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Why density matrix for spin 1/2?

Two spin states are almost degenerate
∆E ∼ S · ω + S · B ∼ ~.

Quantum correlation time is classical

τq ∼
~

∆E
∼ O(~0)

We need to keep 2× 2 spin density matrix in the
kinetic theory of time evolution ∆t ∼ O(~0).

quantum kinetic theory

Ho-Ung Yee Quantum Kinetic Theory of Spin Polarization of Massive Quark in Perturbative QCD



We expect a Lindblad-type of kinetic equation

d ρ̂
dt

= − i
~

[H0, ρ̂]− Lρ̂L† +
1
2

L†Lρ̂ +
1
2
ρ̂L†L

= − i
~

[H0, ρ̂]− Γ · ρ̂

The first term contains free streaming advective flow
and background EM field, and has been worked out in

Refs:Gao-Liang, Weickgenannt-Sheng-Speranza-Wang-Rischke,
Hattori-Hidaka-Yang

The Γ · ρ̂ is the collision term, that we aim to construct
in perturbative QCD framework

(to leading log in QCD coupling constant g)
Should eventually be compared with the works of

Hidaka-Pu-Yang, and Hattori-Hidaka-Yang
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We consider the case of dilute (Boltzmann), massive
quarks (strange, bottom), interacting with the

background thermal QGP
The problem reduces to the 1-particle quantum

mechanics of a single quark moving in QGP
Further simplification: Neglect EM field and vorticity

in the collision term

Γ = Γ0 +O(B, ω)

The equilibrium density matrix is expected to be
Boltzmann ρ̂eq = ze−βEp12×2, where Ep =

√
p2 + m2.

Γ0 · ρ̂eq = 0

Γ0 ∼ g4 log(1/g)T gives the relaxation of spin
polarization to equilibrium
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We consider an arbitrary hard scale quark mass
m� gT . This justifies neglecting quark-gluon

conversion process in our leading log computation,
since the t-channel fermion exchange momentum

becomes hard q & m� gT , and leading log is absent

For light quarks, this conversion process means that
we need to consider both quark and gluon spins

together in leading log
The difficult part is the multi-particle fermion/boson

statistics with spin density matrix
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Relativistic massive fermion
Field quantization

ψ(x) =

∫
p

1√
2Ep

∑
s

u(p, s)eip·xap,s + anti quark

1-quark states: |p, s〉 = a†p,s|0〉
It is most convenient to use the helicity basis,

u(p, s) ∼
( √

Ep − spξs(p)√
Ep + spξs(p)

)
, (σ · p)ξs(p) = s|p|ξs(p)

Spin polarization operator in canonical
decomposition

S i =
1
V

∫
dxεijk ψ̄(x)γ0[γ j , γk ]ψ(x) ∼

∫
p

(ξ†p,s′σ
iξp,s)a†p,s′ap,s

For 1-quark states, this is the same as in usual QM of
spin 1/2 particle, where |p, s〉 ∼ ξs(p)
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The interaction vertices with the background gluon
fields Aa

µ, through the relativistic spinors u(p, s)

HI(t) = g
∫

dx ψ̄(x)γµtaψ(x)Aa
µ(x , t)

∼
∫

p,p′,q
ū(p′, s′)γµu(p, s)Aµ(q)a†p′,s′ap,sδp′−p−q

The amplitudes ū(p′, s′)γµu(p, s)Aµ(q) give the matrix
elements of HI in the QM of 1-quark Hilbert space of

spin 1/2.
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Position and momentum operators

Define the position and the momentum operators,
that become identical to the usual QM in 1-quark

Hilbert space

P̂ ≡
∫

p
pa†p,sap,s, X̂ ≡

∫
x

xa†x ,sax ,s

ax ,s ≡
∫

p
eip·xap,s (Note : a(x) 6= ψ(x))

We have

[X̂ , P̂] = i~N̂ = i~

where N̂ is the quark number operator.
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The density matrix in momentum basis

ρ̂ =

∫
p,p′

∑
s,s′

ρs,s′(p,p′)|p, s〉〈p′, s′|, |p, s〉 ≡ a†p,s|0〉

We map it to a state in H⊗H∗ ("Thermo-field theory")

ρ̂ =

∫
p,p′

∑
s,s′

ρs,s′(p,p′)|p, s〉 ⊗ |p′, s′〉∗

where H∗ is the conjugate space to H, that is, the
time-reversed (T) space.

Under time-reversal (T), we have X̂ ∗ → X̂ and
P̂∗ → −P̂, and

[X̂ ∗, P̂∗] = −i~
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The H and H∗ are naturally described by the
Schwinger-Keldysh contours: the forward-time and

the backward-time contours (labeled by 1 and 2
respectively)

[x1,p1] = i~, [x2,p2] = −i~

Define xr = 1
2(x1 + x2) and xa = x1 − x2, and similarly

pr/a, then we have

[xr ,pa] = i~, [xa,pr ] = i~, [xr ,pr ] = 0

This means we can have the basis of simultaneous
eigenstates of (xr ,pr ) in H⊗H∗, that is closest to the

classical phase space

ρ̂ =

∫
xr

∫
pr

ρ̂2×2(xr ,pr )|xr ,pr〉
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Since [xr ,pa] = i~, we have

ρ̂2×2(xr ,pr ) =

∫
pa

eixr ·pa ρ̂2×2(p1,p2)

in terms of the previous density matrix in momentum
space.

We restrict to the spatially homogeneous case, that
is, xr -independent case

This means that the density matrix in momentum
space is diagonal, pa = 0,

ρ̂ =

∫
p
ρs,s′(p)|p, s〉〈p, s′|

=

∫
p
ρs,s′(p)a†p,s|0〉〈0|ap,s′
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From the spin operator S i ∼ 1
2

∫
p(ξ†p,s′σ

iξp,s)a†p,s′ap,s, the
spin polarization is

〈S i〉 = Tr(S i ρ̂) ∼ 1
2

∫
p

(ξ†p,s′σ
iξp,s)ρs,s′(p) =

1
2

Tr(σi ρ̂2×2(p))

with the explicit 2× 2 spin density matrix in
momentum space

ρ̂2×2(p) ≡
∑
s,s′

ξp,sρs,s′(p)ξ†p,s′

This object is unambiguous under a phase
redefinition of ξp,s, since 〈S i〉 is physical.

We are going to derive the evolution equation for this
physical object

N.B. : The spin-traced object f (p) = Tr(ρ̂(p)) is the
usual number distribution
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Relation to the field theory Wigner function
(for example, Q. Wang’s talk)

It is easy to show that ρ̂(xr ,pr ) is the Wigner transform
of a(x)

ρ̂2×2(xr ,pr ) =

∫
xa

e−ixa·pr 〈a(xr − xa/2)a†(xr + xa/2)〉ρ̂

Recall ψ(x) =
∫

p
1√
2Ep

eip·xu(p)ap and a(x) =
∫

p eip·xap,

so ψ(x) and a(x) are non-locally related, and ρ̂(xr ,pr )
is not equal to the Wigner transform of ψ(x) field.

However, for the spatially homogeneous case, they
are related by∫

dxa〈ψα(x − xa/2)ψ†β(x + xa/2)〉eip·xa

=
∑
s,s′

1
2Ep

uα(p, s)u†β(p, s′)ρs,s′(p)
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Time evolution of density matrix

ρ̂(t + ∆t) = U1(∆t)ρ̂(t)U†2(∆t)

where U1,2 are unitary evolution operators with QCD
gluons in SK contours 1 or 2, with the Hamiltonians

H1,2 = Hkinetic + g
∫

dxψ̄(x)γµψ(x)A(1)/(2)
µ

where A(i)
µ are the gluon fields on the SK contour

i = 1,2. Note U1 6= U2, and H1,2 are time-dependent
due to time-dependent gluon fields.

We average over quantum/thermal fluctuating SK
gluon fields A(i)

µ , given by equilibrium two-point
functions of 〈A(i)

µ (p)A(j)
ν (p)〉 = G(ij)

µν (p), satisfying
thermal KMS relations
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Working out second order perturbation theory in the
interaction picture

ρ̂(∆t) = U0(∆t)ρ̂(0)U†0 (∆t)

+

∫ ∆t

0
dt1
∫ ∆t

0
dt2U0(∆t)〈H int(1)

I (t1)ρ̂(0)H int(2)
I (t2)〉AU†0 (∆t)

+ (−i)2U0(∆t)
∫ ∆t

0
dt1
∫ t1

0
dt ′1〈H

int(1)
I (t1)H int(1)

I (t ′1)〉Aρ̂(0)U†0 (∆t)

+ (+i)2U0(∆t)ρ̂(0)

∫ ∆t

0
dt2
∫ t2

0
dt ′2〈H

int(2)
I (t ′2)H int(2)

I (t2)〉AU†0 (∆t)

N.B. Compare this with the Lindblad form
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Gluon two-point functions G(ij)
µν include HTL

self-energy. These contributions represent
interactions with background hard thermal particles
with t-channel gluon exchange. We keep quantum

correlations in G(ij)
µν , that is beyond the simple

scattering picture.

=
2

Q

Q
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G(ij)(t , t ′) have correlation time of τc ∼ (gT )−1 because
the leading log contribution comes from soft
t-channel momentum exchange gT � q � T

When ∆t � τc (but ∆t � 1/Γ ∼ 1/(g4 log(1/g)T ) to
neglect multi-interactions within ∆t), we have linear

terms in ∆t∫ ∆t

0
dt
∫ ∆t

0
dt ′G(ij)

µν (t − t ′)eiω(t−t ′) ∼ G(ij)(ω)∆t + · · ·

that gives the evolution equation first order in time.

N.B. In diagrammatic language, this corresponds to
the ladder approximation, which is justified because

of the scale separation
τc ∼ 1/gT � 1/Γ ∼ 1/g4 log(1/g)T
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Two regimes

Depending on how τq = ~
∆E compares with τc, we have

two different physics
Fermi golden rule (scattering picture) regime: When
τq � τc, off-diagonal components of density matrix

are time-averaged zero, and only the diagonal
components of probabilities make sense. The

transition rates are given by the Fermi golden rule.
Quantum kinetic regime: When τc � τq, full

components of density matrix are quantum correlated
and have to be kept in time evolution. If also τq & 1/Γ,

quantum correlations are kept even in ladder
multi-scatterings. This is the regime of the LPM

effect. Our case belongs to this regime.
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Explicitly

d
dt
ρs,s′(p, t) = g2C2(F )(Γcross + Γself energy)

Γcross =

∫
d3p′

(2π)3

1
4EpEp′

∑
s′′,s′′′

[ū(p, s)γµu(p′, s′′)]ρs′′,s′′′(p
′)[ū(p′, s′′′)γνu(p, s′)]G(12)

µν (Ep − Ep′ ,p − p′)

Γself energy = −γ ρ̂(p)

where

γ =
1
2

∫
d3q

(2π)3

1
4EpEp′

∑
s,s′′

[ū(p, s)γµu(p′, s′′)][ū(p′, s′′)γνu(p, s)]G(21)
µν (Ep − Ep′ ,q)

The spin sum is challenging, but can be done with
great effort

N.B. Detailed balance is achieved by KMS relation:
G(12)(q0) = nB(q0)/(nB(q0) + 1)G(21)(q0)
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The self energy involves G21(q0) = (nB(q0) + 1)ρ(q0),
which only depends on the gluon spectral densities

ρL/T
N.B. This will no longer be true when the density

matrix is off-diagonal in momentum space. The real
part of GR will shift the dispersion relation, which

should be absorbed into the kinetic H0
Expanding in soft momentum exchange

q = p − p′ ∼ gT ("diffusion approximation"), we need
to compute typically

JL/T
n =

∫ q0
max

q0
min

dq0

(2π)
(q0)2n−1ρL/T (q0,q)

Express JL/T
n as

JL/T
n =

m2
D

q(4−2n)
jL/T
n (n = integer) , JL/T

n =
m2

D

q(3−2n)

m2

E3
p

jL/T
n (n = half integer)

N.B. The half-integer n appear only in the massive
case
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Table of jL/T
n

jL
0 = p

Ep
jT
0 = ηp

2

jL
1/2 = − p

2Ep
jT
1/2 = − pEp

4m2

jL
1 = p3

3E3
p

jT
1 = ηp

2 −
p

2Ep

jL
3/2 = −2p3

E3
p

jT
3/2 = − p3

4m2Ep

jL
2 = p5

5E5
p

jT
2 = ηp

2 −
p

2Ep
− p3

6E3
p

ηp = 1
2 ln Ep+p

Ep−p is kinetic rapidity
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Result

Write ρ̂(p) = 1
2 f (p)12×2 + σ · S(p), so that the spin

polarization and number density is given simply by

〈S i〉 =

∫
p

K ij(p)S j(p), n =

∫
p

f (p)

where K ij(p) = 1
4Ep

Tr(
√

p · σσi√p · σσj +
√

p · σ̄σi√p · σ̄σj)

(thank to Di-Lun)

∂f (p, t)

∂t
= C2(F )

m2
Dg2 log(1/g)

(4π)

1
2pEp

Γf

∂S(p, t)

∂t
= C2(F )

m2
Dg2 log(1/g)

(4π)

1
2pEp

ΓS
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Γf

2pEp
= ∇pi

(
T (

3
4
−

E2
p

4p2 +
ηpm4

4p3Ep
)∇pi f (p) +

pi

2p2 (Ep −
ηpm2

p
)f (p)

+ pi Tm2

4p3Ep
(ηp +

3Ep

p
−

3ηpE2
p

p2 )p ·∇pf (p)
)

Γi
S =

(
2p +

TEp

p
− ηpm2T

p2

)
S i (p) +

(
pTEp −

m2TEp

2p
+
ηpm4T

2p2

)
∇2

pS i (p)

+

(
ηpm2T

2p2

(
1−

3E2
p

p2

)
+

3m2TEp

2p3

)
(p ·∇p)2S i (p)

+
1
p2

(
pE2

p −
3m2TEp

2p
+ ηpm2

(
−Ep −

T
2

+
3TE2

p

2p2

))
(p ·∇p)S i (p)

+ 2T

(
ηp

(
1
2
−

E2
p

p2 +
mEp

2p2 +
E3

p

2p2(Ep + m)

)
+

Ep

p
− m

2p
− m2

2p(Ep + m)

)
pi (∇p · S(p))

− 2T

(
ηp

(
1
2
−

E2
p

p2 +
mEp

2p2 +
E3

p

2p2(Ep + m)

)
+

Ep

p
− m

2p
− m2

2p(Ep + m)

)
∇i

p(p · S(p))

− T
p2

(
Ep(Ep + 2m)

p(Ep + m)
+
ηpmEp

Ep + m

(
−3Ep

p2 +
1

Ep + m

))
pi (p · S(p))
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These results pass very non-trivial tests of
1) Detailed balance: f (p) = ze−Ep/T is equilibrium, that

is, Γf = 0 for this
2) Chirality in massless limit: When formally m = 0,

the density matrix factorizes as

ρ̂(p) = f+(p)P+(p) + f−(p)P−(p)

where P±(p) = 1
2(1± p̂ · σ) are the chirality projection

operators, and f±(p) satisfy the same equation in
parity-even background. This means that it should
admit the consistent Ansatz S(p) = fs(p)p̂ · σ, and
moreover f (p) and fs(p) should satisfy the same

evolution equation. Also, fs(p) = ze−|p|/T should be the
equilibrium solution of ΓS = 0.

All these are true in the above result
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Future direction

Go beyond the spatial homogeneous limit
The density matrix ρ̂(p,p′) with p 6= p′ will give us the

kinetic equation in the phase space (xr ,pr ).
Free streaming example of non-relativistic particle:
H0 =

p2
1

2m −
p2

2
2m = pr

m · pa in the H⊗H∗ language. Since
pa ∼ −i~ ∂

∂xr
we obtain the free streaming kinetic theory

∂

∂t
ρ̂(xr ,pr ) = − i

~
H0ρ̂ = −pr

m
∂

∂xr
ρ̂(xr ,pr )

Include external slowly varying EM field in H0 to
obtain a Vlasov-type equation with spin density

matrix. Should reproduce the result by
Hattori-Hidaka-Yang

Working out the non-local collision term is planned
with Shiyong Li
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Thank you very much !
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