), and

the matrix model has this symmetry.
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Let us see the relation between the type IIB matrix model and the theory defined by

(2.3.44) and (2.3.45). The summation over the matrix size n exists in (2.3.45) and the term

proportional to Tr1 exists in (2.3.44), while those do not in the type IIB matrix model.

The measure in both of matrix models is the same as (2.3.46). Let us consider n × n

diagonal block in AM and Ψ on the type IIB matrix model. By integrating out the other

parts of matrices, one obtains the effective action with respect to n × n matrices, which

contains the original action and βTr1 as the leading correction, where β is interpreted as

the chemical potential. Therefore, (2.3.44) is considered as the effective theory of the type

IIB matrix model.

The type IIB matrix model is regarded as the regularization of the type IIB super-

string. This model naturally includes the many-body system of string, so that it is non-

perturbative formulation of superstring theory.
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Chapter 3

Renormalization in a scalar field

theory on the fuzzy sphere

In this chapter, we study renormalization of a scalar field theory on the fuzzy sphere

by Monte Carlo simulations. We define the correlation functions by using the Berezin

symbol [75]. First, we show that the 2-point and 4-point correlation functions are made

independent of the matrix size by tuning a parameter in the theory. This implies that

the theory is non-perturbatively renormalizable. Next, we identify the phase boundary by

measuring the susceptibility that is an order parameter for the Z2 symmetry and calculate

the 2-point and 4-point correlation functions on the boundary. We find that the theory

behaves as a conformal field theory at short distances on the phase boundary.

3.1 Review of scalar field theory on the fuzzy sphere

Here, we examine a following matrix model:

Sfuzzy =
1

N
Tr

(
−1

2
[Li,Φ]

2 +
µ2

2
Φ2 +

λ

4
Φ4

)
, (3.1.1)

where Φ is an N × N Hermitian matrix and N = 2j + 1. The theory possesses the Z2

symmetry: Φ→ −Φ. The path integral measure is given by dΦe−S, where

dΦ =
N∏
i=1

dΦii

∏
1≤j<k≤N

dReΦjkdImΦjk . (3.1.2)

The theory (3.1.1) reduces to the following continuum theory on a sphere with the radius

R at the tree level in the N → ∞ limit, which corresponds to the so-called commutative

limit:

Scomm =
R2

4π

∫
dΩ

(
− 1

2R2
(Liϕ)2 +

m2

2
ϕ2 +

g

4
ϕ4

)
. (3.1.3)

The correspondence of the parameters in (3.1.1) and (3.1.3) is given by

µ2 = R2m2 , λ = R2g . (3.1.4)
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By expanding Φ in terms of Ŷ
[j]
lm , one can rewrite (3.1.1) as

Sfuzzy = Sfuzzy, free + Sfuzzy, int , (3.1.5)

Sfuzzy, free =
∑
l,m

(−1)m

2

[
l(l + 1) + µ2

]
ϕlmϕl−m , (3.1.6)

Sfuzzy, int =
∑
l1,...,l5

∑
m1,...,m5

λ(−1)m5

4
Ĉ l5m5
l1m1 l2m2

Ĉ l5 −m5
l3m3 l4m4

ϕl1m1ϕl2m2ϕl3m3ϕl4m4 . (3.1.7)

On the other hand, by expanding ϕ(Ω) in terms of Ylm(Ω), one can rewrite (3.1.3) as

Scomm = Scomm, free + Scomm, int , (3.1.8)

Scomm, free =
∑
l,m

(−1)m

2

[
l(l + 1) +R2m2

]
ϕlmϕl−m , (3.1.9)

Scomm, int =
∑
l1,...,l5

∑
m1,...,m5

R2g(−1)m5

4

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

2l5 + 1

× C l5m5
l1m1 l2m2

C l5 −m5
l3m3 l4m4

C l5 0
l1m1 l2m2

C l5 0
l3m3 l4m4

ϕl1m1ϕl2m2ϕl3m3ϕl4m4 . (3.1.10)

From (2.1.56), the above theories agree on the j → ∞ limit. Indeed, this statement is

correct only at the tree level by paying attention to (2.1.56) with l1, l2, l3 � j, but they

differ with the quantum correction, which is the UV/IR anomaly [13, 14] and argued in

Appendix B.

To define correlation functions, we introduce the Berezin symbol [75] that is constructed

from the Bloch coherent state [76] because this definition is useful for numerical simulation.

We parametrize the sphere in terms of the standard polar coordinates Ω = (θ, φ). The

Bloch coherent state |Ω〉 is localized around the point (θ, φ) with the width R/
√
N . The

Berezin symbol for an N × N matrix Φ is given by 〈Ω|Φ|Ω〉, and identified with the

field ϕ(Ω) in the correspondence at the tree level between (3.1.1) and (3.1.3). The Bloch

coherent state and the Berezin symbol are reviewed in appendix.

3.2 Correlation functions

3.2.1 Definition

By denoting the Berezin symbol (see, Appendix A) briefly as

φ(Ω) = 〈Ω|Φ|Ω〉 , (3.2.1)

we define the n-point correlation function in the theory (3.1.1) as

〈φ(Ω1)φ(Ω2) · · ·φ(Ωn)〉 =
∫
dΦ φ(Ω1)φ(Ω2) · · ·φ(Ωn) e

−Sfuzzy∫
dΦ e−Sfuzzy

. (3.2.2)
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The correlation function (3.2.2) is a counterpart of 〈ϕ(Ω1)ϕ(Ω2) · · ·ϕ(Ωn)〉 in the theory

(3.1.3).

We assume that the matrix Φ in (3.1.1) is renormalized as

Φ =
√
ZΦr , (3.2.3)

where Φr is the renormalized matrix. Then, we define the renormalized Berezin symbol

φr(Ω) by

φ(Ω) =
√
Zφr(Ω) , (3.2.4)

and the renormalized n-point correlation function 〈φr(Ω1)φr(Ω2) · · ·φr(Ωn)〉 by

〈φ(Ω1)φ(Ω2) · · ·φ(Ωn)〉 = Z
n
2 〈φr(Ω1)φr(Ω2) · · ·φr(Ωn)〉 . (3.2.5)

In the following, we calculate the following correlation functions:

1-point function: 〈φ(Ω1)〉 ,

2-point function: 〈φ(Ωp)φ(Ωq)〉 (1 ≤ p < q ≤ 4) ,

4-point function: 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉 . (3.2.6)

We verified that the 1-point functions vanish in the parameter region we examined in this

section. Thus, the 2-point correlation functions are themselves the connected ones, while

the connected 4-point correlation functions are given by

〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c = 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉 − 〈φ(Ω1)φ(Ω2)〉 〈φ(Ω3)φ(Ω4)〉

− 〈φ(Ω1)φ(Ω3)〉 〈φ(Ω2)φ(Ω4)〉 − 〈φ(Ω1)φ(Ω4)〉 〈φ(Ω2)φ(Ω3)〉 ,
(3.2.7)

where c stands for the connected part. The renormalized correlation functions are defined

as

〈φ(Ω1)〉 =
√
Z 〈φr(Ω1)〉 , (3.2.8)

〈φ(Ωp)φ(Ωq)〉 = Z 〈φr(Ωp)φr(Ωq)〉 , (3.2.9)

〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c = Z2 〈φr(Ω1)φr(Ω2)φr(Ω3)φr(Ω4)〉c . (3.2.10)

We pick up four points Ωp = (θp, φp) on the sphere as follows (see Fig. 3.1):

Ω1 =
(π
2
+ ∆θ, 0

)
, Ω2 =

(π
2
, 0
)
, Ω3 =

(π
2
, φ̂
)
, Ω4 =

(π
2
, −φ̂

)
, (3.2.11)

where φ̂ = π/12 and ∆θ = m/10 with m ∈ Z taken from 1 to 15.

We apply the hybrid Monte Carlo method to our simulation of the theory.
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Figure 3.1: Four points on the sphere chosen for the correlation functions.

3.2.2 Renormalization

Tuning λ with fixing µ2

Here, we renormalize the theory by tuning λ. We fix µ2 to −6.0.
We simulate at N = 32 for various values of λ. In Fig.3.2, we plot

〈φ(Ω1)φ(Ω2)〉 = Z 〈φr(Ω1)φr(Ω2)〉 (3.2.12)

against ∆θ at N = 40 and λ = 1.0 and at N = 32 and typical values of λ, 1.0, 1.234, 2.0.

We find that the data for N = 32 and λ = 1.234 agree with the ones for N = 40 and

λ = 1.0 if the formers are multiplied by a constant ζ32→40 = Z(40)/Z(32) = 1.129(8) and

that this is not the case for the data for N = 32 and λ = 1.0, 2.0. In Fig.3.3, we plot

〈φ(Ω1)φ(Ω2)〉 at N = 40 and λ = 1.0 and ζ32→40 〈φ(Ω1)φ(Ω2)〉 at N = 32 and λ = 1.234

against ∆θ. As in the previous section, we see that the data for N = 32 agree nicely with

the ones for N = 40. This implies that the renormalized 2-point functions at N = 32 and

N = 40 agree.

Furthermore, in Fig.3.4, we plot 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c c at N = 40 and λ = 1.0

and ζ232→40 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c at N = 32 and λ = 1.234 against ∆θ. We again see

a nice agreement between the data for N = 32 and the ones for N = 40, which means that

the renormalized connected 4-point functions at N = 32 agree with those at N = 40.

The above results strongly suggest that the theory is non-perturbatively renormalized

also by tuning λ in the sense that the renormalized correlation functions are independent

of N .
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Figure 3.2: 〈φ(Ω1)φ(Ω2)〉 at µ2 = −6.0 is plotted against ∆θ. Circles represent the data

for N = 40 and λ = 1.0, while squares, triangles and inverted triangles represent the data

for N = 32 and λ = 1.234, 1.0, 2.0 , respectively.

The results in the previous and present sections imply that the theory is renormalized

by tuning a parameter, namely, it is universal up to a parameter fine-tuning.

Tuning µ2 with fixing λ

Here, we renormalize the theory by tuning µ2. We fix λ to 1.0.

First, we simulate at N = 40 and µ2 = −6.0. Then, we simulate at N = 32 for various

values of µ2. In Fig.3.5, we plot

〈φ(Ω1)φ(Ω2)〉 = Z 〈φr(Ω1)φr(Ω2)〉 (3.2.13)

against ∆θ atN = 40 and µ2 = −6.0 and atN = 32 and typical values of µ2, −6.0,−3.34,−1.0.
We find that the data for N = 32 and µ2 = −3.34 agree with the ones for N = 40

and µ2 = −6.0 if the formers are multiplied by a constant and that this is not the case

for the data for N = 32 and µ2 = −6.0,−1.0. We determined the above constant as

ζ ′32→40 = Z(40)/Z(32) = 1.263(8) by using the least-squares method. In Fig.3.6, we

plot 〈φ(Ω1)φ(Ω2)〉 at N = 40 and µ2 = −6.0 and ζ ′32→40 〈φ(Ω1)φ(Ω2)〉 at N = 32 and

µ2 = −3.34 against ∆θ. We indeed see that the data for N = 32 agree nicely with the ones

for N = 40. This implies that the renormalized 2-point functions at N = 32 and N = 40

agree.

Furthermore, in Fig.3.7, we plot 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c at N = 40 and µ2 = −6.0
and ζ ′232→40 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c at N = 32 and µ2 = −3.34 against ∆θ. We again
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Figure 3.3: 〈φ(Ω1)φ(Ω2)〉 at N = 40, µ2 = −6.0 and λ = 1.0 is plotted against ∆θ (circles).

ζ32→40 〈φ(Ω1)φ(Ω2)〉 with ζ32→40 = 1.129(8) at N = 32, µ2 = −6.0 and λ = 1.234 is also

plotted against ∆θ (squares).

Figure 3.4: 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c at N = 40, µ2 = −6.0 and λ = 1.0 is plotted against

∆θ, where circles represent the data. ζ232→40 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c with ζ232→40 = 1.275

at N = 32, µ2 = −6.0 and λ = 1.234 is also plotted against ∆θ, where squares represent

the data.
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Figure 3.5: 〈φ(Ω1)φ(Ω2)〉 at λ = 1.0 is plotted against ∆θ. Circles represent the data for

N = 40 and µ2 = −6.0, while squares, triangles and inverted triangles represent the data

for N = 32 and µ2 = −3.34,−6.0,−1.0, respectively.

see a nice agreement between the data for N = 32 and the ones for N = 40, which means

that the renormalized connected 4-point functions at N = 32 agree with those at N = 40.

We do not see the above agreement of the correlation functions for m = 1, 2 in (3.2.11).

We consider this to be attributed to the UV cutoff.

The above results strongly suggest that the correlation functions are made independent

of N up to a wave function renormalization by tuning µ2 and that the theory is non-

perturbatively renormalizable in the ordinary sense.

3.3 Critical behavior of correlation functions

Here, we examine the 2-point and 4-point correlation functions on the phase boundary.

We fix N to 24 in this section.

We introduce the stereographic projection (Fig. 3.8) defined by

z = R tan
θ

2
eiφ , (3.3.1)

which maps a sphere with the radius R to the complex plane. Here, we fix R to 1 without

loss of generality. We calculate the 2-point correlation function

〈φ(zm)φ(1)〉 (3.3.2)
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Figure 3.6: 〈φ(Ω1)φ(Ω2)〉 at N = 40, µ2 = −6.0 and λ = 1.0 is plotted against ∆θ (circles).

ζ ′32→40 〈φ(Ω1)φ(Ω2)〉 with ζ ′32→40 = 1.263(8) at N = 32, µ2 = −3.34 and λ = 1.0 is also

plotted against ∆θ (squares).

Figure 3.7: 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c at N = 40, µ2 = −6.0 and λ = 1.0 is plotted

against ∆θ (circles). ζ ′232→40 〈φ(Ω1)φ(Ω2)φ(Ω3)φ(Ω4)〉c with ζ ′232→40 = 1.595 at N = 32,

µ2 = −3.34 and λ = 1.0 is also plotted against ∆θ (squares).
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Figure 3.8: The stereographic projection: a point on the sphere with angle θ is projected

onto the z-plane on the equator from the south pole.

and the connected 4-point correlation function

〈φ(zm)φ(1)φ(ei
π
3 )φ(ei

5π
3 )〉c , (3.3.3)

where

zm = tan

[
1

2

(π
2
+
m

10

)]
(3.3.4)

with m taken from 1 to 15. See Fig. 3.1 with φ̂ = π/3.

The renormalized 2-point correlation function 〈φr(zm)φr(1)〉 and the renormalized con-

nected 4-point correlation function 〈φr(zm)φr(1)φr(e
iπ
3 )φr(e

i 5π
3 )〉c are defined by

〈φ(zm)φ(1)〉 = Z〈φr(zm)φr(1)〉 , (3.3.5)

〈φ(zm)φ(1)φ(ei
π
3 )φ(ei

5π
3 )〉c = Z2〈φr(zm)φr(1)φr(e

iπ
3 )φr(e

i 5π
3 )〉c . (3.3.6)

Here, in order to see a connection to a CFT we use the log-log plot. We plot log〈φ(zm)φ(1)〉
and log〈φ(zm)φ(1)φ(ei

π
3 )φ(ei

5π
3 )〉c against log |z−1| for (µ2, λ) = (−10.801, 0.5), (−12.810, 0.6),

(−14.925, 0.7) in Figs.3.9 and 3.10, respectively.

We also define the susceptibility χ that is an order parameter for the Z2 symmetry by

χ =

〈(
1

N
TrΦ

)2
〉
−
〈

1

N
|TrΦ|

〉2

. (3.3.7)

In Fig.3.11, we plot χ against −µ2 for each value of λ, 0.5, 0.6, 0.7. The critical val-

ues of −µ2, −µ2
crit, that give the peaks of χ correspond to the phase transition points

where the symmetry breaking of the Z2 symmetry occurs: the Z2 symmetry is broken

for −µ2 > −µ2
crit, while it is unbroken for −µ2 < −µ2

crit. We find the peaks of χ for
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Figure 3.9: log〈φ(zm)φ(1)〉 at N = 24 is plotted against log |z− 1|. The data for (µ2, λ) =

(−10.801, 0.5), (−12.810, 0.6), (−14.925, 0.7) are represented by the circles, the squares and

the triangles, respectively.

λ = 0.5, 0.6, 0.7 exist around µ2 = −10.8,−12.8,−14.8, respectively. We tune the values of

µ2 around the above values such that the 2-point and 4-point correlation functions for dif-

ferent λ’s agree up to a wave function renormalization. We shift the data of the 2-point cor-

relation functions for (µ2, λ) = (−12.810, 0.6), (−14.925, 0.7) simultaneously in the vertical

direction by α0.6→0.5 = log[Z(λ = 0.5)/Z(λ = 0.6)] = −0.015(1) and α0.7→0.5 = −0.056(1),
respectively, and plot the shifted data in Fig.3.12. We also shift the data of the 4-point cor-

relation functions for (µ2, λ) = (−12.810, 0.6), (−14.925, 0.7) simultaneously by 2α0.6→0.5

and 2α0.7→0.5, respectively, and plot the shifted data in Fig.3.13. We see a good agreement

of both the shifted 2-point and 4-point correlation functions. These shifts correspond to

a wave function renormalization. Furthermore, we see that the above tuned values of µ2

are consistent with the critical values of µ2 read off from Fig.3.11. Thus, the agreement of

the correlation functions implies that the theories are universal on the phase boundary as

in ordinary field theories. We do not see the above agreement of the correlation functions

not only in the UV region with m = 1, 2, but also in the IR region with m = 14, 15.

We consider the disagreement in the latter region to be caused by an IR cutoff which is

introduced when the theory on the fuzzy sphere is mapped to a theory on the plane with

infinite volume.

Finally, we examine a connection of the present theory to a CFT. In Fig.3.12, we

fit seven data points (m = 4, . . . , 10) of log〈φ(zm)φ(1)〉 at (µ2, λ) = (−10.801, 0.5) to

−u log |z− 1|+ v and obtain u = 0.149(2) and v = 1.887(1). This implies that the 2-point
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Figure 3.10: log〈φ(zm)φ(1)φ(ei
π
3 )φ(ei

5π
3 )〉c atN = 24 is plotted against log |z−1|. The data

for (µ2, λ) = (−10.801, 0.5), (−12.810, 0.6), (−14.925, 0.7) are represented by the circles, the

squares and the triangles, respectively.

Figure 3.11: The susceptibility χ at N = 24 is plotted against −µ2. The data for λ =

0.5, 0.6, 0.7 are represented by the circles, the squares, and the triangles, respectively. The

peaks of χ for λ = 0.5, 0.6, 0.7 exist around µ2 = −10.8,−12.8,−14.8, respectively.
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Figure 3.12: log〈φ(zm)φ(1)〉 at N = 24 is plotted against log |z − 1|. The data

for (µ2, λ) = (−10.801, 0.5) are the same as in Fig. 3.9. The data for (µ2, λ) =

(−12.810, 0.6), (−14.925, 0.7) are simultaneously shifted by α0.6→0.5 = −0.015(1) and

α0.7→0.5 = −0.056(1), respectively, in the vertical direction. The data for (µ2, λ) =

(−10.801, 0.5), (−12.810, 0.6), (−14.925, 0.7) are represented by the circles, the squares and

the triangles, respectively. The dashed line is a fit of seven data points (from the second

point to the eighth point) of log〈φ(zm)φ(1)〉 at (µ2, λ) = (−10.801, 0.5) to −u log |z−1|+v
with u = 0.149(2) and v = 1.887(1).

correlation function behaves as

〈φ(z)φ(1)〉 = ev

|z − 1|u
(3.3.8)

for m = 4, . . . , 10. In CFTs, the 2-point correlation function behaves as

〈O(z)O(z′)〉 ∼ 1

|z − z′|2∆
, (3.3.9)

where the ∆ is the scaling dimension of the operator O(z). Thus, the theory on the phase

boundary behaves as a CFT in the UV region. In the IR region with 11 ≤ m ≤ 13, our

2-point correlation function deviates universally from that in the CFT. In addition, in a

further UV region with m = 3, it also deviates universally. These deviations are considered

as an effect of the UV/IR mixing. It is non-trivial that we observe the behavior of the

CFT because field theories on non-commutative spaces are non-local ones.
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Figure 3.13: log〈φ(zm)φ(1)φ(ei
π
3 )φ(ei

5π
3 )〉c at N = 24 is plotted against log |z − 1|.

The data for (µ2, λ) = (−10.801, 0.5) are the same as in Fig. 3.10, while the data

for (µ2, λ) = (−12.810, 0.6), (−14.925, 0.7) are simultaneously shifted by 2α0.6→0.5 and

2α0.7→0.5, respectively, in the vertical direction. The data for (µ2, λ) = (−10.801, 0.5),
(−12.810, 0.6), (−14.925, 0.7) are represented by the circles, the squares and the triangles,

respectively.
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Chapter 4

Large-N volume independence on

group manifolds

In this chapter, we examine whether phenomenon analogous to the large-N volume in-

dependence occurs on group manifolds. We find that it indeed does in the sense that

a large-N gauge theory on a group manifold G is equivalent to the theory obtained by

reducing it to a coset space G/H where H is a subgroup of G.

4.1 Large-N volume independence on torus

In this section, as a warm-up, we examine the large-N volume independence on a D-

dimensional torus TD ' U(1)D. We denote coordinates of TD by xµ (µ = 1, . . . , D),

assuming, for simplicity, the periodicity xµ ∼ xµ+L. Using a positive integer K, we define

a ‘reduced torus’ TD/(ZK)
D whose coordinates are denoted by σµ. The periodicity for σµ

is

σµ ∼ σµ + l , (4.1.1)

where l = L/K. We have a relation

xµ = luµ + σµ (4.1.2)

with uµ integers.

To illustrate the large-N volume independence, we consider a scalar matrix field theory

on TD:

S =

∫
dDx Tr

(
1

2
∂µϕ(x)∂µϕ(x) +

m2

2
ϕ(x)2 +

κ

3
ϕ(x)3

)
, (4.1.3)

where ϕ(x) is a Hermitian matrix-valued field with the matrix size N .

We apply a following reduction rule to the above theory (4.1.3):

ϕ(x)→ eiPµxµϕ(σ)e−iPµxµ with Pµ =


2πn

(1)
µ

L

2πn
(2)
µ

L
. . .

 ,

∫
dDx→ v

v′

∫
dDσ .

(4.1.4)
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Here the relation between xµ and σµ is given by (4.1.2), and Pµ are constant diagonal

matrices whose eigenvalues 2πn
(i)
µ /L (i = 1, . . . , N) correspond to the momenta on TD

distributed uniformly in the momentum space. v and v′ are given by

v = LD/N , v′ = (2π/Λ)D , (4.1.5)

where Λ is a UV cutoff on TD/(ZK)
D. (4.1.5) implies that TD is divided into N cells with

the volume of a unit cell given by v and that TD/(ZK)
D is divided into lD/v′ cells with the

volume of a unit cell given by v′. Then, we obtain the action of a reduced model defined

on TD/(ZK)
D:

Sred =
v

v′

∫
dDσ Tr

(
1

2
(∂σµϕ(σ) + i [Pµ, ϕ(σ)])

2 +
m2

2
ϕ(σ)2 +

κ

3
ϕ(σ)3

)
. (4.1.6)

Note that vlD/v′ can be viewed as an effective volume in the reduced model.

We consider the 2-loop contribution to the free energy. There are two diagrams. One

is planar (Fig.2.3) and the other non-planar (Fig.2.4). First, we calculate them in the

original theory (4.1.3). The planar diagram is calculated as

λN2

6

∫
dDxdDx′D(x− x′)3 , (4.1.7)

where λ = κ2N is the ’t Hooft coupling and D(x− x′) is the free propagator of the theory
(4.1.3) with N = 1:

D(x− x′) = 1

LD

∑
n

ei
2πnµ

L (xµ−x′µ)(
2πnµ

L

)2
+m2

. (4.1.8)

The non-planar diagram is given by (4.1.7)/N2 so that it is suppressed by 1/N2 compared

to the planar diagram in the N →∞ limit.

Next, we calculate them in the reduced model using a bi-local field representation for

matrices [35,36]. We take a coordinate basis |x〉 in the vector space on which ϕ(σ) and Pµ

act and define a bi-local field

ϕ(σ, x, x′) = 〈x|ϕ(σ)|x′〉 . (4.1.9)

The reduced model (4.1.6) is rewritten as

Sred =
v

v′

∫
dDσdDxdDx′

1

2
ϕ(σ, x′, x)

[
−
(
∂σµ + ∂µ + ∂′µ

)2
+m2

]
ϕ(σ, x, x′)

+
κv

3v′

∫
dDσdDxdDx′dDx′′ϕ(σ, x, x′)ϕ(σ, x′, x′′)ϕ(σ, x′′, x) . (4.1.10)
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Figure 4.1: 2-loop planar diagram in the

bi-local representation for the free en-

ergy.

Figure 4.2: 2-loop non-planar diagram

in the bi-local representation for the free

energy.

We make a change of variables, x̄µ = xµ, x̃µ = xµ − x′µ, σ̄µ = σµ − xµ, which gives

∂

∂σµ
+

∂

∂xµ
+

∂

∂x′µ
=

∂

∂x̄µ
. (4.1.11)

Thus, from (4.1.11) we obtain the propagator

〈ϕ(σ1, x1, x′1)ϕ(σ2, x′2, x2)〉 =
v′

v
D(x1−x2)δ(D)

L ((x1−x′1)−(x2−x′2))δ
(D)
l ((σ1−σ2)−(x1−x2)) ,

(4.1.12)

where δ
(D)
L and δ

(D)
l are periodic delta functions with the period L and l, respectively.

The planar diagram (Fig.4.1) in the reduced model is calculated as

3 · 1
2

( κv
3v′

)2 ∫
dDσ1d

Dσ2d
Dx1d

Dx′1d
Dx′′1d

Dx2d
Dx′2d

Dx′′2

× v′

v
D(x1 − x2)δ(D)

L ((x1 − x′1)− (x2 − x′2))δ
(D)
l ((σ1 − σ2)− (x1 − x2))

× v′

v
D(x′1 − x′2)δ

(D)
L ((x′1 − x′′1)− (x′2 − x′′2))δ

(D)
l ((σ1 − σ2)− (x′1 − x′2))

× v′

v
D(x′′1 − x′′2)δ

(D)
L ((x′′1 − x1)− (x′′2 − x2))δ

(D)
l ((σ1 − σ2)− (x′′1 − x′′2))

=
κ2v′

6v
δ
(D)
L (0)L2D

∫
dDσ1d

Dσ2d
Dx1d

Dx2D(x1 − x2)3δ(D)
l ((σ1 − σ2)− (x1 − x2))3

=
κ2v′

6v2
L3D

∫
dDσ1d

Dσ2d
Dx̃D(x̃)3δ

(D)
l ((σ1 − σ2)− x̃)3

=
κ2L3Dv′

6v2
δ
(D)
l (0)2

∫
dDσ1d

Dσ2
∑
u

D(lu+ σ1 − σ2)3

=
κ2L3D

6v2v′

∫
dDx̃dDσ2D(x̃− σ2)3

=
κ2L3DlD

6v2v′

∫
dDx̃D(x̃)3
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=
κ2lD

6v2v′
(Nv)3

∫
dDx̃D(x̃)3

=
vlD

v′
λN2

6

1

LD

∫
dDxdDx′D(x− x′)3 , (4.1.13)

where we have used δL(0) = 1/v and δl(0) = 1/v′.

The non-planar diagram (Fig.4.2) in the reduced model is calculated as

3 · 1
2

( κv
3v′

)2 ∫
dDσ1d

Dσ2d
Dx1d

Dx′1d
Dx′′1d

Dx2d
Dx′2d

Dx′′2

× v′

v
D(x1 − x2)δ(D)

L ((x1 − x′1)− (x2 − x′2))δ
(D)
l ((σ1 − σ2)− (x1 − x2))

× v′

v
D(x′1 − x′′2)δ

(D)
L ((x′1 − x′′1)− (x′′2 − x2))δ

(D)
l ((σ1 − σ2)− (x′1 − x′′2))

× v′

v
D(x′′1 − x′2)δ

(D)
L ((x′′1 − x1)− (x′2 − x′′2))δ

(D)
l ((σ1 − σ2)− (x′′1 − x′2))

=
κ2v′

6v
δ
(D)
L (0)

∫
dDσ1d

Dσ2d
Dx1d

Dx′1d
Dx2d

Dx′′2D(x1 − x2)D(x′1 − x′′2)D(x1 − x′′2)

× δ(D)
l ((σ1 − σ2)− (x1 − x2))δ(D)

l ((σ1 − σ2)− (x′1 − x′′2))δ
(D)
l ((σ1 − σ2)− (x1 − x′′2))

=
κ2v′

6v2
LD
∫
dDσ1d

Dσ2
∑
u,u′,u′′

D(lu+ σ1 − σ2)D(lu′ + σ1 − σ2)D(lu′′ + σ1 − σ2)

=

{
vlD

v′
λN2

6

lD

L2D

∫
dDσ1d

Dσ2
∑
u,u′,u′′

D(lu+ σ1 − σ2)D(lu′ + σ1 − σ2)D(lu′′ + σ1 − σ2)

}

×
(
v′

lD

)2

. (4.1.14)

We see again that the non-planar diagram is suppressed compared to the planar diagram

in the v′ → 0 limit, because the quantity in the curly bracket in (4.1.14) has the same

order of magnitude as (4.1.13).

The non-planar diagram is suppressed compared to the planar diagram in both the

original and reduced models. By comparing the planar contribution (4.1.7) and (4.1.13),

we find a relation between the free energy F in the original model and the one Fred in the

reduced model in the N →∞ limit:

F

N2V
=

Fred

N2vV ′/v′
, (4.1.15)

where V = LD and V ′ = lD are the volumes of TD and TD/(ZK)
D, respectively, and the

LHS and RHS correspond to the planar contribution to the free energy per unit volume

divided by N2 in the original and reduced models, respectively. In a similar manner, by

referring the argument in [41], one can show that the relation (4.1.15) holds to all orders
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in perturbative expansion. It is also easy to show a correspondence between correlation

functions in the N →∞ limit [41]:

1

Nn/2+1
〈Tr(ϕ(x1)ϕ(x2) · · ·ϕ(xn))〉 =

1

Nn/2+1

〈
Tr
(
ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)

)〉
red

, (4.1.16)

where 〈· · · 〉 and 〈· · · 〉red stand for the expectation value in the original and reduced models,

respectively, and ϕ̂(x) = eiPµxµϕ(σ)e−iPµxµ with (4.1.2). Thus, we find that the large-N

volume independence holds on a torus in the sense that a theory on TD is equivalent to a

certain theory on TD/(ZK)
D in the large-N limit.

Finally, we consider Yang-Mills theory on TD:

S =
1

4κ2

∫
dDx Tr(FµνFµν) , (4.1.17)

where Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. By applying the reduction rule (4.1.4) to (4.1.17),

we obtain

Sred =
v

v′
1

4κ2

∫
dDσ Tr

(
F̃µνF̃µν

)
, (4.1.18)

where F̃µν = ∂σµÃν − ∂σν Ãµ + i
[
Ãµ, Ãν

]
with Ãµ(σ) = Pµ + Aµ(σ). Namely, the reduced

model agrees with the one that is obtained by dimensionally reducing the original model

to TD/(ZK)
D. If the background Ãµ = Pµ is stable in the reduced model (4.1.18), the

reduced model is equivalent to the original model (4.1.17) in the N →∞ with κ2N fixed

in the sense that (4.1.15) holds and a following relation for Wilson loops also holds:〈
1

N
P exp

(
i

∫ 1

0

dζ
dxµ(ζ)

dζ
Aµ(x(ζ))

)〉
=

〈
1

N
P exp

(
i

∫ 1

0

dζ
dxµ(ζ)

dζ
Ãµ(σ(ζ))

)〉
red

,

(4.1.19)

where xµ(ζ) and σµ(ζ) are related as (4.1.2). Namely, the large-N volume independence

holds literally. Note that the stability depends on the dynamics of the model13.

4.2 Group manifolds and coset spaces

In this section, we review some basic facts about group manifolds and coset spaces. For

more details, see, for instance, [35,36,80]. Let G be a compact simply connected Lie group14

and H be a Lie subgroup of G. D and d denote the dimensions of G and H, respectively.

Then, the dimension of G/H is D − d. xM (M = 1, . . . , D), ym (m = D − d + 1, . . . , D),

and σµ (µ = 1, . . . , D − d) denote the coordinates of G, H and G/H, respectively, while

13Instability corresponds to SSB of the so-called U(1)D symmetry or the center invariance.
14If G is not simply connected, the reduced model is not obtained in a globally consistent way.
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A,B = 1, . . . , D, a, b = D − d + 1, . . . , D, and α, β = 1, . . . , D − d are the corresponding

local Lorentz indices.

Let tA be a basis for the Lie algebra of G in which ta are a basis for the Lie algebra of

H. tA satisfy commutation relations

[tA, tB] = ifABCtC (4.2.1)

with fABC completely anti-symmetric and fabα = 0. g(x) ∈ G is factorized locally as

g(x) = L(σ)h(y) , (4.2.2)

where h(y) ∈ H. The isometry of G is the G×G symmetry, where one corresponds to the

left translation and the other the right translation. Only the left translation survives as

the isometry of G/H.

A D ×D matrix Ad(g) for g ∈ G is defined by

g tA g
−1 = tB Ad(g)BA . (4.2.3)

It is easy to show that

Ad(g)ABAd(g)AC = δBC . (4.2.4)

Note that if h is an element of H,

Ad(h)αa = Ad(h)aα = 0 , (4.2.5)

which implies that

Ad(h)αβAd(h)αγ = δβγ, Ad(h)abAd(h)ac = δbc . (4.2.6)

The right invariant 1-form EA
M and the left invariant 1-form SAM are defined by

∂Mg(x)g
−1(x) = −iEA

M(x) tA , g−1(x)∂Mg(x) = iSAM(x) tA . (4.2.7)

They satisfy the Maurer-Cartan equations:

∂ME
A
N − ∂NEA

M − fABCEB
ME

C
N = 0 , ∂MS

A
N − ∂NSAM − fABCSBMSCN = 0 . (4.2.8)

Defining eAµ , ẽ
a
m, s

A
µ and s̃am by

∂µL(σ)L
−1(σ) = −ieAµ (σ) tA , ∂mh(y)h

−1(y) = −iẽam(y) ta ,

L−1(σ)∂µL(σ) = isAµ (σ)tA , h−1(y)∂mh(y) = is̃am(y)ta , (4.2.9)
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we obtain the relations:

Eα
µ (x) = eαµ(σ) , Ea

µ(x) = eaµ(σ) , Eα
m(x) = Ad(L)αb(σ)ẽ

b
m(y) , Ea

m(x) = Ad(L)ab(σ)ẽ
b
m(y) ,

Sαµ (x) = Ad(h−1)αβ(y)s
β
µ(σ) , Saµ(x) = Ad(h−1)ab(y)s

b
µ(σ) , Sαm(x) = 0 , Sam(x) = s̃am(y) .

(4.2.10)

A metric of G,

GMN = EA
ME

A
N = SAMS

A
N , (4.2.11)

is right and left invariant. By using (4.2.10), we obtain

ds2G = sβµs
β
νdσ

µdσν +
[
Ad(h−1)bas̃

b
mdy

m + saµdσ
µ
]2

, (4.2.12)

where the invariant metric of G/H, gµν , is given by

gµν = sαµs
α
ν (4.2.13)

The Haar measure of G is given by

dg = dDx
√
G(x) , (4.2.14)

where G(x) is detGMN(x). It is factorized as

dg = dD−dσddy
√
g(σ) det s̃am(y) . (4.2.15)

We denote the invariant measure of G/H, dD−dσ
√
g, by dL.

We define the right invariant Killing vectors LA and the left invariant Killing vectors

RA by

LA = −iEM
A

∂

∂xM
, RA = −iSMA

∂

∂xM
, (4.2.16)

where EM
A and SMA are the inverses of EA

M and SAM , respectively. LA and RA generate the

left translation and right translation, respectively, and obey the following commutation

relations:

[LA,LB] = ifABCLC , [RA,RB] = ifABCRC , [LA,RB] = 0 . (4.2.17)

By using (4.2.10), we obtain

Lα = isµβAd(L)βα
∂

∂σµ
− iẽmb

[
Ad(L)bα − sbρs

ρ
βAd(L)βα

] ∂

∂ym
,

La = isµβAd(L)βa
∂

∂σµ
− iẽmb

[
Ad(L)ba − sbρs

ρ
βAd(L)βa

] ∂

∂ym
,

Rα = −iAd(h−1)αβs
µ
β

∂

∂σµ
+ iAd(h−1)bcAd(h

−1)αβ s̃
m
b s

c
νs
ν
β

∂

∂ym
,
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Ra = −is̃ma
∂

∂ym
, (4.2.18)

where sµα, s̃
m
a and ẽma are the inverses of sαµ, s̃

a
m and ẽam, respectively.

L′
A = isµβAd(L)βA

∂

∂σµ
(4.2.19)

are the Killing vectors on G/H and are indeed independent of y.

Let us consider a scalar matrix field theory on G given by15

S =

∫
dDx

√
G(x) Tr

[
1

2
GMN∂Mϕ(x)∂Nϕ(x) +

m2

2
ϕ(x)2 +

κ

3
ϕ(x)3

]
=

∫
dD−dσddy

√
g(σ) det s̃am(y)Tr

[
−1

2
(LAϕ(x))2 +

m2

2
ϕ(x)2 +

κ

3
ϕ(x)3

]
, (4.2.20)

where ϕ(x) is an N ×N hermitian matrix. This theory has the G×G symmetry. Namely,

(4.2.20) is invariant under δϕ = ϵLAϕ or δϕ = ϵRAϕ. We impose a constraint Raϕ(x) = 0,

which implies from (4.2.18) that ϕ is independent of y. Then, the theory (4.2.20) is reduced

to the theory on G/H as

S =

∫
dD−dσddy

√
g det s̃amTr

[
−1

2
(L′

Aϕ)
2
+
m2

2
ϕ2 +

κ

3
ϕ3

]
= VH

∫
dD−dσ

√
g Tr

(
1

2
gµν∂µϕ∂νϕ+

m2

2
ϕ2 +

κ

3
ϕ3

)
, (4.2.21)

where VH is the volume of H. The theory (4.2.21) has the left G symmetry. Note that

this is a consistent truncation in the sense that every solution to the equation of motion

in (4.2.21) is also a solution to the equation of motion in (4.2.20).

As an example, we consider SU(2) ' S3 and SU(2)/U(1) ' S2. We have

g = e−iφσ3/2e−iθσ2/2e−iψσ3/2 , L = e−iφσ3/2e−iθσ2/2 , h = e−iψσ3/2 , (4.2.22)

where θ, φ and ψ are the Euler angles, and σi (i = 1, 2, 3) are the Pauli matrices. Here

µ = (θ, φ), m = ψ, α = (1, 2), and a = 3. LA are given by

L1 = −i
(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ
+

cosφ

sin θ

∂

∂ψ

)
,

L2 = −i
(
− cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ
+

sinφ

sin θ

∂

∂ψ

)
,

L3 = −i
∂

∂φ
. (4.2.23)

15The invariant 1-forms, the Killing vectors, the integral measures and the delta functions are all well-

defined globally. Hence, all expressions on group manifolds and their coset spaces make sense globally,

although they look dependent on coordinate patches.
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RA are given by

R1 = −i
(
− sinψ

∂

∂θ
+

cosψ

sin θ

∂

∂φ
− cot θ cosψ

∂

∂ψ

)
,

R2 = −i
(
− cosψ

∂

∂θ
− sinψ

sin θ

∂

∂φ
+ cot θ sinψ

∂

∂ψ

)
,

R3 = i
∂

∂ψ
. (4.2.24)

The right and left invariant metric of SU(2) is given by

ds2 = dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2 . (4.2.25)

The first and second terms in the RHS give the metric of SU(2)/U(1). The Haar measure

takes the form dg = sin θdθdφdψ.

4.3 Bi-local representation for the reduced model on

G/H

We consider a coordinate basis |g〉 for G as in the case of torus. We define the generators

of the left translation L̂A
16 by

eiϵL̂A|g〉 = |eiϵtAg〉 . (4.3.1)

It is easy to show that

L̂A|g〉 = −LA|g〉 , 〈g|L̂A = LA〈g| . (4.3.2)

We denote the volumes of G and G/H by V and V ′, respectively. To obtain a reduced

model of (4.2.20) defined on G/H, we apply the following rule

ϕ(g)→ ϕ(L) , LA →
[
L̂A,

]
,

∫
dg → v

v′

∫
dL =

v

v′

∫
dD−dσ

√
g . (4.3.3)

The first rule is realized by imposing Raϕ = 0. Thus, by introducing the bi-local represen-

tation for ϕ(L)

ϕ(L, g, g′) = 〈g|ϕ(L)|g′〉 , (4.3.4)

we obtain a bi-local representation of the reduced model:

Sred =
v

v′

∫
dLdgdg′

1

2
ϕ(L, g′, g)

[(
L′L
A + LgA + Lg

′

A

)2
+m2

]
ϕ(L, g, g′)

16L̂A are the generators in the regular representation [35,36].
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+
κv

3v′

∫
dLdgdg′dg′′ϕ(L, g, g′)ϕ(L, g′, g′′)ϕ(L, g′′, g) . (4.3.5)

As in the case of a torus, we make a change of variables

w = g , ξ = g′−1g , ρ = g−1L (4.3.6)

and obtain a relation (
L′L
A + LgA + Lg

′

A

)
ϕ(L, g, g′) = LwAϕ(L, g, g′) . (4.3.7)

Thus, the propagator is read off as

〈ϕ(L1, g1, g
′
1)ϕ(L2, g

′
2, g2)〉 =

v′

v
∆
(
g1g

−1
2

)
δ
(
g′1

−1
g1, g

′
2
−1
g2

)
δG/H

(
g−1
1 L1, g

−1
2 L2

)
, (4.3.8)

where ∆(g1g
−1
2 ) is the propagator of the original model (4.2.20) with N = 1, δ(g1, g2) is

the right and left invariant delta function on G, and δG/H(L1, L2) is the left invariant delta

function on G/H.

We consider the 2-loop contribution to the free energy in the original and reduced

models. The planar diagram (Fig.4.1) in the original theory is calculated as

λN2

6

∫
dg1dg2∆(g1g

−1
2 )3 . (4.3.9)

The non-planar diagram (Fig.4.2) is calculated as (4.3.9)/N2. The planar diagram (Fig.4.1)

in the reduced model is calculated as

3 · 1
2

( κv
3v′

)2(v′
v

)3 ∫
dL1dL2dg1dg

′
1dg

′′
1dg2dg

′
2dg

′′
2

×∆
(
g1g

−1
2

)
δ
(
g′1

−1
g1, g

′
2
−1
g2

)
δG/H

(
g−1
1 L1, g

−1
2 L2

)
×∆

(
g′1g

′
2
−1
)
δ
(
g′′1

−1
g′1, g

′′
2
−1
g′2

)
δG/H

(
g′1

−1
L1, g

′
2
−1
L2

)
×∆

(
g′′1g

′′
2
−1
)
δ
(
g1

−1g′′1 , g2
−1g′′2

)
δG/H

(
g′′1

−1
L1, g

′′
2
−1
L2

)
. (4.3.10)

A change of variables g′2 = g2g
−1
1 g′1 and g′′2 = g2g

−1
1 g′′1 leads to

κ2v′

6v
δ(0)

∫
dL1dL2dg1dg

′
1dg

′′
1dg2∆

(
g1g

−1
2

)3
δG/H

(
g−1
1 L1, g

−1
2 L2

)
× δG/H

(
g′1

−1
L1, g

′
1
−1
g1g

−1
2 L2

)
δG/H

(
g′′1

−1
L1, g

′′
1
−1
g1g

−1
2 L2

)
. (4.3.11)

Making a further change of variables g′1
−1g1 → g′1

−1 and g′′1
−1g1 → g′′1

−1, we obtain

κ2v′

6v
δ(0)

∫
dL1dL2dg1dg

′
1dg

′′
1dg2∆

(
g1g

−1
2

)3
δG/H

(
g−1
1 L1, g

−1
2 L2

)
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× δG/H
(
g′1

−1
g−1
1 L1, g

′
1
−1
g−1
2 L2

)
δG/H

(
g′′1

−1
g−1
1 L1, g

′′
1
−1
g−1
2 L2

)
=
κ2v′

6v
δ(0)

∫
dL1dL2dg1dg

′
1dg

′′
1dg2∆

(
g1g

−1
2

)3
δG/H

(
g−1
1 L1, g

−1
2 L2

)3
=
κ2v′

6v
δ(0)V 2δG/H(0)

2V ′
∫
dg1dg2∆

(
g1g

−1
2

)3
=
vV ′

v′
λN2

6V

∫
dg1dg2∆

(
g1g

−1
2

)3
. (4.3.12)

In the above calculation δ(0) = 1/v, δG/H(0) = 1/v′, V = Nv and λ = κ2N have been

used. The non-planar diagram (Fig.4.2) in the reduced model is calculated as

3 · 1
2

( κv
3v′

)2(v′
v

)3 ∫
dL1dL2dg1dg

′
1dg

′′
1dg2dg

′
2dg

′′
2

×∆
(
g1g

−1
2

)
δ
(
g′1

−1
g1, g

′
2
−1
g2

)
δG/H

(
g−1
1 L1, g

−1
2 L2

)
×∆

(
g′1g

′′
2
−1
)
δ
(
g′′1

−1
g′1, g2

−1g′′2

)
δG/H

(
g′1

−1
L1, g

′′
2
−1
L2

)
×∆

(
g′′1g

′
2
−1
)
δ
(
g1

−1g′′1 , g
′′
2
−1
g′2

)
δG/H

(
g′′1

−1
L1, g

′
2
−1
L2

)
. (4.3.13)

A change of variables g′′1 = g′1g
′′
2
−1g2 and g′2 = g2g1

−1g′1 gives rise to

κ2v′

6v

∫
dL1dL2dg1dg

′
1dg2dg

′′
2 ∆

(
g1g2

−1
)
∆
(
g′1g

′′
2
−1
)
∆
(
g′1g

′′
2
−1
g2g

′
1
−1
g1g2

−1
)

× δ
(
g−1
1 g′1g

′′
2
−1
g2, g

′′
2
−1
g2g

−1
1 g′1

)
δG/H

(
g−1
1 L1, g2

−1L2

)
× δG/H

(
g′1

−1
L1, g

′′
2
−1
L2

)
δG/H

(
g−1
2 g′′2g

′
1
−1
L1, g

′
1
−1
g1g

−1
2 L2

)
. (4.3.14)

A further change of variables g1g
−1
2 = g̃−1

2 and g′1g
′′
2
−1 = g̃′1 leads to

κ2v′

6v

∫
dL1dL2dg1dg̃

′
1dg̃2dg

′′
2∆
(
g̃−1
2

)
∆(g̃′1)∆

(
g̃′1g̃2g1g

′′
2
−1
g̃′

−1

1 g̃−1
2

)
δ
(
g−1
1 g̃′1g̃2g1, g

′′
2
−1
g̃2g̃

′
1g

′′
2

)
× δG/H

(
L1, g̃

−1
2 L2

)
δG/H (L1, g̃

′
1L2) δG/H

(
L1, g̃

′
1g̃2g1g

′′
2
−1
g̃′

−1

1 g̃−1
2 L2

)
=
κ2v′

6v

∫
dL1dL2dg1dg̃

′
1dg̃2dg

′′
2∆
(
g̃−1
2

)
∆(g̃′1)∆

(
g1g

′′
2
−1
)
δ
(
g̃′1g̃2g1, g1g

′′
2
−1
g̃2g̃

′
1g

′′
2

)
× δG/H

(
L1, g̃

−1
2 L2

)
δG/H (L1, g̃

′
1L2) δG/H

(
L1, g1g

′′
2
−1
L2

)
. (4.3.15)

By making a change of variables g1g
′′
2
−1 = g̃, we obtain

κ2v′

6v
V

∫
dL1dL2dg̃

′
1dg̃2dg̃∆

(
g̃−1
2

)
∆(g̃′1)∆ (g̃)

× δ (g̃′1g̃2g̃, g̃g̃2g̃′1) δG/H
(
L1, g̃

−1
2 L2

)
δG/H (L1, g̃

′
1L2) δG/H (L1, g̃L2) . (4.3.16)
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Since δ (g̃′1g̃2g̃, g̃g̃2g̃
′
1) ≤ δ(0) = 1/v,

Absolute value of (4.3.16)

≤ κ2v′

6v
δ(0)V

∫
dL1dL2dhdh

′dh′′
∣∣∆ (L−1

2 L1h
)
∆
(
L−1
2 L1h

′)∆ (L−1
2 L1h

′′)∣∣
=

{
vV ′

v′
λN2

6V

V ′

V

∫
dL1dL2dhdh

′dh′′
∣∣∆ (L−1

2 L1h
)
∆
(
L−1
2 L1h

′)∆ (L−1
2 L1h

′′)∣∣}× ( v′
V ′

)2

.

(4.3.17)

We see that the above quantity is analogous to the one (4.1.14) and suppressed by (v′/V ′)2

in the v′ → 0 limit compared to (4.3.12). Thus, the non-planar diagram is suppressed

compared to the planar diagram in both the original and reduced model. By comparing

(4.3.9) and (4.3.12), we again obtain the relation (4.1.15). As in the case of torus, one can

show that (4.1.15) holds to all orders in perturbative expansion.

Defining ϕ̂(g) by

ϕ̂(g) = eiLAθAϕ(L)e−iLAθA , (4.3.18)

where g = eiθAtA , we see that the relation (4.1.16) also holds in this case. Thus, we find

that the large-N equivalence in dimensional reduction holds on group manifolds.

Finally, we consider U(N) Yang-Mills theory on G:

S =
1

4κ2

∫
dDx
√
GGACGBDTr(FABFCD) , (4.3.19)

where FAB = ∂AAB − ∂BAA + i[AA, AB]. We expand the gauge field AA in terms of the

right invariant 1-form as

AM = EA
MXA . (4.3.20)

By using (4.2.8), we rewrite (4.3.19) as

S = − 1

4κ2

∫
dDx
√
G Tr (LAXB − LBXA − ifABCXC + [XA, XB])

2 . (4.3.21)

By imposing RaXA = 0 on (4.3.19), we obtain Yang-Mills theory on G/H. The reduced

model on G/H is given by

Sred = − v
v′

1

4κ2

∫
dD−dσ

√
g Tr

(
LAX̃B − LBX̃A − ifABCXC +

[
X̃A, X̃B

])2
, (4.3.22)

where X̃A(σ) = LA + XA(σ). If G is simple, the gauge theory is massive due to the

fABCXC term so that the there is no moduli for the background X̃A = LA. Thus, since the

background X̃A = LA is stable, the large-N volume independence on group manifolds holds.

Namely, the reduced model is equivalent to the original model (4.3.21) in the N →∞ with
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κ2N fixed in the sense that (4.1.15) holds and a following relation for Wilson loops [81]

holds: 〈
1

N
P exp

(
i

∫ 1

0

dζ
dxM(ζ)

dζ
EA
M(x(ζ))XA(x(ζ))

)〉
=

〈
1

N
P exp

(
i

∫ 1

0

dζ
dxM(ζ)

dζ
EA
M(x(ζ))X̃A(σ(ζ))

)〉
red

, (4.3.23)

where xM(ζ) and σµ(ζ) are related through g(x) = L(σ)h(y).
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Chapter 5

Study of classical solutions in the

Lorentzian type IIB matrix model

In this chapter, we develop a numerical method for obtaining wider classes of solutions.

We apply the gradient decent method to solve classical equations of the type IIB matrix

model because there exists no time a priori in the type IIB matrix model.

In particular, we see whether the (3+1)-dimensional expanding universe with smooth

structure is reproduced as classical solutions in the Lorentzian type IIB matrix model, and

search for solutions which yield Dirac zero modes.

5.1 Classical solutions of the type IIB matrix model

Here, we consider the Lorentzian type IIB matrix model. To make it well-defined, we need

constraints corresponding to IR cutoffs [56]:

1

N
Tr(A0)

2 = κ ,
1

N
Tr(AI)

2 = 1 (I = 1, . . . , 9) . (5.1.1)

We would like to investigate the space-time structure in (3+1) dimensions and spectra of

the 6-dimensional Dirac operator in the extra dimensions at late time compared to the

Planckian time in this model. At late time, it is difficult to perform numerical simulations

because the matrix size must be large, while we expect the classical approximation to be

valid due to the expansion of universe. We, therefore, solve classical equations of motion of

this model. While solving them is non-trivial, it is indeed easier to solve classical equations

than to perform numerical simulations. We consider bosonic equations of motion of the

type IIB matrix model with ‘mass’ term:[
AM , [AM , A0]

]
− ξA0 = 0 ,

[
AM , [AM , AI ]

]
− ζAI = 0 , (5.1.2)

where ξ and ζ are Lagrange multipliers, and the second terms of the left hand side of the

two equations in (5.1.2) come from constraints (5.1.1). Here, note that classical solutions
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turn out to be always simultaneously diagonalizable if ξ = ζ = 0, which is proved in

footnote 1717.

We search for solutions which are compatible with SO(3,1) symmetry because the uni-

verse is SO(3,1) symmetric at the time scale where the spacial expansion can be ignored.

Thus, we assume configurations with a quasi-direct-product structure in the (3+1) dimen-

sions and extra dimensions [79]:

Aµ = Xµ ⊗M (µ = 0, 1, 2, 3) , Aa = 1NX
⊗ Ya (a = 4, . . . , 9) , (5.1.3)

where the size of Xµ and the identity matrix 1NX
is NX , that of M and Ya is NY , and

N = NXNY . This structure is compatible with SO(3,1) symmetry:

UAµU † = Oµ
νAν , UAaU † = Aa (5.1.4)

with U = U⊗1NY
∈ SU(N) and UXµU

† = Oµ
νXν , whereOµ

ν ∈ SO(3, 1) and U ∈ SU(NX).

Indeed, left hand sides of two equations in (5.1.4) are SU(N) transformations of (2.3.4).

Moreover, it is the most general form preserving the SO(3,1) symmetry, and represents a

direct-product space-time if M = 1NY
.

5.1.1 Algorithm searching for classical solutions in numerical cal-

culation

There exist no time a priori in the type IIB matrix model, so we cannot use the algorithm to

solve differential equations. Instead, we apply the gradient descent algorithm to search for

classical solutions in our numerical calculation. In the following, we explain the algorithm.

We define V as

V = Tr
([
AM , [AM , A0]

]
− ξA0

)2
+ Tr

([
AM , [AM , AI ]

]
− ζAI

)2
, (5.1.5)

and numerically search for AM which make V equal to 0. We begin with random configu-

rations of Xµ, Ya, and M where their elements obey Gaussian distribution and satisfy the

constraints (5.1.1). The solutions depend on the initial random configurations and initial

ξ and ζ. We update Xµ, Ya, and M following the relations:

δXµ = −ϵ ∂V
∂X†

µ

, δYa = −ϵ
∂V

∂Y †
a

, δM = −ϵ ∂V
∂M † , (5.1.6)

17 From the first equation in (5.1.2) with ξ = 0, we obtain Tr
(
A0

[
AI , [AI , A0]

])
= 0, which implies

[A0, AI ] = 0. Similarly, we obtain the following relation from the second equation in (5.1.2) with ζ = 0:

[AI , AJ ] = 0.
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where we take ϵ to be small enough, which guarantees δV ≤ 0. Then, we rescale AM

as AM → sAM such that the second equation in (5.1.1) is kept satisfied, and further

rescale ξ and ζ as ξ → s2ξ and ζ → s2ζ such that V is scaled as V → s6V . We can

obtain configurations with V ' 0 by repeating this procedure18. In practice, we continue

updating configurations until V ∼ O(10−4).

5.1.2 Typical solution

We solve (5.1.2) with ξ = ζ > 0, which preserves SO(9,1) symmetry. Here, our ansatz

(5.1.3) reduces the constraints (5.1.1) to the following ones19:

1

NX

Tr (X0)
2 = κ ,

1

NY

TrM2 = 1 , (5.1.7)

1

NX

3∑
i=1

Tr (Xi)
2 +

1

NY

9∑
a=4

Tr (Ya)
2 = 1 . (5.1.8)

In almost all of our solutions, the following equations are satisfied:

NY − n[0]

NY

M3 =M , (5.1.9)

[M,Ya] = 0 , (5.1.10)

[Xν , [Xν , X0]]− ξX0 = 0 , (5.1.11)

[Xν , [Xν , Xi]]− ζXi = 0 (i = 1, 2, 3) , (5.1.12)[
Y b, [Yb, Ya]

]
− ζYa = 0 , (5.1.13)

where n[λ] denote numbers of eigenvalues λ(= −1, 0, 1) of M . Indeed, these equations are

sufficient conditions for (5.1.2). (5.1.9) implies that eigenvalues ofM are±
√
NY /(NY − n[0])

and 0. One can see from (5.1.10) that Ya have the following block-diagonal structure in a

basis which diagonalizes M :

M =

√
NY

NY − n[0]

−1n[−1]

0n[0]

1n[1]

←→ Ya =

Y
[−1]
a

Y
[0]
a

Y
[1]
a

 , (5.1.14)

where NY = n[−1] + n[0] + n[1]. It turns out that ξ and ζ converge to the range

0.1 ≲ ξ = ζ ≲ 0.5 (5.1.15)

18While it is possible that we reach a local minimum with V 6= 0, this dose not happen in our cases.
19Here, we fix the ratio of Xµ to M .
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Figure 5.1: The 64 eigenvalues αp (p = 1, . . . , NX) of X0 in ascending order are plotted

against the indices p in the typical solution for NX = 64.

when we obtain the solution satisfying (5.1.9) – (5.1.13). In most of the cases in which ξ

and ζ do not converge to the above range, we obtain the solutions not satisfying (5.1.9) –

(5.1.13) or V decreases slowly or even never goes down so that solutions are quite hard to

be obtained.

5.2 Space-time structure in the (3+1) dimensions

Using the method which we explained in the previous section, we solve the classical equa-

tions of motion. Staring with different initial conditions, we obtain many solutions sat-

isfying (5.1.9) – (5.1.13) for the matrix sizes NX = NY = 32, 48, 6420. We obtain twelve

classical solutions for each NX , which have some common features. In this paper, we de-

note a set of such solutions by S. In the following sections except the last part of section

5.2.5, we focus on a typical classical solution with NX = NY = 64 belonging to S in order

to show the common features.

5.2.1 Band-diagonal structure

The structure of the (3+1)-dimensional space-time is represented by the matrices Xµ.

Using the SU(N) symmetry (2.3.4) with U = U⊗1NY
, U ∈ SU(NX), we can choose a basis

20Note that we also find classical solutions which do not satisfy (5.1.9) – (5.1.13).
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Figure 5.2: We plot ∆pq in the typical solution for NX = 64. The height of each grid point

(p, q) represents the value of ∆pq.

in which X0 is diagonal such that its eigenvalues are arranged in ascending order. In Fig.

5.1, we show the 64 eigenvalues αp (p = 1, 2, . . . , NX) of X0 for the solution. We expect

to define a continuous time in the NX → ∞ limit because almost all of αp are uniformly

distributed.

Moreover, we define the following quantity

∆pq =
3∑
i=1

∣∣∣[Xi]pq

∣∣∣2 , (5.2.1)

which tells us how the elements of Xi are distributed in this basis, and plot ∆pq for the

solution in Fig. 5.2. We see that the spatial components Xi are band-diagonal, which

means that |[Xi]pq| are large for |p− q| ≤ n− 1, while very small for |p− q| ≥ n. Here, n is

an integer which represents the size of the band. The band-diagonal structure guarantees

locality of time, which enables us to derive time evolution as in the next section.

The almost uniform distribution of αp and the band-diagonal structure are common for

the solutions in S, and also possessed by the dominant configurations ofXi in the numerical

simulation. Note that the band-diagonal structure can be interpreted as deviation from a

diagonal matrix due to ξ, ζ 6= 0 (See footnote 17.).

5.2.2 Time evolution

Here, we discuss the time evolution. From the diagonalized matrix X0 and the band-

diagonal matrices Xi, we can define the time evolution as follows.
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We determine the band size n so that a collection of the elements {[Xi]pq | |p−q| ≤ n−1}
can include non-negligible elements in the band structure. The details of the determination

are explained in appendix E, where the block size for the typical solution is determined as

n = 10. We define n× n blocks X̄i(k) with k = 0, 1, . . . , NX − n as follows:[
X̄i(k)

]
p̃q̃

= [Xi]k+p̃, k+q̃ (p̃, q̃ = 1, 2, . . . , n) . (5.2.2)

These NX − n + 1 matrices are labeled by a variable t which is defined as the average of

the n eigenvalues of X0 within the k-th n× n block:

t = t (k) =
1

n

n∑
p̃=1

αk+p̃ . (5.2.3)

Here, αp is a series of the eigenvalues of X0 in ascending order. Thus, t(k) is monotonically

(strictly) increasing:

α1 < α2 < · · · < αNX
=⇒ t (0) < t (1) < · · · < t (NX − n) . (5.2.4)

It is naturally considered that the n × n matrices X̄i(t) = X̄i(k) represent the space

structure at the time t. We can extract some information of the time evolution of the

3-dimensional space from X̄i(t). The solutions in S share common properties of the time

evolution shown in the following sections.

5.2.3 Extent of space

One of important quantities of the time evolution is the extent of space, which represents

the scale of the 3-dimensional space at the time t. For a given configuration Xi, the extent

of space at t is defined by

R2 (t) =
1

n

3∑
i=1

tr
(
X̄i (t) X̄i (t)

)
. (5.2.5)

Here, we note that ‘tr’ denotes the trace over an n×n matrix. In Fig. 5.3, we plot R2(t) for

the typical solution given in section 5.2.1. From the plot of R2(t), one can find shrinking

and expanding behavior, which reflects the time-reversal symmetry of the model. Note

that this behavior is common for the solutions in S. We identify the minimum point of

R2(t) as the beginning of the time evolution of universe, and regard the time evolution of

our universe at t > 0 regime. Namely, the beginning and the end of expansion of R2(t)

corresponds to the earliest time and the latest time, respectively.
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Figure 5.3: The extent of spaceR2(t) is plotted against t in the typical solution forNX = 64.

It is time-reversal symmetric. We find that the space is expanding in the t > 0 region.

Figure 5.4: The eigenvalues of Tij(t) (i, j = 1, 2, 3) denoted by λi(t) are plotted against

t in the typical solution for NX = 64. Inverted triangles, circles, and triangles represent

λ1(t), λ2(t), and λ3(t), respectively.
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5.2.4 Moment of inertia tensor

Next, we define a 3× 3 (positive definite) real symmetric tensor

Tij (t) =
1

n
tr
(
X̄i (t) X̄j (t)

)
. (5.2.6)

This is an analog of the moment of inertia tensor, and represents how the space extends

in 3 dimensions. Each eigenvalue is the extent of space for each of three directions. Note

that R2(t) is equivalent to the sum of the diagonal elements Tii(t):

R2 (t) =
3∑
i=1

Tii (t) . (5.2.7)

If our solution represents the present universe, SO(3) symmetry should be preserved. If the

three eigenvalues are equivalent, the configuration represents an SO(3) symmetric space.

In Fig. 5.4, three eigenvalues of Tij(t), which are denoted λi(t) arranged in ascending

order λ1(t) ≤ λ2(t) ≤ λ3(t), for the typical solution are plotted. The behavior of Tij(t) is

time-reversal symmetric as R2(t) is. Note that this is also common for the solutions in S.
We find from Fig. 5.4 that the 3-dimensional space represented by the typical solution is

SO(3) symmetric except at late time. The breaking of the SO(3) can be caused by a finite

size effect. In other words, NX must be larger enough to fully keep SO(3) symmetry of

the model. We actually confirm that the symmetry is expected to recover in the large-NX

limit.

5.2.5 Structure of the 3-dimensional space

We are interested in the structure of the 3-dimensional space described by the classical

solutions. In order to see it, we define the following n× n matrix Q(t):

Q (t) =
3∑
i=1

X̄ i (t) X̄ i (t) . (5.2.8)

Since the eigenvalues of X̄i(t) correspond to the spatial coordinates, the eigenvalues qp̃(t)

of Q(t) give the squared radial coordinates. In other words, the eigenvalues qp̃(t) represent

the distribution in the radial direction of the points which describe the 3-dimensional space.

Note that R2(t) is the average of the n eigenvalues:

R2 (t) =
1

n
trQ (t) =

1

n

n∑
p̃=1

qp̃ (t) . (5.2.9)

The eigenvalues of Q(t) for the typical solution are plotted in Fig. 5.5. Since n = 10 for
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Figure 5.5: The 10 eigenvalues of Q(t) are plotted against t in the typical solution for

NX = 64 whose block size is n = 10. All of the eigenvalues are growing almost uniformly.

the solution, there are ten lines corresponding to the ten eigenvalues qp̃(t) at each time.

We find that all of the eigenvalues are growing and spreading almost uniformly. It means

that the radial direction of the 3-dimensional space is uniformly expanding. This behavior

is common for the solutions in S.

5.3 Emergence of Dirac zero modes in the 6 dimen-

sions

In this section, we discuss how chiral zero modes appear from the type IIB matrix model.

A general discussion on the Dirac equation implies that it is necessary to have zero modes

in the 6-dimensional Dirac operator. In fact, we show that the block-diagonal structure

(5.1.14) of the typical solutions can be regarded as the emergence of intersecting D-branes.

Indeed we find that zero modes appear in the limit where the matrix size goes to infinity

if the dimensionality of the branes is chosen appropriately.

5.3.1 The 6-dimensional Dirac equation

From the fermionic action (2.3.3) of the type IIB matrix model, one obtains the 10-

dimensional Dirac equation

ΓM [AM ,Ψ] = 0 , (5.3.1)
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where Ψ satisfies the Weyl condition with the chirality operator in 10 dimensions Γχ:

ΓχΨ = +Ψ . (5.3.2)

Here, we decompose the 10-dimensional Gamma matrices ΓM into the 4-dimensional ones

ρµ and the 6-dimensional ones γa:

Γµ = ρµ ⊗ 18 , Γa = ρχ ⊗ γa , (5.3.3)

and the chirality operator Γχ is also decomposed as

Γχ = ρχ ⊗ γχ , (5.3.4)

where ρχ and γχ are the chirality operators in 4 and 6 dimensions, respectively.

We require Ψ to be chiral in 4 dimensions:

(ρχ ⊗ 18)Ψ = ±Ψ . (5.3.5)

Due to the chirality (5.3.2) in 10 dimensions, (5.3.5) implies

(14 ⊗ γχ)Ψ = ±Ψ . (5.3.6)

Namely, Ψ is chiral also in six dimensions. Let us next decompose (5.3.1) into two terms

as

Γµ [Aµ,Ψ] + Γa [Aa,Ψ] = 0 . (5.3.7)

Note that the first term and the second term have opposite chirality in 4-dimensions as

well as in 6-dimensions, which implies that each term has to vanish separately. Thus, in

order to obtain chiral fermions in 4 dimensions, we need to have Dirac zero modes in six

dimensions:

Γa [Aa,Ψ] = 0 . (5.3.8)

Let us now consider that AM is a classical solution with the quasi direct-product struc-

ture (5.1.3). Since Aa = 1⊗ Ya, the general solution to (5.3.8) can be obtained by decom-

posing Ψ as

Ψ = ψ(4d) ⊗ ψ(6d) , (5.3.9)

where the 4-dimensional and 6-dimensional gamma matrices act only on ψ(4d) and ψ(6d),

respectively. Thus, in order to satisfy (5.3.8), we only need to require

γa
[
Ya, ψ

(6d)
]
= 0, γχψ

(6d) = ±ψ(6d) . (5.3.10)
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5.3.2 Dirac zero modes

If Ya are block-diagonal, it is expected from the following picture that zero modes, namely,

solutions to the first equation in (5.3.10) arise from off-diagonal blocks. Here, we note that

zero modes in 6 dimensions yield Dirac zero modes in 4 dimensions. Diagonal blocks of

Ya correspond to D-branes, and these D-branes can intersect each other. Open strings are

stretched between intersecting D-branes. At an intersecting point, the string whose length

is zero corresponds to the Dirac zero mode. The off-diagonal block of ψ(6d) corresponds to

those open strings.

Assuming that Ya have the block-diagonal structure, we solve (5.1.13) for each block

of Ya with a common ζ. In the following analysis, we set ζ = 1 without loss of generality.

We concentrate on two of the diagonal blocks of Ya and the off-diagonal block of ψ(6d):

Ya =

(
Y

(1)
a

Y
(2)
a

)
, (5.3.11)

ψ(6d) =

(
φ
)

, (5.3.12)

where the sizes of Y
(1)
a and Y

(2)
a areN

(1)
Y andN

(2)
Y , respectively. Then, we solve the following

eigenvalue problem:

γaαβ
[
Y (1)
a φβ − φβY (2)

a

]
= λφα , (5.3.13)

where φα (α = 1, . . . , 8) are eigenvectors, and eigenvalue λ corresponds to a mass in the

(3+1) dimensions. If λ is eigenvalue of φα, −λ is also eigenvalue of φα from the second

equation in (5.3.10). Here, note that λ = 0 corresponds to a Dirac zero mode. In order to

see the picture of intersecting D-branes, we consider wave functions. φα obtained in our

numerical calculation contains the left-handed and the right-handed ones, so we extract

φLα and φRα:

φLα =
1− γχ

2
φα , φRα =

1 + γχ
2

φα . (5.3.14)

Here, we choose U ′ = 1NX
⊗ U ′ with U ′ ∈ SU(NY ) as U in (2.3.4) such that SU(N)

transformation preserves the quasi-direct-product structure (5.1.3). Then, M , Ya and

ψ
(6d)
α are transformed as follows:

M ′ = U ′MU ′† , Y ′
a = U ′YaU

′† , ψ′(6d)
α = U ′ψ(6d)

α U ′† . (5.3.15)

In particular, by restricting U ′ to

U ′ =

(
U ′′ 0

0 V ′′

)
(5.3.16)
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with U ′′ ∈ SU(N
(1)
Y ) and V ′′ ∈ SU(N

(2)
Y ), which keeps the structure (5.3.11), we transform

the wave functions corresponding to the Dirac operator as

φLα 7→ U ′′φLαV
′′† , φRα 7→ U ′′φRαV

′′† . (5.3.17)

In the following sections, we use this transformation in order to see whether the wave

function is localized.

5.3.3 Solving the Dirac equation in numerical calculation

We see from the statement below (5.3.13) that for each eigenvalue in (5.3.13) there is

another eigenvalue with the same magnitude and the different sign. In this section, we

concentrate on the lowest and the second lowest eigenvalues among (8N
(1)
Y N

(2)
Y /2) positive

eigenvalues21. From the picture of the intersecting D-branes, we expect the emergence of

Dirac zero modes when the two branes intersect at a point. This requires generically that

the dimensionality of the branes adds up to 6. If the sum of the dimensionality is less than

6, the two branes do not intersect, and if the sum is more than 6, the two branes intersect

but not at a point. In order to specify the dimensionality of the brane, say to d, we set

6− d components of Ya to zero. In the following, we replace a = 4, . . . , 9 with a = 1, . . . , 6.

3d and 4d solutions are generated numerically with the algorithm described in section

5.1. On the other hand, the 2d solutions can be constructed analytically as follows. By

putting [
Y

(1)
1 , Y

(2)
2

]
= iZ , (5.3.18)

we reduce (5.1.13) with ζ = 1 to[
Y

(1)
2 , Z

]
= iY

(1)
1 ,

[
Z, Y

(1)
1

]
= iY

(1)
2 . (5.3.19)

Here, (5.3.18) and (5.3.19) imply that Y
(1)
a and Z are generators of the SU(2) algebra

Li (i = 1, 2, 3):

Y
(1)
1 = L1 , Y

(1)
2 = L2 , Z = L3 . (5.3.20)

We use the irreducible representation for configurations of Y
(1)
a without loss of generality

because we can obtain spectra with the reducible representation from summation of those

with the irreducible representations. The above construction suggests that the 2d brane is

something like a “fuzzy disk”, which can be obtained by projecting a fuzzy sphere onto a

21Note that φα is the element of (8N
(1)
Y N

(2)
Y )-dimensional vector space and here we count the number

of the eigenvalues including the degeneracy.
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plane. More precisely, it should be regarded as two coinciding fuzzy disks corresponding

to the two hemispheres of the fuzzy sphere.

We solve (5.3.13) for Ya obtained numerically in this section. Except in the cases where

2d solutions are used, we obtain 4 solutions for each block, so we examine 4×4 = 16 cases.

In the cases where 2d solutions are used, we also examine 16 cases, which are given by one

solution for Y
(1)
a and 16 solutions for Y

(2)
a . For simplicity, we set N

(1)
Y = N

(2)
Y except in the

2d-4d ansatz.

3d-3d ansatz

We further make the following ansatz for Y
(1)
a and Y

(2)
a . 3-dimensional manifolds intersect

at a point in the 6-dimensional space, so we use 3d-3d ansatz, which implies that

Y
(1)
1 6= 0 , Y

(1)
2 6= 0 , Y

(1)
3 6= 0 , Y

(1)
4 = Y

(1)
5 = Y

(1)
6 = 0 , (5.3.21)

Y
(2)
1 = Y

(2)
2 = Y

(2)
3 = 0 , Y

(2)
4 6= 0 , Y

(2)
5 6= 0 , Y

(2)
6 6= 0 . (5.3.22)

Since there is the ambiguity of the scale (or normalization), we take the ratio of the

average of the lowest eigenvalues, which are denoted by µ0, to that of the second lowest

ones, which are denoted by µ1, for each N
(1)
Y in order to fix this ambiguity. In Fig.

5.6, we plot the ratios against 1/N
(1)
Y , and fit them to the quadratic function of 1/N

(1)
Y ,

s + t/N
(1)
Y + u/(N

(1)
Y )2 with s = −0.04(7), t = 39(6), and u = −5(1) × 102. The constant

term, s, converges to 0 in the N
(1)
Y →∞ limit within error. Therefore, we can obtain Dirac

zero modes in the N
(1)
Y →∞ limit.

Next, we consider the wave function corresponding to the lowest eigenvalue for one of

the 16 cases with N
(1)
Y = 64. Here, we choose U ′′ and V ′′ in (5.3.17) such that

φR1 7→ U ′′†φR1V
′′ (5.3.23)

becomes the singular value decomposition (SVD). Namely, φR1 is a diagonal matrix,

where the diagonal elements are the singular values. In Fig. 5.7, we plot |(φR1)pq|2 and

|(φL5)pq|2 (p, q = 1, . . . , N
(1)
Y ). The wave functions are localized at the (1, 1) element,

while other wave functions take almost 0. This is consistent with the picture that the

right-handed zero mode is localized at a point where D-branes intersect.

2d-4d ansatz

We make 2d-4d ansatz in which Y
(1)
a and Y

(2)
a take the following configurations:

Y
(1)
1 = L1 , Y

(1)
2 = L2 , Y

(1)
3 = Y

(1)
4 = Y

(1)
5 = Y

(1)
6 = 0 , (5.3.24)
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Figure 5.6: µ0/µ1 for N
(1)
Y = 32, 40, 48, 56, and 64 in the 3d-3d ansatz are plotted against

1/N
(1)
Y . The dashed curve is a fit of ratios to s + t/N

(1)
Y + u/(N

(1)
Y )2 with s = −0.04(7),

t = 34(6), and u = −5(1)× 102.

Figure 5.7: |(φR1)pq|2 and |(φL5)pq|2 (p, q = 1, . . . , N
(1)
Y ) for N

(1)
Y = 64 in the 3d-3d ansatz

are plotted. The (1, 1) element of them is non-zero and the other elements are almost zero.

For other α, all the elements are almost zero.
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Figure 5.8: µ0/µ1 for N
(1)
Y = 24, 28, 32, and 36 with N

(2)
Y = (N

(1)
Y )2/16 in the 2d-4d ansatz

are plotted against 1/N
(1)
Y . The dashed curve is a fit of ratios to s + t/N

(1)
Y + u/(N

(1)
Y )2

with s = −0.01(16), t = 13(9), and u = −1.3(1.3)× 102.

Y
(2)
1 = Y

(2)
2 = 0 , Y

(2)
3 6= 0 , Y

(2)
4 6= 0 , Y

(2)
5 6= 0 , Y

(2)
6 6= 0 . (5.3.25)

For Y
(2)
a , we generate sixteen solutions obtained22 with N

(2)
Y = (N

(1)
Y )2/16.

In the present case, the eigenvalues turn out to have two-fold degeneracy, which may

be understood from the fact that the 2d brane is actually something like two coinciding

fuzzy disks (see, (5.3.20) and the lines below.). We take the ratio between the average of

the 32 lowest eigenvalues and that of the 32 second lowest ones. In Fig. 5.8, we plot the

ratios against 1/N
(1)
Y for N

(1)
Y = 24, 28, 32, and 36. We see that ratio converge to 0 when

N
(1)
Y increases. Therefore, we can obtain Dirac zero modes in this ansatz.

We again consider the wave function corresponding to one of the 2 lowest eigenvalues23

for one of the 16 cases with N
(1)
Y = 64. Here, we choose U ′′ and V ′′ in (5.3.17) such that

(5.3.23) becomes the SVD. In Fig. 5.9, we plot |(φRα)pq|2. For α = 1, some elements

are non-zero and other elements are almost zero. For other α, all the elements are non-

zero. We also plot |[(φLα)pq|2. For α = 5, some elements are non-zero and other elements

are almost zero. For other α, all the elements are non-zero. |(φR1)pq|2 and |(φL5)pq|2 are

almost localized at the (1, 1) element. These results are consistent with the picture that

22The chosen matrix size N
(2)
Y for the 4d brane is motivated from the fact that the degrees of freedom

on a lattice with a linear extent L grow as L2 and L4 for 2d and 4d cases, respectively. The factor of 1/16

in N
(2)
Y = (N

(1)
Y )2/16 is introduced to avoid having too large N

(2)
Y to perform explicit calculations.

23The situation with the other lowest eigenvalue is qualitatively the same. The same comment applies

also to the case with the 2d-3d ansatz below.
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Figure 5.9: |(φR1)pq|2 and |(φL5)pq|2 (p = 1, . . . , N
(1)
Y , q = 1, . . . , N

(2)
Y ) for N

(1)
Y = 36 in the

2d-4d ansatz are plotted. For |(φR1)|2 and |(φL5)|2, (p, p) elements (p is less than 10) are

non-zero and the other elements are almost zero. For other α, all the elements are almost

zero.

the left-handed and right-handed zero modes appear from the intersecting D-branes.

3d-4d ansatz

We make 3d-4d ansatz in which Y
(1)
a and Y

(2)
a take the following configurations:

Y
(1)
1 6= 0 , Y

(1)
2 6= 0 , Y

(1)
3 6= 0 , Y

(1)
4 = Y

(1)
5 = Y

(1)
6 = 0 , (5.3.26)

Y
(2)
1 = Y

(2)
2 = 0 , Y

(2)
3 6= 0 , Y

(2)
4 6= 0 , Y

(2)
5 6= 0 , Y

(2)
6 6= 0 . (5.3.27)

We again obtain a lowest eigenvalue and a second lowest one in each of the 16 cases.

For each N
(1)
Y , we take the ratio between the average of the 16 lowest eigenvalues and that

of the 16 second lowest ones. In Fig. 5.10, we plot the ratios against 1/N
(1)
Y for N

(1)
Y = 32,

48, and 64. They do not converge to 0 in the N
(1)
Y →∞ limit, so we cannot obtain Dirac

zero modes in this ansatz. We again consider the wave function corresponding to the lowest

eigenvalue for one of the 16 cases with N
(1)
Y = 64. Here, we choose U ′′ and V ′′ in (5.3.17)

such that (5.3.23) becomes the SVD.

In Fig. 5.11, we plot |(φR1)pq|2 and |(φL5)pq|2. We find that the wave functions are not

localized but have a long tail along the diagonal line. These results are consistent with the

picture that the intersection does not occur at a point. The zero modes do not appear,

and the wave functions corresponding to the lowest eigenvalue do not localize. Similar

behaviors are observed for the 4d-4d ansatz.
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Figure 5.10: µ0/µ1 for N
(1)
Y = 32, 48, and 64 in the 3d-4d ansatz are plotted against 1/N

(1)
Y .

Figure 5.11: |(φR1)pq|2 and |(φL5)pq|2 (p, q = 1, . . . , N
(1)
Y ) for N

(1)
Y = 64 in the 3d-4d ansatz

are plotted. A lot of diagonal elements of them are non-zero and the other elements are

almost zero. For other α, all the elements are almost zero.
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Figure 5.12: µ0/µ1 for N
(1)
Y = 32, 48, and 64 in the 2d-3d ansatz are plotted against 1/N

(1)
Y .

2d-3d ansatz

We make 2d-3d ansatz in which Y
(1)
a and Y

(2)
a take the following configurations:

Y
(1)
1 6= 0 , Y

(1)
2 6= 0 , Y

(1)
3 = Y

(1)
4 = Y

(1)
5 = Y

(1)
6 = 0 , (5.3.28)

Y
(2)
1 = Y

(2)
2 = Y

(2)
3 = 0 , Y

(2)
4 6= 0 , Y

(2)
5 6= 0 , Y

(2)
6 6= 0 . (5.3.29)

We obtain 2 lowest eigenvalues and 2 second lowest ones in each of the 16 cases as

in the 2d-4d ansatz. We take the ratio between the average of the 32 lowest eigenvalues

and that of the 32 second lowest ones. In Fig. 5.12, we plot the ratios against 1/N
(1)
Y for

N
(1)
Y = 32, 48, and 64. we see that they do not converge to 0 in the N

(1)
Y → ∞ limit, so

that we cannot obtain Dirac zero modes in this ansatz.

We consider the wave function corresponding to one of the 2 lowest eigenvalues for one

of the 16 cases with N
(1)
Y = 64. Here, we choose U ′′ and V ′′ in (5.3.17) such that (5.3.23)

becomes the SVD. In Fig. 5.13, we plot |(φRα)pq|2. For α = 1, 2, the (1, 1) element is non-

zero and the other elements are almost zero. For α = 5, 6, the (1, 2) element is non-zero

and the other elements are almost zero. For other α, all the elements are almost zero. We

also plot |(φLα)pq|2. For α = 1, 2, the (1, 2) element is non-zero and the other elements are

almost zero. For α = 5, 6, the (1, 1) element is non-zero and the other elements are almost

zero. For other α, all the elements are almost zero. Therefore, in this ansatz, we cannot

see the picture that D-branes intersect.
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Figure 5.13: |(φRα)pq|2 and |(φLα)pq|2 (α = 1, 2, 5, 6, p, q = 1, . . . , N
(1)
Y ) for N

(1)
Y = 64 in the

2d-3d ansatz are plotted. For |(φRα)|2 with α = 1, 2, the (1, 1) element is non-zero and the

other elements are almost zero. For |(φRα)|2 with α = 5, 6, the (1, 2) element is non-zero

and the other elements are almost zero. For other α, all the elements are almost zero. For

|(φLα)|2 with α = 1, 2, the (1, 2) element is non-zero and the other elements are almost

zero. For |(φLα)|2 with α = 5, 6, the (1, 1) element is non-zero and the other elements are

almost zero. For other α, all the elements are almost zero.
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Chapter 6

Conclusion and outlook

In this thesis, we have studied the three topics concerning space-times emerging from matrix

models. We have seen the mechanism of emergence of space-times from the matrix models

and properties of those emergent space-times in order to establish matrix models completely

as non-perturbative formulations of superstring theory. In the following, we summarize the

three topics studied in this thesis and show their outlook. Then, we conclude this thesis

comprehensively and show a perspective of our studies.

Renormalization in a scalar filed theory on the fuzzy sphere

In chapter 3, we studied renormalization in a scalar filed theory on the fuzzy sphere by

Monte Carlo simulation. We identified the Berezin symbol constructed from the Bloch

coherent state as the field. It was shown that the 2-point and 4-point correlation functions

are made independent of the UV cutoff, or the matrix size up to the wave function renor-

malization by tuning the mass parameter or the coupling constant. This strongly suggests

that the theory is renormalizable non-perturbatively in the ordinary sense and that the

theory is universal up to a parameter fine-tuning.

We also examined the 2-point and 4-point correlation functions on the phase boundary

beyond which the Z2 symmetry is spontaneously broken. We found that the 2-point and 4-

point correlation functions at different points on the boundary agree up to the wave function

renormalization. This implies that the critical theory is universal, which is consistent with

the above universality in the disordered phase, because the phase boundary is obtained

by a parameter fine-tuning. Furthermore, it was observed that the 2-point correlation

functions behave as those in a CFT at short distances and deviate universally from those

at long distances. The latter is considered to be due to the UV/IR anomaly.

The CFT observed at short distances seems to be different from the critical Ising model

(the scaling dimension of the spin operator ∆ = 0.125), because the value of u in (3.3.8)

disagrees with 2∆. This suggests that the universality classes of the scalar field theory on

the fuzzy sphere totally differs from those of an ordinary field theory24.

24It should be noted that the scaling dimension we obtained, ∆ ' 0.075 = 3/40, coincides with that of

71



Indeed, it was reported in [15–19] that there exists a novel phase in the theory on the

fuzzy sphere which is called the non-uniformly ordered phase, or the stripe phase [82, 83].

We hope to elucidate the universality classes by studying renormalization in the whole

phase diagram.

The large-N volume independence on group manifolds

In chapter 4, we showed that a theory on a group manifold G is equivalent to the cor-

responding theory on G/H with H a subgroup of G in the large-N limit. The degrees

of freedom on G are retrieved by the degrees of freedom of matrices in a consistent way

with the dimensional reduction to G/H. An advantage of reduction to G/H with a finite

volume compared to reduction to a matrix model is that one does not need to introduce k

multiplicity and take the k →∞ limit to extract only planar contribution as in the latter

case [35, 36], since the UV cutoff V ′/v′ plays the role of extracting planar contribution.

While we showed the equivalence perturbatively, we can show it non-perturbatively based

on the continuum Schwinger-Dyson equations as in [41], by assuming the stability of the

background, which is a counterpart of the center symmetry.

An interesting application of the large-N equivalence in dimensional reduction on group

manifolds is that the SU(2|4) symmetric gauge theory on R × S2 is equivalent to N = 4

super Yang-Mills theory on R× S3 in the large-N limit. (For another large-N equivalence

between these two theories, see [37, 84].) Both of the theories have gravity duals, so that

the above equivalence would be seen on the gravity side. It is interesting to search for

gravity duals of other large-N equivalences in dimensional reduction [85–89].

Classical solutions in the Lorentzian type IIB matrix model

In chapter 5, we solved classical equations of motion of the type IIB matrix model numer-

ically because the classical approximation is expected to be valid since the action becomes

large due to the cosmic expansion. We obtained classical solutions by assuming a quasi-

direct-product structure (5.1.3). This structure is compatible with SO(3,1) symmetry, and

favors a block-diagonal structure which can yield D-branes intersecting in extra dimen-

sions. We examined a space-time structure in (3+1) dimensions and Dirac zero modes in

extra dimensions.

First, we focused on the (3+1)-dimensional space-time structure, which is represented

by Xµ in (5.1.3). When X0 is diagonalized, Xi become band-diagonal, which ensures

the locality of the time. We defined the time t from eigenvalues of X0 to derive the

the spin operator in the tricritical Ising model which is the (4, 5) unitary minimal model.

72



time evolution of the space. Then, we found that the 3-dimensional space obtained in our

solutions is smooth and SO(3) symmetry is respected at almost all of late time25. Breaking

of the SO(3) symmetry at the last regime is considered to be a finite matrix size effect,

so it is expected to be disappeared in the NX → ∞ limit. In [61], it was shown that

the space-time structure is singular one which is represented by the Pauli matrices. This

is attributed to approximation used in the simulation. From the results in [62] obtained

by using the complex Langevin method, it is conjectured that the smooth space-time is

obtained in the N →∞ limit. Our results strongly support this conjecture.

Next, we examined Dirac zero modes in extra dimensions numerically by focusing on

the structure in the extra dimensions. For simplicity, we concentrated on two of the blocks

of Ya in (5.1.3); Y
(1)
a and Y

(2)
a . We further made ansatz for Y

(1)
a and Y

(2)
a in numerical

solutions. In the 3d-3d and 2d-4d ansatz, we found solutions that give Dirac zero modes in

the N
(1)
Y → ∞ limit. We fitted the ratios of the average of the lowest eigenvalues to that

of the second lowest ones to the quadratic function in 1/N
(1)
Y , and found that the ratio

converges to 0 within error in the N
(1)
Y →∞ limit. We also found that the wave functions

corresponding to the lowest eigenvalues are localized at a point, which is consistent with

the picture of intersecting D-branes. In other ansatz, we did not obtain Dirac zero modes

and localized wave functions. What is important is that Dirac zero modes were obtained

as solutions of classical equations of motion of the type IIB matrix model. In previous

studies [69,71,73,79], matrix configurations in extra dimensions are given by hand.

It is important to obtain solutions with larger NX and see whether 3-dimensional space

is completely uniform and SO(3) symmetric. Furthermore, from a viewpoint of cosmology,

we would like to see whether the 3-dimensional space obtained in such solutions expands

obeying a power low. We would also like to identify Higgs modes in the spectra of fluctua-

tion of Ya, and determine the Yukawa coupling from the overlap of wave functions between

Dirac zero modes and Higgs modes. By using the information of the Yukawa coupling and

the renormalization group, we see whether chiral fermions are obtained at the low energy

in (3+1) dimensions.

Conclusion and perspective

Throughout this thesis, we studied a mechanism of emergence of space-times from matrix

models and properties of those emergent space-times. We showed that it is possible that

field theories on non-commutative spaces describe the real world because renormalization

is performed as in the ordinary field theories. We drew a lesson on the emergence of the

25In [90], the emergence of 3-dimensional space obtained in our study was checked by using the same

model.
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curved space-times from the large-N volume independence on group manifolds. We took a

first step to verify a conjecture that the type IIB matrix model describes the real world by

showing that one can obtain classical solutions which give rise to the (3+1)-dimensional

expanding space-time and Dirac zero modes. It is expected that insights on field theories

on non-commutative spaces and the curve space-times in matrix models can be used to

verify the conjecture.

Superstring theory has not been established completely, and there remain a lot of

aspects to be understood. In this thesis, we tried to understand some aspects through

matrix models. We would like to not only develop the above studies but also study other

aspects by using insights gained in this thesis. In particular, we would like to continue to

study the type IIB matrix model. We hope to establish that superstring theory is indeed

the unified theory including quantum gravity by obtaining both the Big-Bang universe and

the Standard Model from the matrix model.
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Appendix A

Bloch coherent state and Berezin

symbol

In this appendix, we summarize the basic properties of the Bloch coherent state [76] and

the Berezin symbol [75].

The highest weight state |jj〉26 is considered to correspond to the north pole (see, Fig.

A.1). Thus, the state |Ω〉 that corresponds to a point Ω = (θ, φ) is obtained by acting a

rotation operator on |jj〉:

|Ω〉 = eiθ(sinφL1−cosφL2) |jj〉 . (A.0.1)

(A.0.1) implies that

niLi |Ω〉 = j |Ω〉 , (A.0.2)

where n⃗ = (sin θ cosφ, sin θ sinφ, cos θ). It is easy to show from (A.0.2) that |Ω〉 minimizes∑
i(∆Li)

2 with (∆Li)
2 being the standard deviation of Li.

It is convenient to introduce the stereographic projection, z = R tan θ
2
eiφ. Then, (A.0.1)

is rewritten as

|Ω〉 = ezL−/Re−L3 log(1+|z/R|2)e−z̄L+/R |jj〉 , (A.0.3)

which gives an explicit form of |Ω〉 as

|Ω〉 =
j∑

m=−j

(
2j

j + r

)1/2(
cos

θ

2

)j+r (
sin

θ

2

)j−r
ei(j−r)φ |jr〉 . (A.0.4)

By using (A.0.4), one can easily show the following relations:

〈
Ω1

∣∣Ω2

〉
=

[
cos

θ1
2
cos

θ2
2
+ ei(φ2−φ1) sin

θ1
2
sin

θ2
2

]2j
, (A.0.5)∣∣〈Ω1

∣∣Ω2

〉∣∣ = (cos χ
2

)2j
with χ = arccos(n⃗1 · n⃗2) , (A.0.6)

(2j + 1)

∫
dΩ

4π
|Ω〉〈Ω| = 1 . (A.0.7)

26|jr〉 are standard basis in (2.1.41).
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Figure A.1: Bloch coherent state.

(A.0.6) implies that the width of the Bloch coherent state is R/
√
j for large j.

Denoting the Bloch coherent state |Ω〉 by |z〉, we rewrite (A.0.4) and (A.0.7) as

|z〉 =
(

z/R

1 + |z/R|2

)j j∑
r=−j

(
2j

j + r

)1/2(
R

z

)r
|jr〉 , (A.0.8)

2j + 1

4π
4R2

∫
d2z

(1 + |z/R|2)2
|z〉〈z| = 1 , (A.0.9)

respectively.

The Berezin symbol for a matrix Φ with the matrix size 2j + 1 is defined by

fΦ(Ω) = fΦ(z, z̄) =
〈
Ω
∣∣Φ∣∣Ω〉 = 〈z∣∣Φ∣∣z〉 . (A.0.10)

By using (A.0.4), it is easy to show that

f[Li,Φ](Ω) = LifΦ(Ω) . (A.0.11)

(A.0.7) implies that
1

N
Tr(Φ) =

∫
dΩ

4π
fΦ(Ω) . (A.0.12)

The definition of the star product for Φ and Φ′ is

fΦ ⋆ fΦ′(Ω) = fΦ ⋆ fΦ′(z, z̄) =
〈
Ω
∣∣ΦΦ′∣∣Ω〉 = 〈z∣∣ΦΦ′∣∣z〉 . (A.0.13)

Here let us consider a quantity
〈w|Φ|z〉
〈w|z〉

, (A.0.14)

76



which is holomorphic in z and anti-holomorphic in w. Then, one can deform this quantity

as follows:

〈w|Φ|z〉
〈w|z〉

= e−w
∂
∂z
〈w|Φ|z + w〉
〈w|z + w〉

= e−w
∂
∂z ez

∂
∂w
〈w|Φ|w〉
〈w|w〉

= e−w
∂
∂z ez

∂
∂w 〈w|Φ|w〉

= e−w
∂
∂z ez

∂
∂w fΦ(w, w̄) . (A.0.15)

Similarly, one obtains
〈z|Φ|w〉
〈z|w〉

= e−w̄
∂
∂z̄ ez̄

∂
∂w̄ fΦ(w, w̄) . (A.0.16)

By using (A.0.9), (A.0.15) and (A.0.16), one can express the star product as

fΦ ⋆ fΦ′(w, w̄)

= 〈w|ΦΦ′|w〉

=
2j + 1

4π
4R2

∫
d2z

(1 + |z/R|2)2
〈w|Φ|z〉
〈w|z〉

〈z|Φ′|w〉
〈z|w〉

|〈w|z〉|2

=
2j + 1

4π
4R2

∫
d2z

(1 + |z/R|2)2
(
e−w

∂
∂z ez

∂
∂w fΦ(w, w̄)

)(
e−w̄

∂
∂z̄ ez̄

∂
∂w̄ fΦ′(w, w̄)

)
|〈w|z〉|2 ,

(A.0.17)

which indicates that the star product is non-commutative and non-local. Furthermore, one

can easily show that in the j →∞ limit

2j + 1

4π

4R2

(1 + |z/R|2)2
|〈w|z〉|2 → δ(2)(z − w) . (A.0.18)

This implies that the star product coincides with the ordinary product in the j →∞ limit.

Namely,

fΦ ⋆ fΦ′(w, w̄)→ fΦ(w, w̄)fΦ′(w, w̄) (A.0.19)

or

fΦ ⋆ fΦ′(Ω)→ fΦ(Ω)fΦ′(Ω) . (A.0.20)

We see from (A.0.11), (A.0.12) and (A.0.20) that the theory (3.1.1) reduces to the one

(3.1.3) in the N →∞ limit at the classical level if one identifies fΦ(Ω) with ϕ(Ω). However,

the authors of [13,14] showed that the 1-loop effective action in (3.1.1) differs from that in

(3.1.3) by finite and non-local terms since the UV cutoff N is kept finite in calculating loop

corrections. This phenomenon is sometimes called the UV/IR anomaly, which is explained

in Appendix B.
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Appendix B

UV/IR anomaly

There is no UV/IR mixing in a field theory on the fuzzy sphere. However, there exist

finite differences between a theory on the fuzzy sphere and the corresponding theory on an

ordinary sphere at the quantum level even in a continuum and commutative limit. These

differences are the UV/IR anomaly [13]. In this appendix, we briefly review it.

From (2.1.60), Φ is expanded in terms of the fuzzy spherical harmonics Ŷ
[j]
lm :

Φ =

2j∑
l=0

l∑
m=−l

ϕlmŶ
[j]
lm , ϕ∗

lm = (−1)mϕl−m . (B.0.1)

n-point correlation functions are given by

〈ϕl1m1 · · ·ϕlnmn〉 =

∫
DΦe−Sfuzzyϕl1m1 · · ·ϕlnmn∫

DΦe−Sfuzzy

, (B.0.2)

and in particular 2-point correlation functions take the form

〈ϕlmϕ∗
l′m′〉 = (−1)m 〈ϕlmϕl′ −m′〉 = 1

l(l + 1) + µ2
δl,l′δm,m′ . (B.0.3)

The vertex in the ϕ4 theory is given by

ϕl1m1 · · ·ϕl4m4V (l1,m1; . . . ; l4,m4) , (B.0.4)

where

V (l1,m1; . . . ; l4,m4) =
λ

4
(2j + 1)(−1)l1+l2+l3+l4

4∏
i=1

√
2li + 1

2j∑
l=0

l∑
m=−l

(−1)m(2l + 1)

×

(
l1 l2 l

m1 m2 m

)(
l3 l4 l

m3 m4 −m

){
l1 l2 l

j j j

}{
l3 l4 l

j j j

}
(B.0.5)

is symmetric under cyclic permutations of (li,mi). Here,

(
∗ ∗ ∗
∗ ∗ ∗

)
denotes 3j symbol.
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Using (B.0.3), we calculate counter part of Fig. 2.1 and Fig. 2.2. The planar contribu-

tion
(
Γ
(2)
planar

)l,l′
m,m′

is(
Γ
(2)
planar

)l,l′
m,m′

= 2λδl,l′δm,−m′(−1)mIP , (B.0.6)

IP ≡
2j∑
K=0

2K + 1

K(K + 1) + µ2
∼ log j +O(1) . (B.0.7)

IP exactly agrees with the corresponding term on the classical sphere in the j →∞ limit.

The non-planar contribution
(
Γ
(2)
non-planar

)l,l′
m,m′

is(
Γ
(2)
non-planar

)l,l′
m,m′

= λδl,l′δm,−m′(−1)mINP , (B.0.8)

INP ≡
2j∑
K=0

(−1)l+K+2j (2K + 1)(2j + 1)

K(K + 1) + µ2

{
j j l

j j K

}
. (B.0.9)

We rewrite INP as follows:

INP =

2j∑
K=0

2K + 1

K(K + 1) + µ2
fK , fK ≡ (−1)l+K+2j(2j + 1)

{
j j l

j j K

}
. (B.0.10)

For l = 0, the planar contribution in the 2-point functions agree with the non-planar ones

since fK = 1 (0 ≤ K ≤ 2j). For l = 1,

fK = 1− K(K + 1)

2j(j + 1)
, (B.0.11)

and then we obtain

INP = IP − 1

2j(j + 1)

2j∑
K=0

K(K + 1)(2K + 1)

K(K + 1) + µ2
. (B.0.12)

Summation with respect to K in the second term of RHS in (B.0.12) diverges j2, but

thanks to 1/2j(j+1), this term becomes finite. This implies that these is no IR singularity

in the non-planar contribution unlike in the case of the non-commutative plane.

For general l, we evaluate the non-planar contribution by using the approximation for

the 6j symbol: {
j j l

j j K

}
≈ (−1)l+2j+K

2j
Pl

(
1− K2

2j2

)
(B.0.13)

with l� j and 0 ≤ K ≤ 2j. Here, Pl(x) is the Legendre polynomial27. Then, we obtain

INP − IP =

2j∑
K=0

2K + 1

K(K + 1) + µ2

[
(−1)l+K+2j(2j + 1)

{
j j l

j j K

}
− 1

]

27Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l.
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≈
2j∑
K=0

2K + 1

K(K + 1) + µ2

[
Pl

(
1− K2

2j2

)
− 1

]
. (B.0.14)

Because Pl(1) = 1 for all l, only K � 1 contributes, and the summation is approximated

by the integral:

INP−IP ≈
∫ 2

0

du
2u+ 1

j

u2 + u
j
+
(
µ
j

)2 [Pl(1− u2

2

)
− 1

]
=

∫ 1

−1

dt
Pl(t)− 1

1− t
+O

(
1

j

)
(B.0.15)

with change of variables 1− u2/2 = t and µ� j. One can show∫ 1

−1

dt
Pl(t)− 1

1− t
= −2

l∑
k=1

1

k
= −2h(l) , (B.0.16)

where h(l) is the harmonic number and h(0) = 0. h(l) is finite for small l, while h(l) ≈ log l

for large l. Therefore, the 1-loop effective action is obtained as follows:

S1-loop = Sfuzzy +
1

2j + 1
Tr

(
1

2
Φ
[
δµ2 − 2λh

(
∆̃
)]

Φ

)
+O

(
1

j

)
, (B.0.17)

where

δµ2 = 3λ

2j∑
K=0

2K + 1

K(K + 1) + µ2
(B.0.18)

is the renormalized mass squared and ∆̃ is the function of the Laplacian whose eigenvalues

are l on Ŷ
[j]
lm . Thus, it turns out that a non-commutative effect is analytic in 1/j. This is

a non-trivial finite quantum effect and has an l-dependence.

A field theory in the commutative limit is defined in the j →∞ limit with fixed R, λ,

and µ2. In this limit, the 1-loop effective action on the fuzzy sphere differs from that on

the commutative sphere by amount

Γ
(2)
anomaly = −

λ

2j + 1
Tr
[
Φh(∆̃)Φ

]
. (B.0.19)

This is non-local due to h(l) ≈ log l for large l. This effect does not appear in an ordinary

field theory, and is called the UV/IR anomaly.
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Appendix C

3nj symbol

In this appendix, we present concrete expressions for the 3j and the 6j symbols [91].

The Clebsch-Gordan coefficient is represented as

C l′ −m′

l1m1 l2 −m2
= (−1)l1−l2−m′√

2l′ + 1

(
l1 l2 l′

m1 −m2 m′

)
(C.0.1)

in terms of the 3j symbol. From (C.0.1), one can show the following relations:(
l3 l3 l′′

m3 −m3 −m′′

)
=

(−1)l′′+m′′+l3−m3

√
2l3 + 1

C l3 −m3

l3 −m3 l′′m′′ , (C.0.2)(
l l′ 0

m m′ 0

)
=

(−1)l−m√
2l + 1

δl,l′δm,−m′ , (C.0.3)(
l l4 l′′

−m −m4 m′′

)
=

(−1)l′′+m′′+l−m
√
2l4 + 1

C l4m4

l′′m′′ l−m , (C.0.4)(
l′ l4 l′′

m′ m4 −m′′

)
=

(−1)−l4+m′′−m′

√
2l4 + 1

C l4m4

l′′m′′ l′ −m′ . (C.0.5)

One can also show the following relations:∑
m3

C l3 −m3

l3 −m3 l′′m′′ = (2l3 + 1)δl′′,0 , (C.0.6)

∑
m4,m′′

C l4m4

l′′m′′ l−mC
l4m4

l′′m′′ l′ −m′ =
2l4 + 1

2l + 1
δl,l′δm,−m′ , (C.0.7){

l l′ 0

j j j

}
=

(−1)l+2j√
(2l′ + 1)(2j + 1)

δl,l′ , (C.0.8){
l3 l3 0

j j j

}
=

(−1)l3+2j√
(2l3 + 1)(2j + 1)

, (C.0.9)

∑
l′′

(−1)2j+l′′(2l′′ + 1)

{
l l4 l′′

j j j

}{
l l4 l′′

j j j

}
=

{
j j l

j j l4

}
. (C.0.10)
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Appendix D

Method of a numerical simulation

In this appendix, we describe a numerical method and an error estimation used in chapter

3.

D.1 Hybrid Monte Carlo algorithm

To study renormalization on the fuzzy sphere, we use the Hybrid Monte Carlo (HMC)

algorithm [92], which enables us to perform Monte Carlo simulations efficiently. Here, we

briefly review the HMC algorithm.

We consider a system described by a set of dynamical variables denoted ϕ. Suppose

that the probability distribution is given by e−S(ϕ). Then, the detailed balance is satisfied

if a stochastic process is generated by the following procedure.

1. Take ϕ as an initial state, and generate the conjugate momentum π with the following

probability:

P (π) ∝ e−π
2/2 . (D.1.1)

2. Update ϕ and π by using the molecular dynamics as follows:

ϕ̇(t) =
∂H [ϕ(t), π(t)]

∂π(t)
= π(t) , (D.1.2)

π̇(t) = −∂H [ϕ(t), π(t)]

∂ϕ(t)
= −∂S(ϕ(t))

∂ϕ(t)
, (D.1.3)

H [ϕ(t), π(t)] =
π2

2
+ S(ϕ(t)) . (D.1.4)

This expression is valid for the continuum time t in the range 0 ≤ t ≤ τ . However,

time must be discretized to perform numerical simulations discretely. We divide τ

into Nτ steps. Here, we define ε = τ/Nτ . The equations of motion for molecular

dynamics become difference equations. To discretize the time, we use a leap-frog

method. In the following, ϕ(n) and π(n) denotes ϕ(t = nε) and π(t = nε), respec-

tively.
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Set initial conditions as follows:

ϕ(0) = 0 , π(0) = π , (D.1.5)

then at the first step, take

π

(
1

2

)
= π(0)− ε

2

∂S (ϕ(0))

∂ϕ(0)
. (D.1.6)

At main steps (n = 0, 1, . . . , Nτ − 2), update ϕ and π:

ϕ(n+ 1) = ϕ(n) + επ

(
n+

1

2

)
, π

(
n+

3

2

)
= π

(
n+

1

2

)
− ε∂S(ϕ(n+ 1))

∂ϕ(n+ 1)
.

(D.1.7)

At the final step, ϕ′ and π′, which are new ϕ and π, are

ϕ′ = ϕ(Nτ ) = ϕ(Nτ − 1) + επ

(
Nτ −

1

2

)
(D.1.8)

π′ = π(Nτ ) = π

(
Nτ −

1

2

)
− ε

2

∂S(ϕ(Nτ ))

∂ϕ(Nτ )
. (D.1.9)

3. Accept ϕ′ and π′ with the following probability, which is called the Metropolis test

[93].

P ({ϕ, π} → {ϕ′, π′}) = min
{
1, e−∆H

}
with ∆H = H[ϕ′, π′]−H[ϕ, π] , (D.1.10)

where

min
{
1, e−∆H

}
=

accept for ∆H < 0 ,

accept with probability e−∆H for ∆H > 0 .
(D.1.11)

If ϕ′ and π′ are rejected by the Metropolis test, ϕ and π (old ones) are kept. In

practice, we use a random number for the Metropolis test in numerical simulations.

4. Return to 1.

D.2 Error estimation

Quantities calculated in numerical simulations have errors. In this appendix, we show how

to estimate errors.

For observed quantities Oi (i = 1, . . . , N), their average and statistical error are given

as follows:

〈O〉 = 1

N

N∑
i=1

Oi , δ 〈O〉 =

√
〈O2〉 − 〈O〉2

N − 1
. (D.2.1)
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For more complicated physical quantities, we use the following error-propagation relation:

δ 〈f({Oa})〉 =
∑
a

∣∣∣∣〈 ∂f

∂Oa

〉
δ 〈Oa〉

∣∣∣∣ , (D.2.2)

where {Oa} denotes a set of physical quantities, and f is an arbitrary function of them.

However, in general, we excessively estimate an error for complicated quantities by using

the above relation due to correlations among Oa.
We can overcome the problem by using the jackknife method. We show a procedure of

the method for a bin size n.

1. Divide N data into Nn(≡ N/n) equal parts. Each bin contains n data.

2. Define the average except data in a bin b:

〈O〉b =
1

N − n
∑
k/∈Bb

Ok , (D.2.3)

where Bb denotes a set of indices for data in b.

3. By using 〈O〉b, one can calculate the average and the error of f :

〈f(O)〉 = 1

Nn

Nn∑
b=1

f (〈O〉b) , δ 〈f(O)〉 =
√

(Nn − 1)
(
〈f(O)2〉 − 〈f(O)〉2

)
. (D.2.4)
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Appendix E

Determination of the band size

We note here how we determine the band size n for the classical solutions in section 5.2.2.

Our model has a time reversal symmetry t→ −t, which comes from the invariance of the

bosonic action Sb under X0 → −X0. Since ∆ defined in (5.2.1) reflects this symmetry, it

is almost symmetric under the exchange of the left-upper and the right-lower triangle:

∆pq −→ ∆NX+1−q,NX+1−p . (E.0.1)

In order to determine the band size, we evaluate an average of ∆ and its time reversal:

∆̄pq =
1

2
(∆pq +∆NX+1−q,NX+1−p) . (E.0.2)

∆̄ in the typical solution for NX = 64 is plotted against “a time separation” αq − αp in

Fig. E.1. Due to the (strict) monotonicity of the eigenvalues αp, the time separation is

in one-to-one correspondence to “a distance” q − p from the diagonal elements. In this

plot, there are 20 series of points which correspond to p + q = 4, 6, . . . , 42. We find that

∆ scales only in a sufficiently large αq − αp region. We determine the block size n so that

X̄i(t) can cover a region where the scaling behavior is violated. In fact, this criterion is the

same as the one adopted to determine n in the previous studies [57–60] . From Fig. E.1,

we determine n = 10 for the typical solution.
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Figure E.1: ∆pq are plotted against the time separation αq−αp. Each symbol corresponds

to the label of “a slice of the band” p+q−1 = 3, 5, . . . , 41. The scaling behavior is violated

in the region αq − αp ≲ 0.15
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Appendix F

Detail calculations

In this appendix, we show detail calculations in this thesis.

F.1 Appendix A

(A.0.5) is calculated as follows:

〈
Ω1

∣∣Ω2

〉
=

j∑
r=−j

(
2j

j + r

)(
cos

θ1
2
cos

θ2
2

)j+r (
sin

θ1
2
sin

θ2
2

)j−r
ei(j−r)(φ2−φ1)

〈
jr
∣∣jr〉

=

j∑
r=−j

(
2j

j + r

)(
cos

θ1
2
cos

θ2
2

)j+r (
ei(φ2−φ1) sin

θ1
2
sin

θ2
2

)j−r
=

[
cos

θ1
2
cos

θ2
2
+ sin

θ1
2
sin

θ2
2
ei(φ2−φ1)

]2j
. (F.1.1)

We consider the square of
〈
Ω1

∣∣Ω2

〉
:

∣∣〈Ω1

∣∣Ω2

〉∣∣2 = [cos θ1
2
cos

θ2
2
+ sin

θ1
2
sin

θ2
2
ei(φ2−φ1)

]2j·2
=

[
cos2

θ1
2
cos2

θ2
2
+ sin2 θ1

2
sin2 θ2

2
+ 2 cos

θ1
2
cos

θ2
2
sin

θ1
2
sin

θ2
2
ei(φ2−φ1)

]2j
=

[
1 + cos θ1

2

1 + cos θ2
2

+
1− cos θ1

2

1− cos θ2
2

+
sin θ1 sin θ2

4
· 2 cos(φ2 − φ1)

]2j
=

[
1 + cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1)

2

]2j
=

(
1 + cosχ

2

)2j

=
(
cos2

χ

2

)2j
. (F.1.2)

Thus, one obtains (A.0.6): ∣∣〈Ω1

∣∣Ω2

〉∣∣ = (cos χ
2

)2j
. (F.1.3)

Here, angle χ is defined as follows:

n⃗1 · n⃗2 = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) · (sin θ2 cosφ2, sin θ2 sinφ2, cos θ2)
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= sin θ1 cosφ1 sin θ2 cosφ2 + sin θ1 sinφ1 sin θ2 sinφ2 + cos θ1 cos θ2

= sin θ1 sin θ2(cosφ1 cosφ2 + sinφ1 sinφ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(φ2 − φ1) + cos θ1 cos θ2 ≡ cosχ . (F.1.4)

Here, we show (A.0.7):

(2j + 1)

∫
dΩ

4π
|Ω〉 〈Ω|

=
2j + 1

4π

∫ 1

−1

d(cos θ)

∫ 2π

0

dφ

×
j∑

r,r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′ (
sin

θ

2

)2j−r−r′

ei(−r+r
′)φ |jr〉 〈jr′|

=
2j + 1

2

∫ 1

−1

d(cos θ)

j∑
r=−j

(
2j

j + r

)(
cos2

θ

2

)j+r (
sin2 θ

2

)j−r
|jr〉 〈jr| (F.1.5)

=
2j + 1

22j+1

j∑
r=−j

1

(2j)!

∫ 1

−1

dx(1 + x)2j(−1)2j d
2j

dx2j
(1− x)2j |jr〉 〈jr| (F.1.6)

=
2j + 1

22j+1

j∑
r=−j

1

(2j)!

∫ 1

−1

dx(1 + x)2j |jr〉 〈jr| =
j∑

r=−j

|jr〉 〈jr| = 1 , (F.1.7)

where we change cos θ to x and integrate by parts from (F.1.5) to (F.1.6).

Finally, we show (A.0.11). First of all, we derive f[L3,Φ](Ω):

f[L3,Φ](Ω) =
〈
Ω
∣∣ [L3,Φ]

∣∣Ω〉
=
〈
Ω
∣∣(L3Φ− ΦL3)

∣∣Ω〉
=

j∑
r,r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′ (
sin

θ

2

)2j−r−r′

ei(r−r
′)φ
〈
jr
∣∣Φ∣∣jr′〉

= −i ∂
∂φ

〈
Ω
∣∣Φ∣∣Ω〉 = L3fΦ(Ω) . (F.1.8)

Next, f[L+,Φ](Ω) is derived as

f[L+,Φ](Ω)

=
〈
Ω
∣∣ [L+,Φ]

∣∣Ω〉
=

j∑
r,r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′ (
sin

θ

2

)2j−r−r′

ei(r−r
′)φ
〈
jr
∣∣(L+Φ− ΦL+)

∣∣jr′〉
(F.1.9)

88



Here,

〈jr|L+ =
√
(j + r)(j − r + 1) 〈j r − 1| , L+ |jr′〉 =

√
(j − r′)(j + r′ + 1) |j r′ + 1〉 ,

(F.1.10)

so that

(F.1.9) =

j∑
r,r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′+1(
sin

θ

2

)2j−r−r′−1

× ei(r−r′)φ
√
(j + r)(j − r + 1)

〈
j r − 1

∣∣Φ∣∣jr′〉
−

j∑
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(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′−1(
sin

θ

2

)2j−r−r′+1

× ei(r−r′)φ
√
(j − r′)(j + r′ + 1)

〈
jr
∣∣Φ∣∣j r′ + 1

〉
=

j−1∑
r=−j−1

j∑
r′=−j

(
2j

j + r + 1

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′+1(
sin

θ

2

)2j−r−r′−1

× ei(r−r′+1)φ
√

(j − r)(j + r + 1)
〈
jr
∣∣Φ∣∣jr′〉

−
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r=−j
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r′=−j+1

(
2j

j + r

) 1
2
(

2j

j + r′ − 1

) 1
2
(
cos

θ

2

)2j+r+r′−1(
sin

θ

2

)2j−r−r′+1

× ei(r−r′+1)φ
√

(j + r′)(j − r′ + 1)
〈
jr
∣∣Φ∣∣jr′〉

=

j−1∑
r=−j−1

j∑
r′=−j

√
j − r

j + r + 1

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′+1(
sin

θ

2

)2j−r−r′−1

× ei(r−r′+1)φ
√

(j − r)(j + r + 1)
〈
jr
∣∣Φ∣∣jr′〉

−
j∑

r=−j

j+1∑
r′=−j+1

(
2j

j + r

) 1
2

√
j − r′

j − r′ + 1

(
2j

j + r′

) 1
2
(
cos

θ

2

)2j+r+r′+1(
sin

θ

2

)2j−r−r′−1

× ei(r−r′+1)φ
√

(j + r′)(j − r′ + 1)
〈
jr
∣∣Φ∣∣jr′〉

=

j−1∑
r=−j−1
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r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′

) 1
2
(
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θ

2
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θ
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(
2j
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) 1
2
(

2j

j + r′

) 1
2
(
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2
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)2j−r−r′+1
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〈
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∣∣Φ∣∣jr′〉 . (F.1.11)

On the other hand, L+

〈
Ω
∣∣Φ∣∣Ω〉 is

L+

〈
Ω
∣∣Φ∣∣Ω〉 (F.1.12)
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= eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)〈
Ω
∣∣Φ∣∣Ω〉

= eiφ
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∂

∂θ
+ i cot θ

∂

∂φ
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(
2j
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2
(

2j
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2
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2
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+
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2

×
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2

(
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θ

2
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θ

2
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〈
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=
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2
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+
2j − r − r′ − r + r′
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=

j∑
r,r′=−j

(
2j

j + r

) 1
2
(

2j

j + r′
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2
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2
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2
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∣∣Φ∣∣jr′〉 . (F.1.13)

Thus, one obtains L+

〈
Ω
∣∣Φ∣∣Ω〉 = f[L+,Φ](Ω). Similarly, one can show L−

〈
Ω
∣∣Φ∣∣Ω〉 =
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f[L−,Φ](Ω).

F.2 Appendix B

First of all, let us consider

λ

4

1

2j + 1
Tr
(
Φ4
)
=
∑
l1,...,l4

∑
m1,...,m4

ϕl1m1 · · ·ϕl4m4

λ

4

1

2j + 1
Tr
(
Ŷl1m1 · · · Ŷl4m4

)
, (F.2.1)

and the fuzzy spherical harmonics Ŷ
[j]
lm are abbreviated as Ŷlm. The vertex (B.0.5) is

calculated as

V (l1,m1; . . . ; l4,m4)

≡ λ

4

1

2j + 1
Tr
(
Ŷl1m1Ŷl2m2Ŷl3m3Ŷl4m4

)
=
λ

4

∑
l,l′

∑
m,m′
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l1m1 l2m2

Ĉ l′m′

l3m3 l4m4

1

2j + 1
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(
ŶlmŶl′m′

)
=
λ

4

∑
l,l′

∑
m,m′

Ĉ lm
l1m1 l2m2

Ĉ l′m′

l3m3 l4m4
(−1)mδl,l′δ−m,m′

=
λ

4

∑
l′,m′

(−1)m′
Ĉ l′ −m′

l1m1 l2m2
Ĉ l′m′

l3m3 l4m4
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λ

4
(2j + 1)

4∏
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√
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∑
l′,m′

(−1)m′
C l′ −m′

l1m1 l2m2
C l′m′

l3m3 l4m4

{
l1 l2 l′

j j j

}{
l3 l4 l′

j j j

}

=
λ

4
(2j + 1)(−1)

∑4
i=1 li

4∏
i=1

√
2li + 1

×
∑
l,m

(−1)m(2l + 1)

(
l1 l2 l

m1 m2 m

)(
l3 l4 l

m3 m4 −m

){
l1 l2 l′

j j j

}{
l3 l4 l

j j j

}
,

(F.2.2)

where we use (2.1.46)–(2.1.49) and (C.0.1).

In Fig. F.1, we contract ϕlm with ϕl1m1 , ϕ
∗
l′m′ with ϕl2m2 , and ϕl3m3 with ϕl4m4 . 8

possible contractions are the same contribution. (B.0.6) is obtained as follows:

8
∑
l1,...,l4

∑
m1,...,m4

(−1)m δl1,lδm1,−m

l1(l1 + 1) + µ2

δl′,l2δm′,m2

l′(l′ + 1) + µ2

× (−1)m4
δl3,l4δm3,−m4

l3(l3 + 1) + µ2

λ

4
(2j + 1)(−1)

∑4
i=1 li

4∏
i=1

√
2li + 1
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Figure F.1: Contraction of planar diagram.

×
∑
l′′,m′′

(−1)m′′
(2l′′ + 1)

(
l1 l2 l′′

m1 m2 m′′

)(
l3 l4 l′′

m3 m4 −m′′

){
l1 l2 l′′

j j j

}{
l3 l4 l′′

j j j

}
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√
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∑
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√
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l l′ l′′
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}
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(−1)m

l(l + 1) + µ2
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l′(l′ + 1) + µ2
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√
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×
∑
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√
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l3 l3 0
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1
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=
(
Γ
(2)
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)l,l′
m,m′
× 1

l(l + 1) + µ2

1

l′(l′ + 1) + µ2
, (F.2.3)

where l, l′, l′′, li,m,m
′,m′′,mi (i = 1, . . . , 4) are integers and j is half integer. To derive the

above, we use (C.0.2)–(C.0.3), (C.0.8), and (C.0.9).

In Fig. F.2, we contract ϕlm with ϕl1m1 , ϕ
∗
l′m′ with ϕl3m3 , and ϕl2m2 with ϕl4m4 . If

one of ϕlimi
(i = 1, . . . , 4) contracted with ϕlm is chosen, another contracted with ϕ∗

l′m′ is
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Figure F.2: Contraction of non-planar diagram.

consequently chosen, so that there are 4 possible contractions to be the same contribution.

4
∑
l1,...,l4

∑
m1,...,m4

(−1)m δl1,lδm1,−m

l1(l1 + 1) + µ2
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j j j

}

= λ(2j + 1)
(−1)m

l(l + 1) + µ2

√
(2l + 1)(2l′ + 1)

l′(l′ + 1) + µ2

∑
l4,m4

(−1)−m4

l4(l4 + 1) + µ2
(−1)l+l′+2l4(2l4 + 1)

×
∑
l′′,m′′

(−1)m′′
(2l′′ + 1)

(
l l4 l′′

−m −m4 m′′

)(
l′ l4 l′′

m′ m4 −m′′

){
l l4 l′′

j j j

}{
l′ l4 l′′

j j j

}

= λ(2j + 1)
(−1)m

l(l + 1) + µ2

√
(2l + 1)(2l′ + 1)

l′(l′ + 1) + µ2

∑
l4,m4

2l4 + 1

l4(l4 + 1) + µ2
(−1)m+l+l′+2l4

×
∑
l′′,m′′

(−1)2l+l′+3l′′+3l4+m′′ 2l′′ + 1

2l4 + 1
C l4m4

l′′m′′ l−mC
l4m4

l′′m′′ l′ −m′

{
l l4 l′′

j j j

}{
l′ l4 l′′

j j j

}

= λ(2j + 1)
(−1)m

l(l + 1) + µ2

1

l′(l′ + 1) + µ2

√
2l′ + 1

2l + 1
δl,l′δm,−m′(−1)m+3l+2l′

×
∑
l4,l′′

2l4 + 1

l4(l4 + 1) + µ2
(2l′′ + 1)(−1)5l4+l′′

{
l l4 l′′

j j j

}{
l′ l4 l′′

j j j

}

=

[
λ(2j + 1)δl,l′δm,−m′(−1)m

∑
l4

(−1)l+l4+2j (2l4 + 1)(2j + 1)

l4(l4 + 1) + µ2

{
j j l

j j l4

}]
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× 1

l(l + 1) + µ2

1

l′(l′ + 1) + µ2

√
2l′ + 1

2l + 1

=
(
Γ
(2)
non-planar

)l,l′
m,m′
× 1

l(l + 1) + µ2

1

l′(l′ + 1) + µ2

√
2l′ + 1

2l + 1
. (F.2.4)

To derive the above, we use (C.0.4)–(C.0.7), and (C.0.10). (B.0.8) is derived in this way.
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