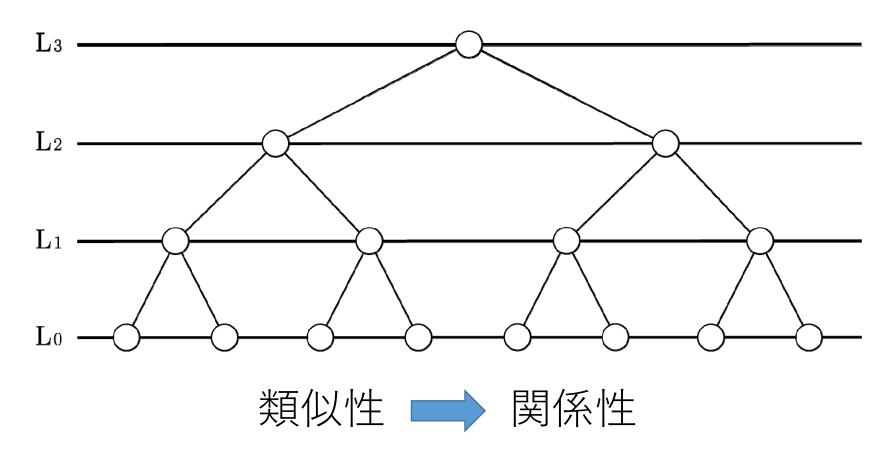
深層学習は統計系の温度推定から何を学ぶのか

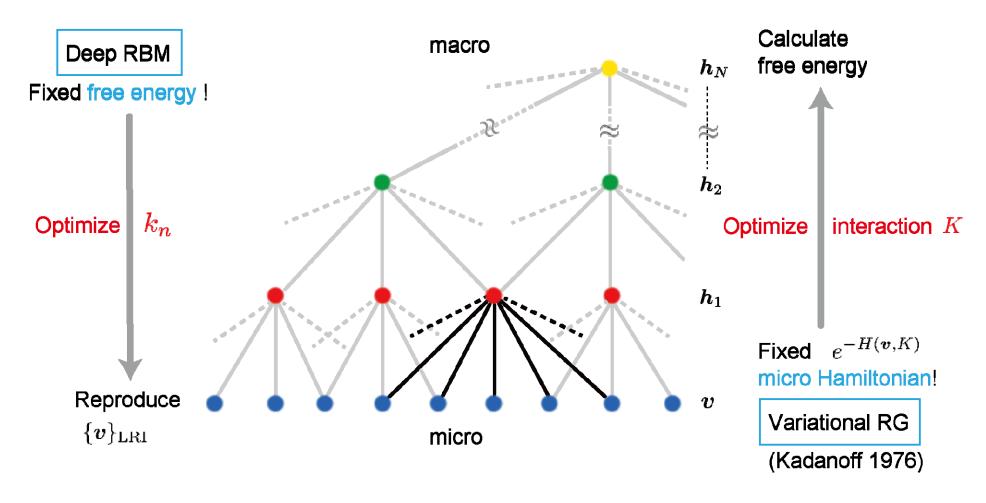
青木 健一(金沢大)、藤田 達大(金沢大)、小林 玉青(米子高専) 人工知能学会(JSAI)論文誌 33巻(2018)4号

くりこみ群 ―― 深層学習



両者にとって大きなインパクトになり得る

Deep RBM vs. Renormalization Group



Aoki, K-I., Kobayashi, T., Restricted Boltzmann Machines for the Long Range Ising Models, Mod. Phys. Lett. B30,1650401 (2016).

入力データ用のMonte Carlo をまじめに行わずに学習する方法を提案 くりこみ群との関係を議論

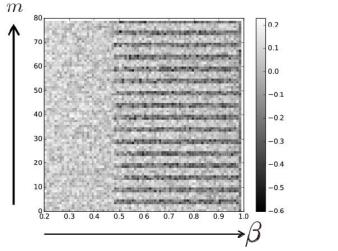
Machine Learning of Statistical System

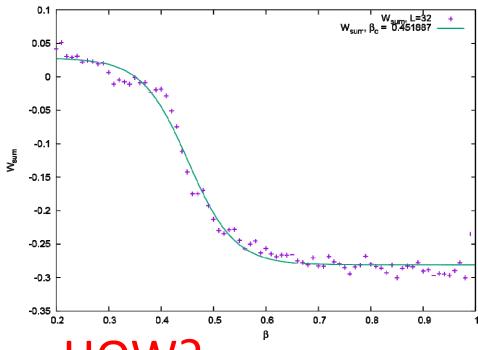
Tanaka, A., Tomiya, A.,

Detection of phase transition via convolutional neural network, J. Phys. Soc. Jpn. 86, 063001 (2017).

Detection of Phase Transition Find out Critical Temperature

Optimized Machine Parameters





WHY Japanese ?

HOW?

Long Range Ising Model (1-dim.)

Aoki, K-I., Kobayashi, T., Tomita, H.,

Finite-Range Scaling Method to Analyze Systems with Infinite-Range Interactions, Prog. Theor. Phys. 119 509 (2008).

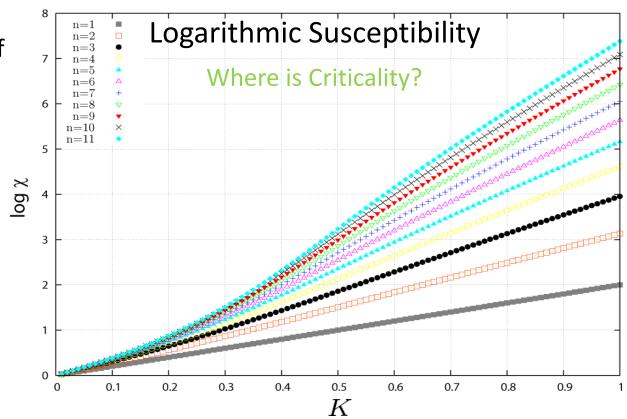
Finite Range Scaling

⇒ BDRG(Block Decimation RG) => Free Energy
Green Functions

$$K_n^{[p]} \equiv rac{K_1}{n^p}$$

Quantum Model of Dissipation

$$p=2$$
 Ohmic



Finite Range Scaling
$$\Delta(n, p, K) \equiv \frac{1}{2K} (\log \chi(n) - \log \chi(n-1))$$

$$\equiv \left(\frac{1}{n}\right)^{\beta(n, p, K)} \longrightarrow \lim_{n \to \infty} \log \chi = 2K \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{\beta} = 2K\zeta(\beta)$$

$$p_{1.8}$$

$$p_{1.8}$$

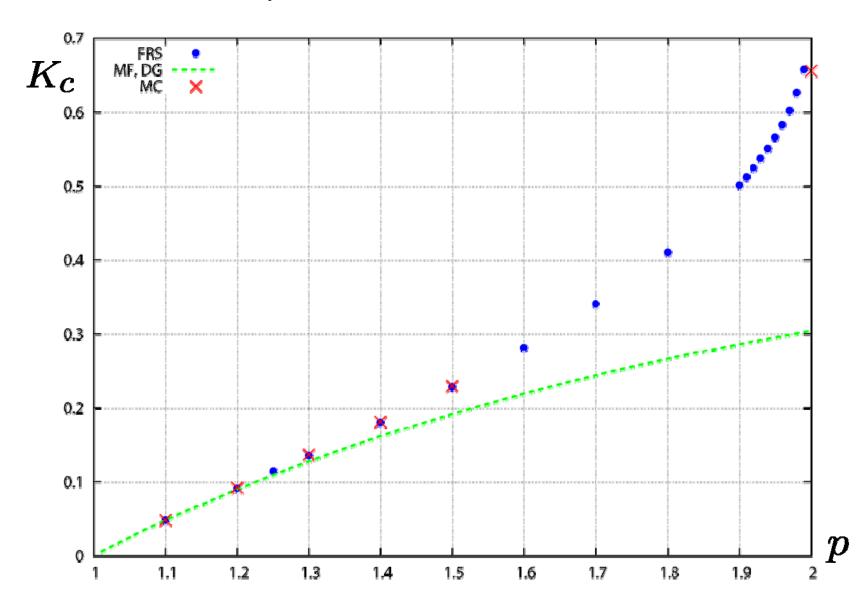
$$p_{1.8}$$

$$p_{1.4}$$

$$p_{1.5}$$

$$p_{$$

Critical Temperature vs. ${m p}$



Alpha Go Shock

1-dim Long Range Ising Model
 Phase transition exists
 Difficult to evaluate critical temperature

Finite Range Scaling successfully evaluate criticality Exact calculation possible for finite n by BDRG

· Tensorflow vs. 私(人類代表)

相転移点の前に温度推定能力必要

- ・統計モデル=1dim長距離イジング模型:p=1.8; n=1, n=8; N=1024 periodic
- ・温度16クラス:K=[0.2,0.5] 0.02刻み
- ・各温度毎32000 configurations (MC)

$$\exp\left(K\sum_{n,i}n^{-p}\sigma_i\sigma_{i+n}\right)$$

マシン構成

- ・入力: Domain Wall 表示
- · convolution 6段
- filter: weight + bias + ReLU

n=1: size 2, stride 2, channel 1

n=8: size 2, stride 2, channel 4

- 16 site の和をとる。channel の和もとる。 Translational Invariance
- full connection 層: 1 => 16 class output => softmax function
- cost function: cross entropy

結果: 正答率(Tensorflow)

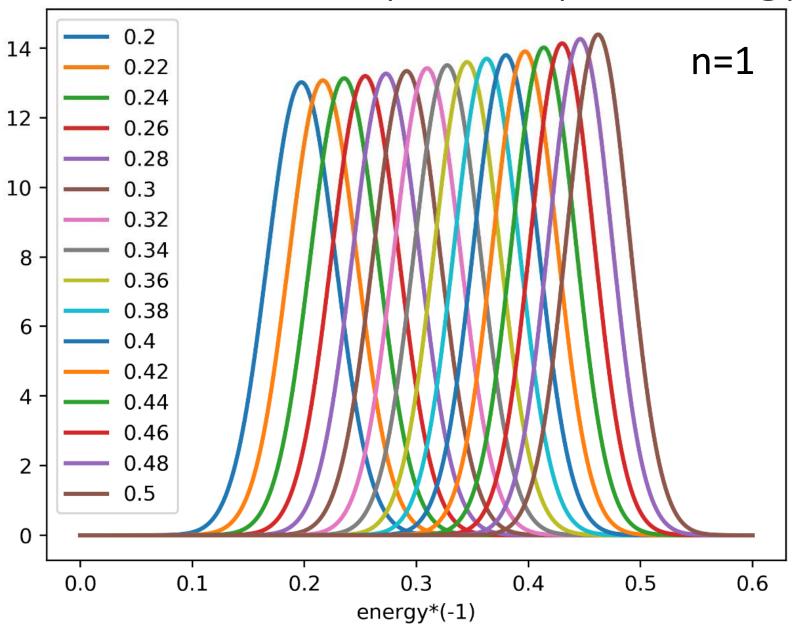
n=1:28.1%

n=8:42.8%

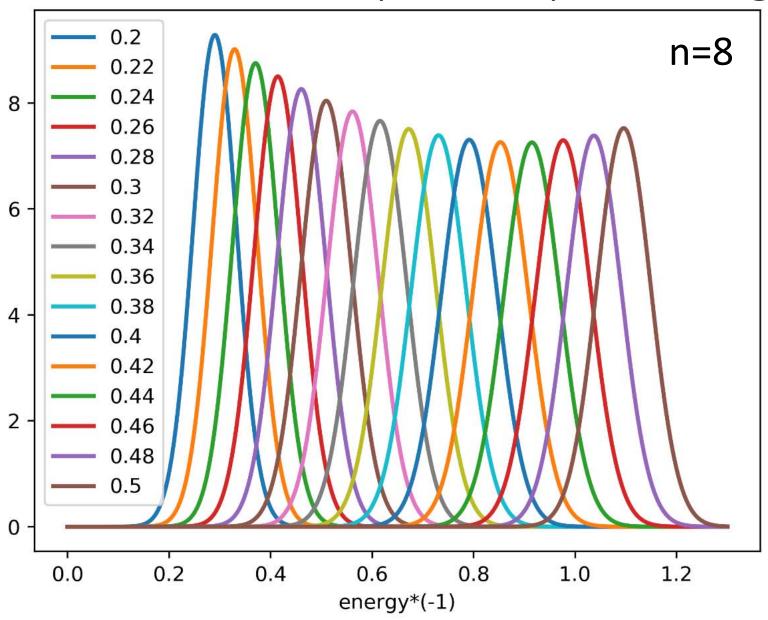
人間(私)がいろいろと凝ったこと(domain長の分布とか、そのくりこみによる変化とか・・・)を考えて勝負したけれど、勝てない・・・。というか、もともと、この結果って、どれくらいいいの?

正答率の理論的上限値の計算

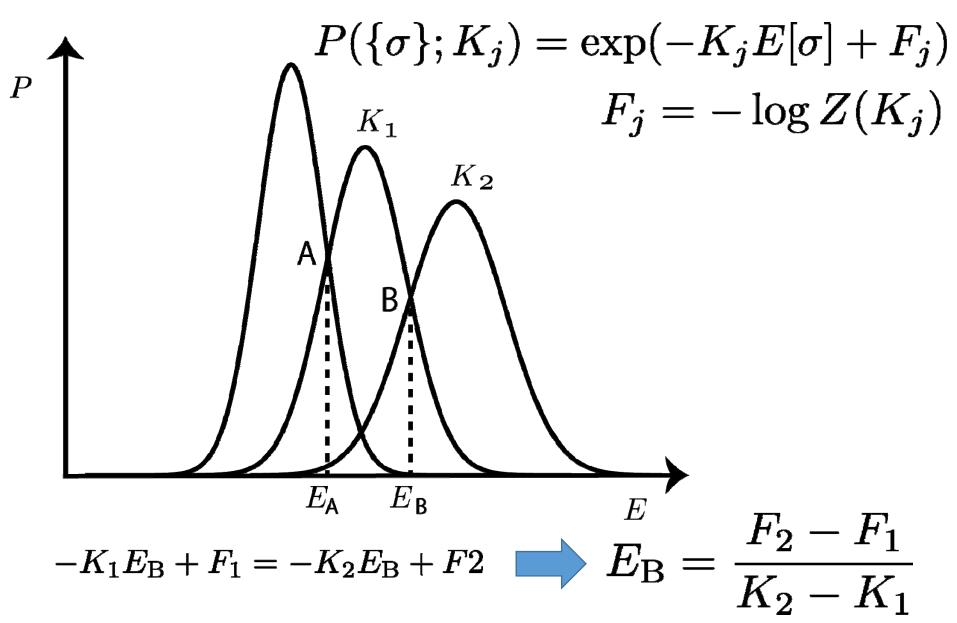
Theoretical Probability Density vs. Energy



Theoretical Probability Density vs. Energy



Maximum Likelihood Estimate



正答率の理論的上限

n=1:28.1% 28.4%

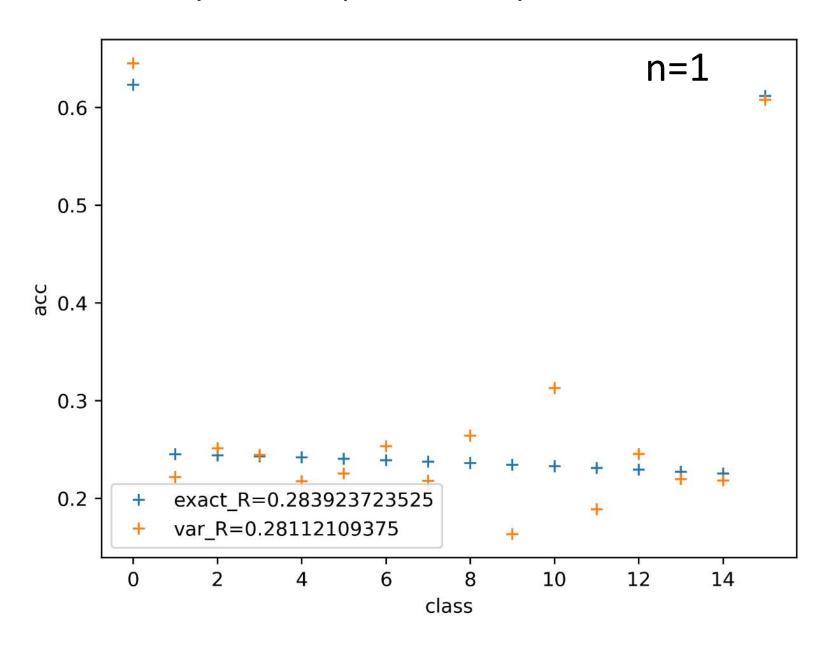
n=8:42.8% 43.6%

理論的上限に非常に近い

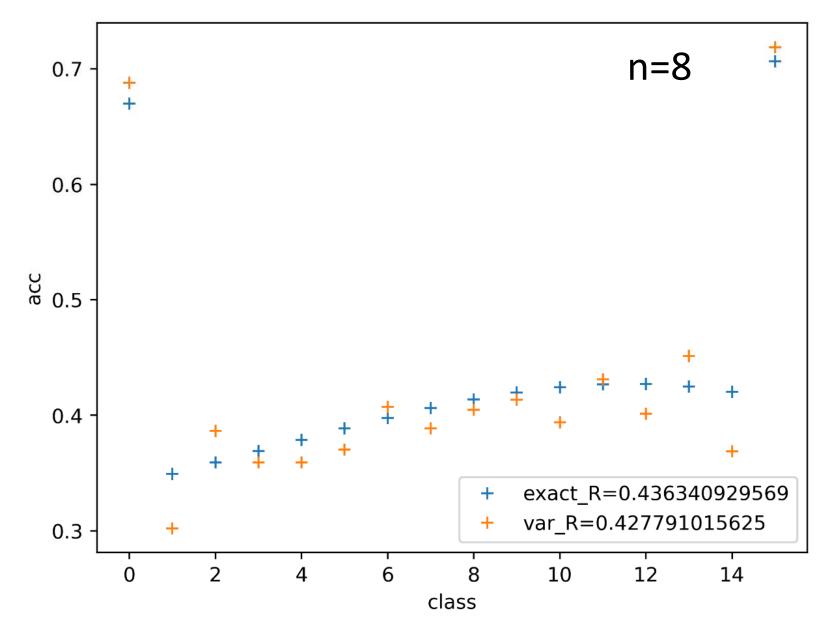
配位のエネルギーに応じて決まる出力温度クラスを 十分に正しく選ぶ必要がある

配位のハミルトニアン(関数)を十分に正しくマシン内部に構成し得た、と言える

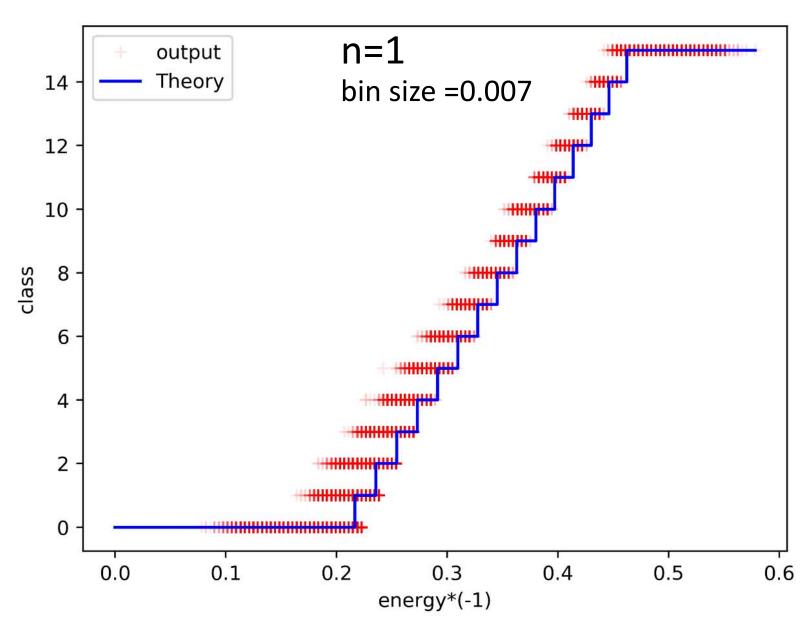
Accuracy for Input Temperature Class



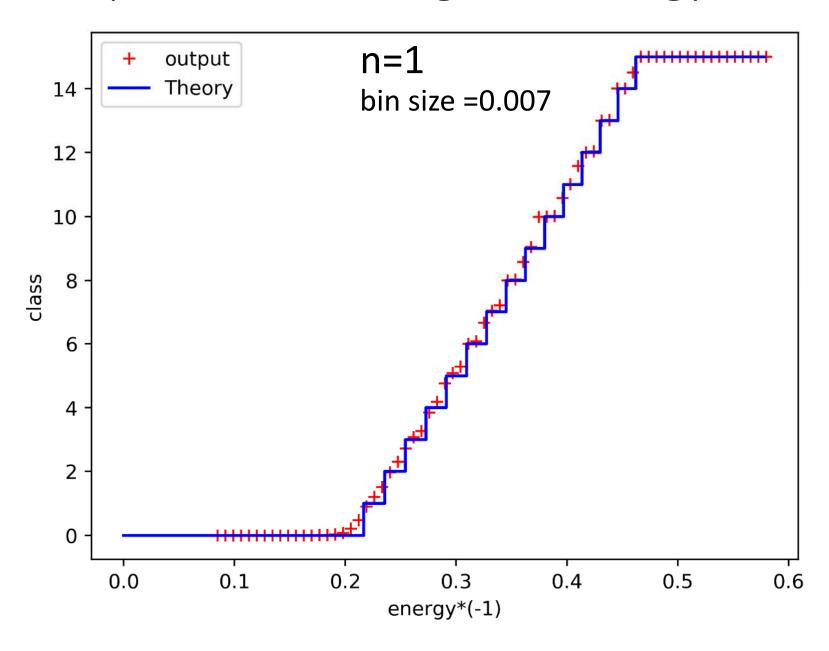
Accuracy for Input Temperature Class



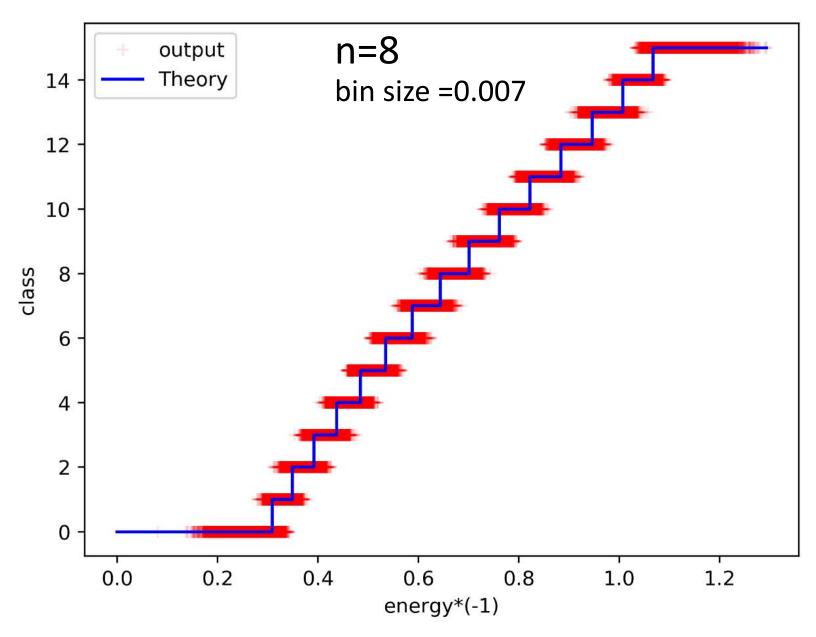
Output Class vs. Energy



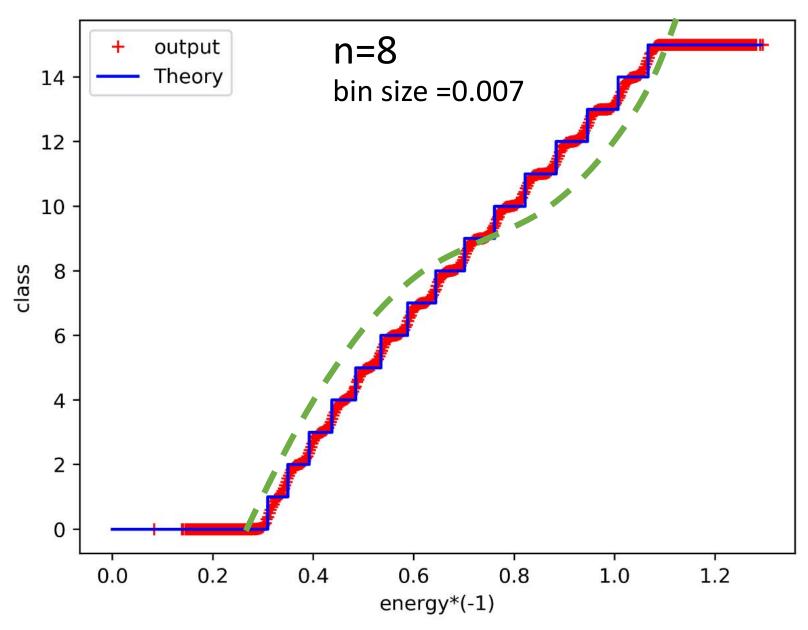
Output Class Average vs. Energy



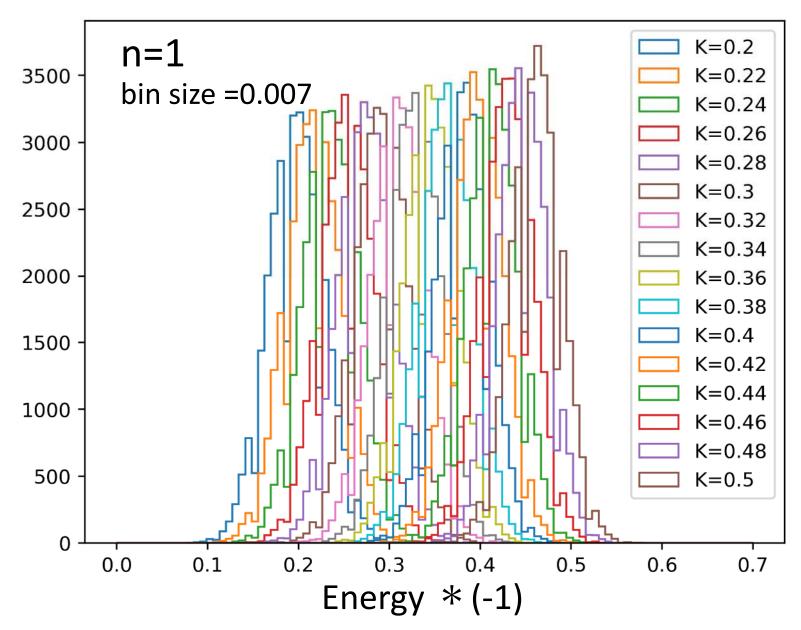
Output Class vs. Energy



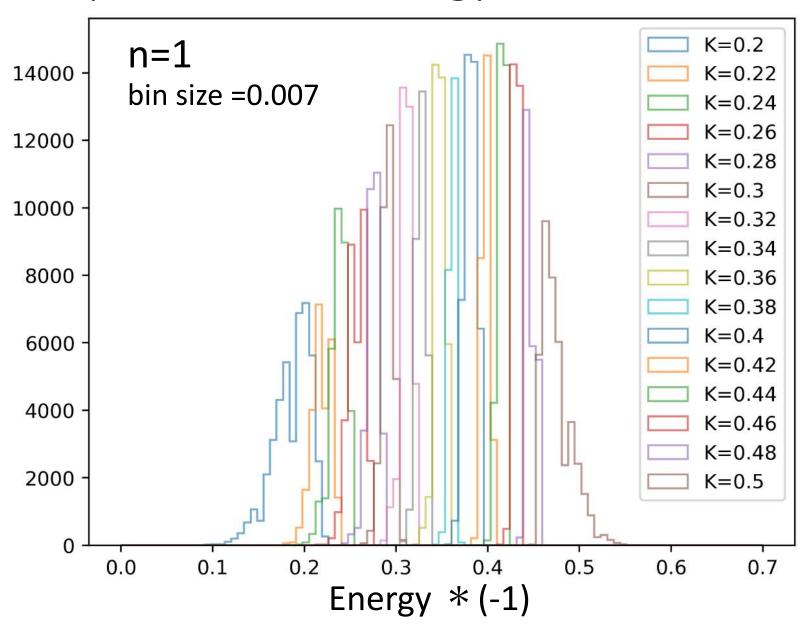
Output Class Average vs. Energy



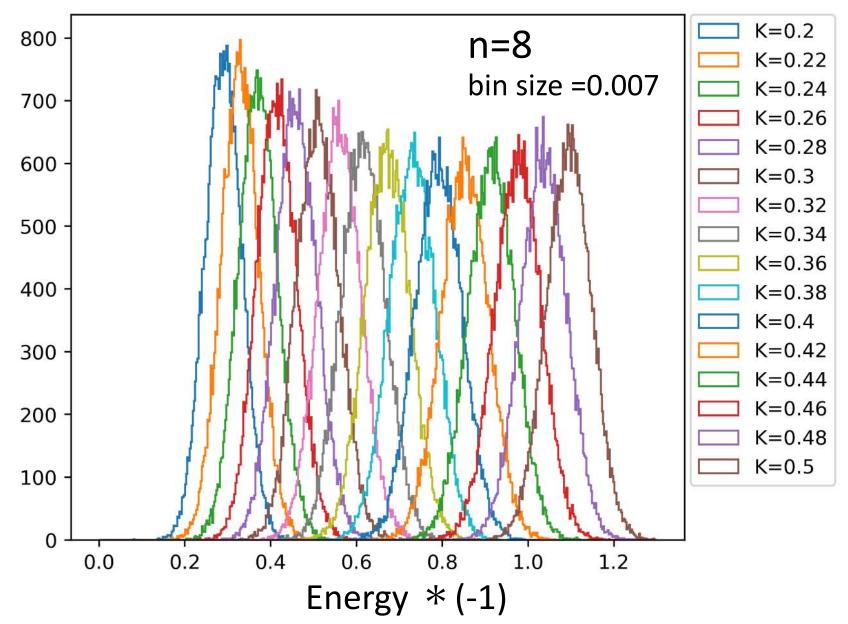
Input Cnfiguration vs. Energy



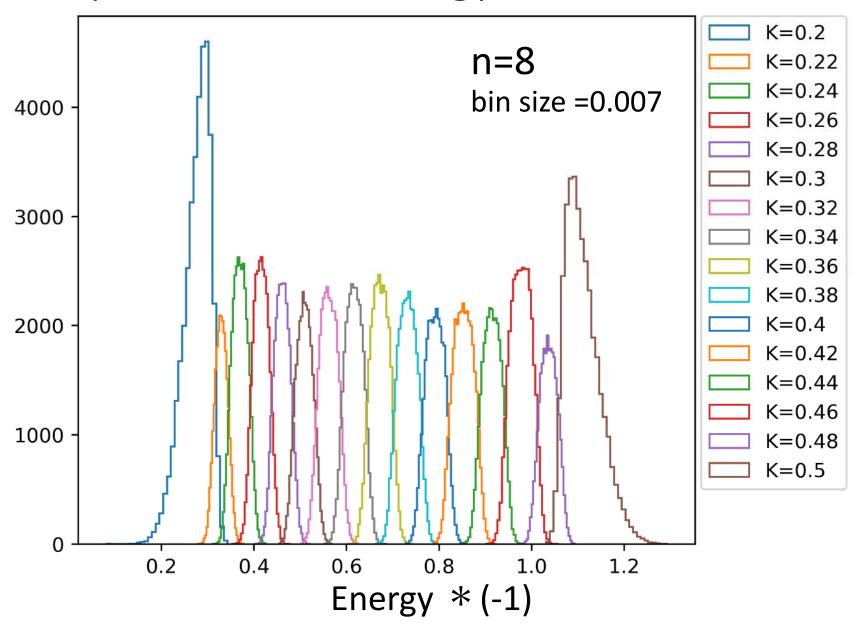
Output Cass vs. Energy



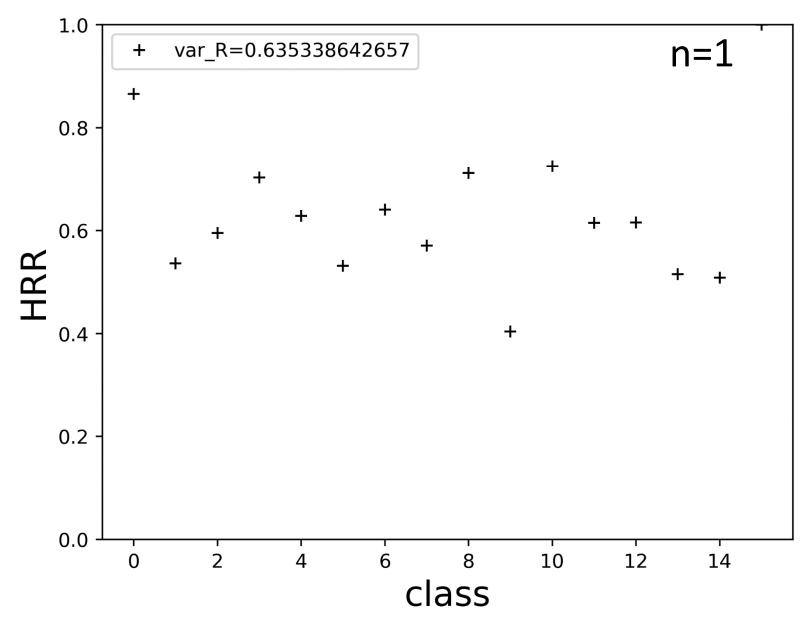
Input Cnfiguration vs. Energy



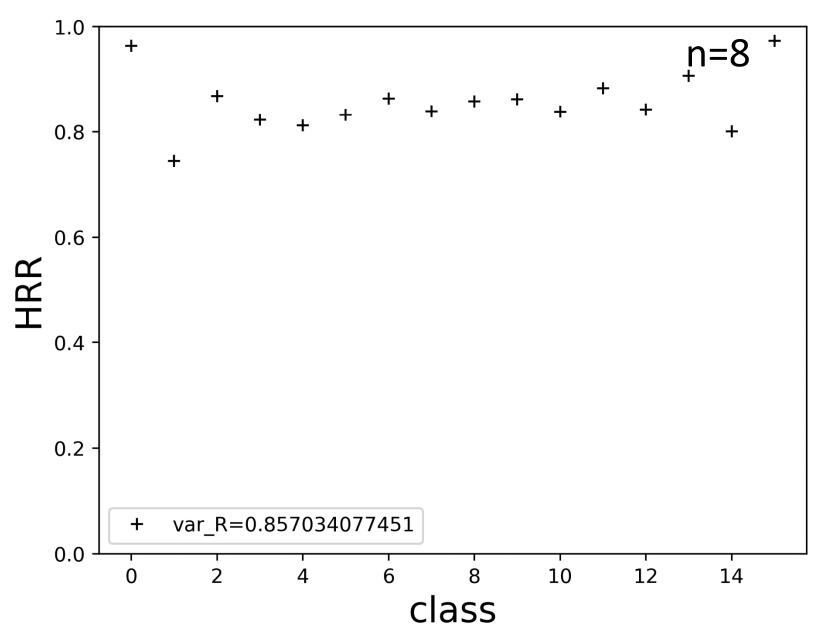
Output Cass vs. Energy



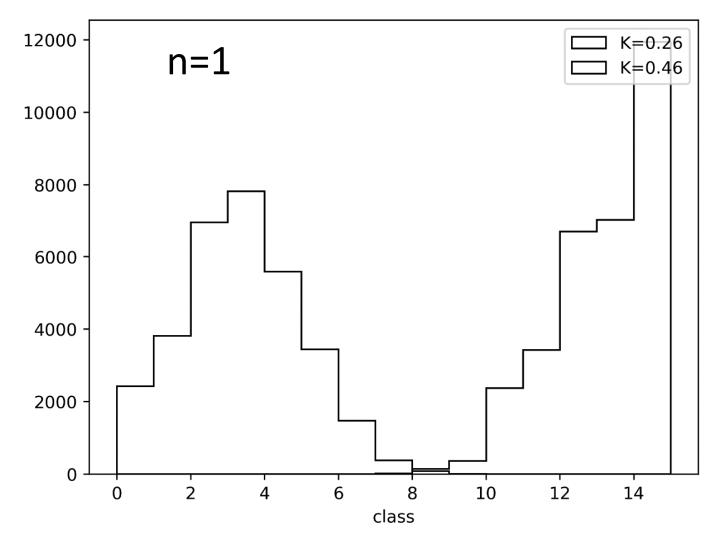
Hamiltonian Recognition Rate (HRR)



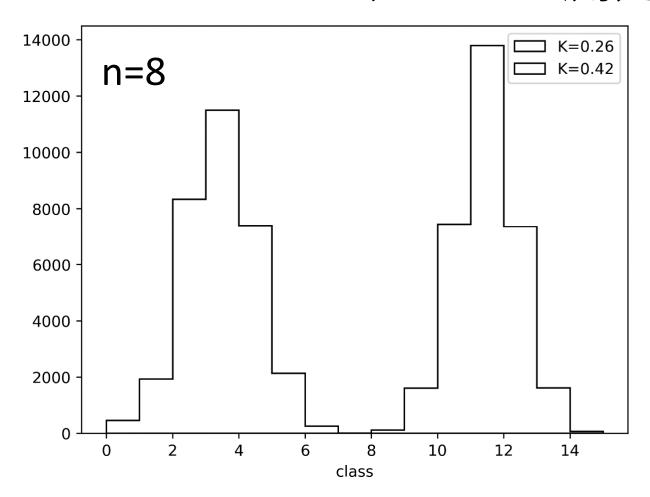
Hamiltonian Recognition Rate (HRR)



ある入力温度の出力結果



学習したマシンはエネルギー測定器!



「これだけ間違えましたね、、、」ではなく、エネルギースペクトル分解!

温度推定学習 **温度に共役な物理量の測定器**となる エネルギー以外の物理量の情報を使うと正答率は必ず下がる

相転移、臨界温度の情報はどこに?

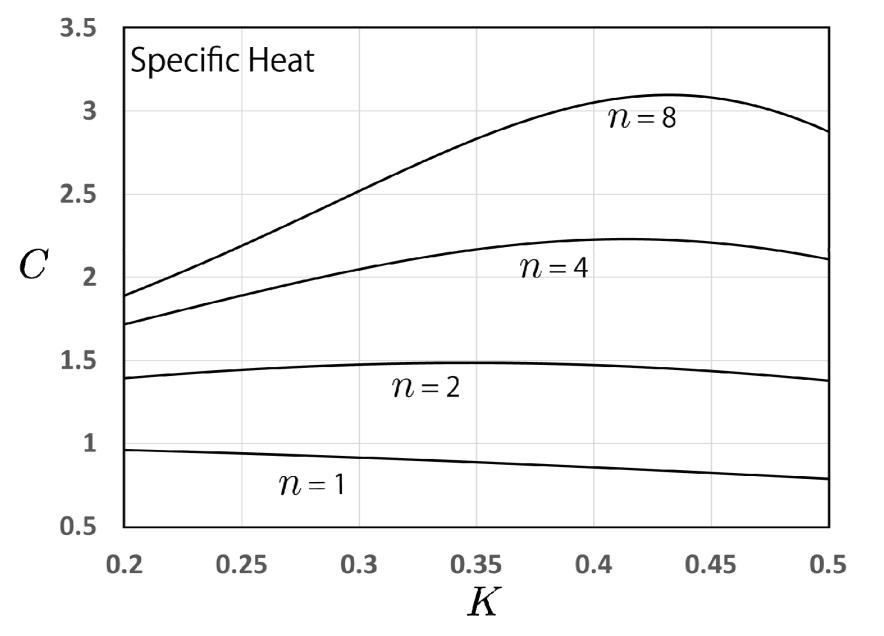
温度推定学習

エネルギースペクトル分解ができるようになった マシンは、**エネルギースペクトルメータ**

エネルギーのゆらぎ(比熱)は 相転移点で特異性を持つ

この特異性が学習後のマシンのどこかに刻み込まれているはず

Specific Heat of Long Range Ising Models



最終段出力

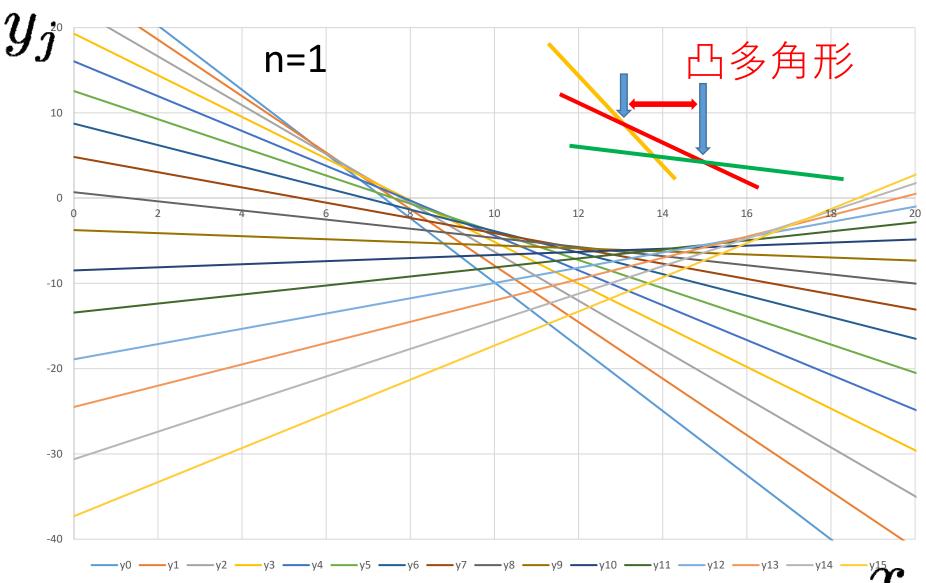
$$x \longrightarrow y_j \longrightarrow q_j$$
 $y_j = w_j x + b_j$ $q_j = rac{\exp(y_j)}{\sum_k \exp(y_k)}$ Softmax function $q_j = q_j$ あるいは y_j が最大となる j が出力温度

最小化対象:cost function=Cross Entropy

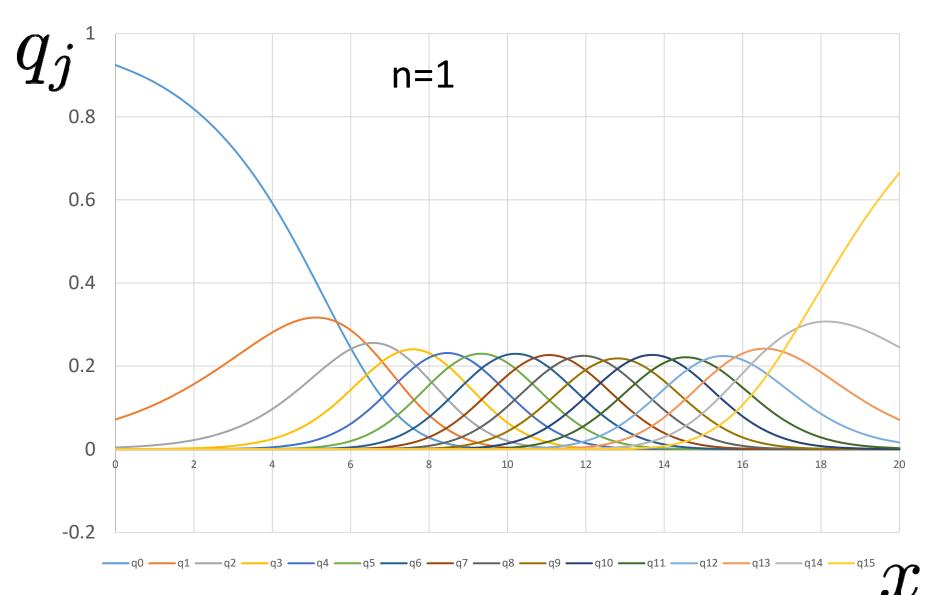
$$\int dE P(E) \sum_{j} p_{j}(E) \log q_{j}(E)$$

最終段全結合

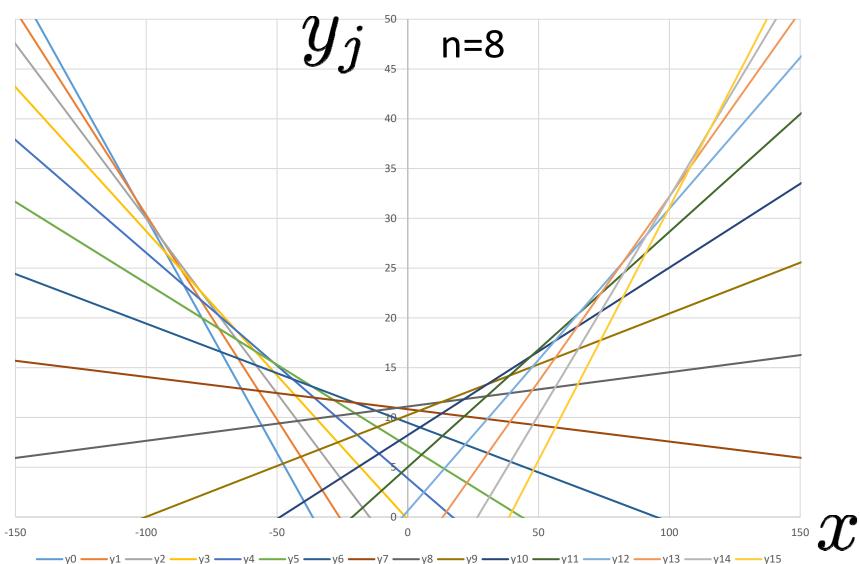
 $y_j = w_j x + b_j$



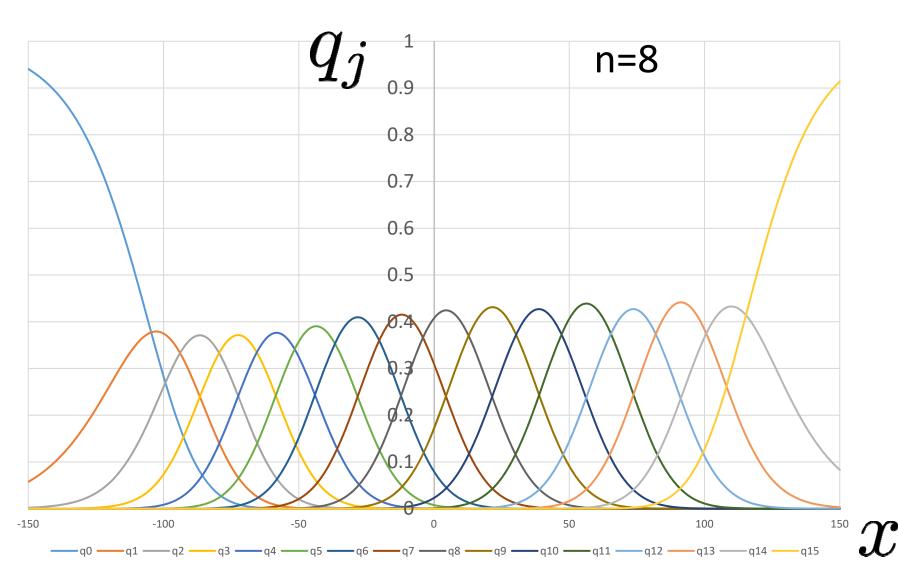
出力確率 (温度推定)



最終段出力
$$y_j = w_j x + b_j$$



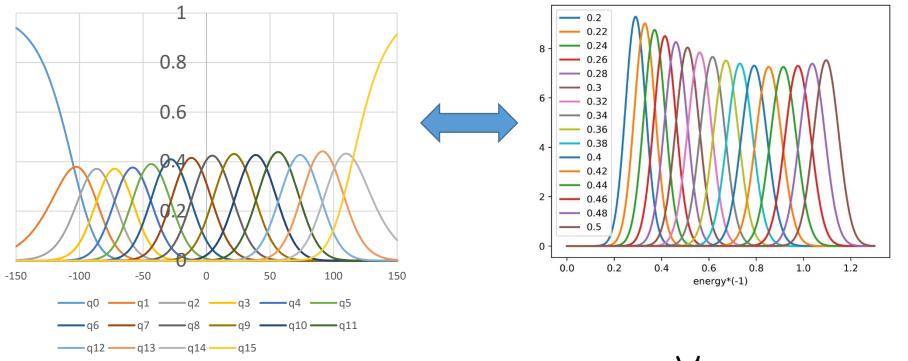
出力確率 (温度推定)



Cross Entropy の最小化

 q_{j}

 p_{j} 下記をエネルギー毎に規格化



最小値を与える $q_j(E) = p_j(E)$ $\ \ ^orall E, j$

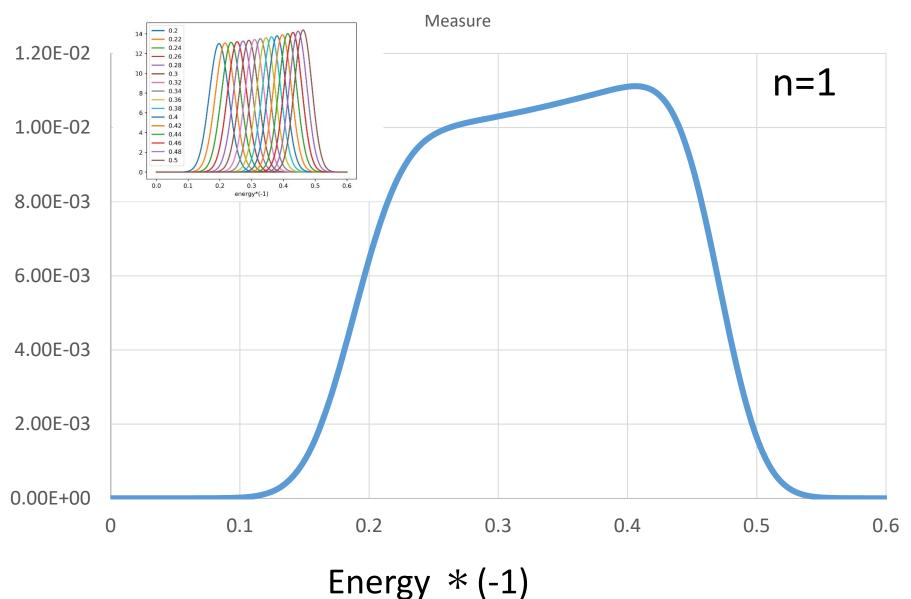
Cross Entropy 理論最小値

■→BDRGで計算

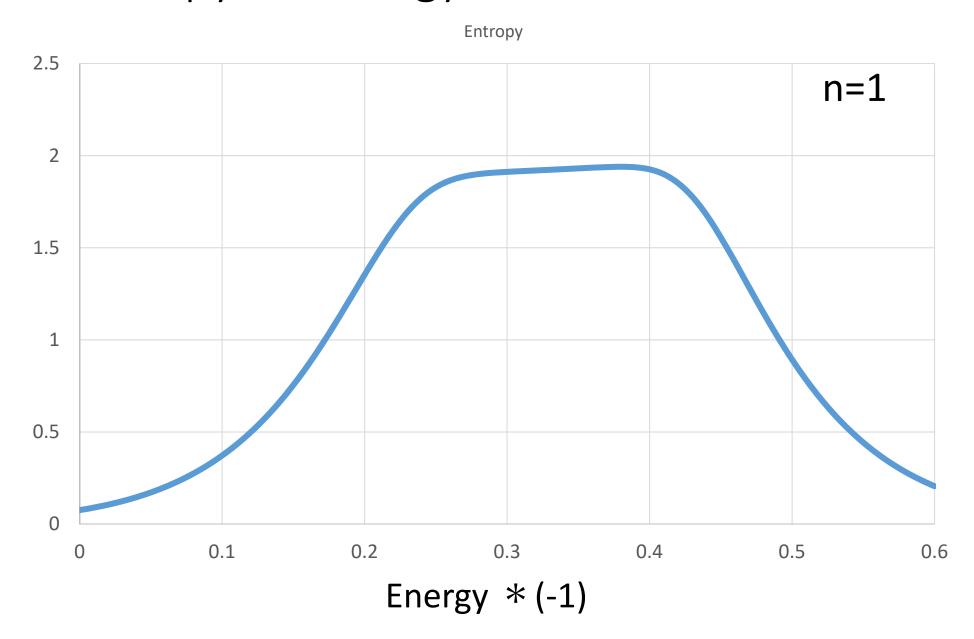
n=1: 1.743

n=8: 1.270

Data Sample Measure vs. Energy



Entropy vs. Energy

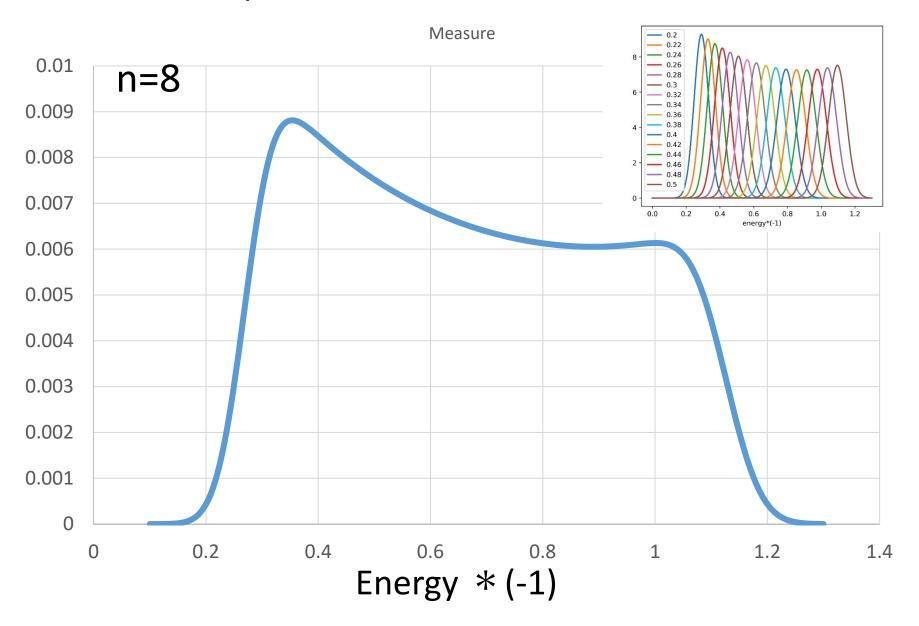


Entropy * Measure vs. Energy

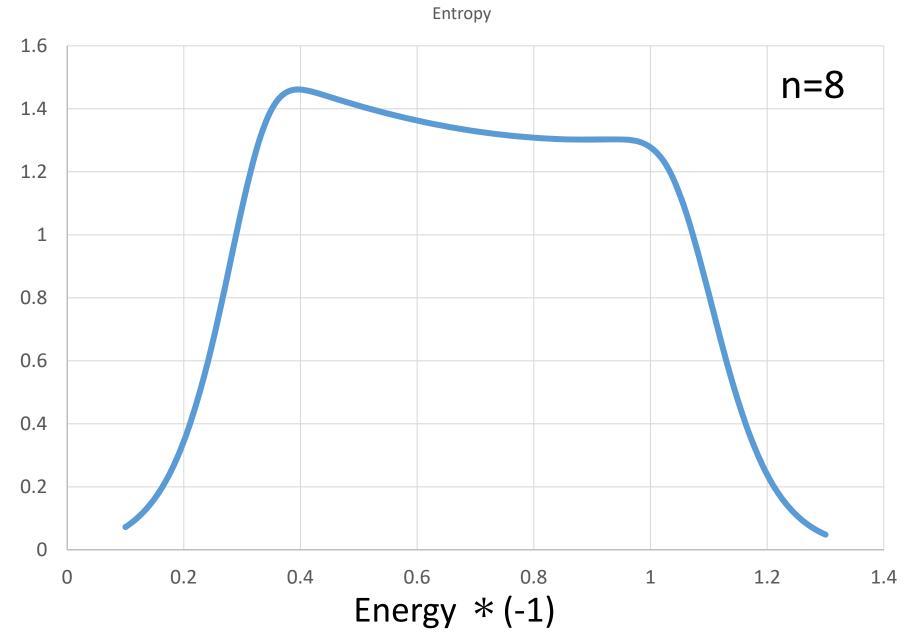
Entropy*Measure 2.50E-02 n=1 2.00E-02 1.50E-02 面積 = 1.743 1.00E-02 5.00E-03 0.00E+00 0.1 0.2 0.3 0.5 0 0.4 0.6

Energy *(-1)

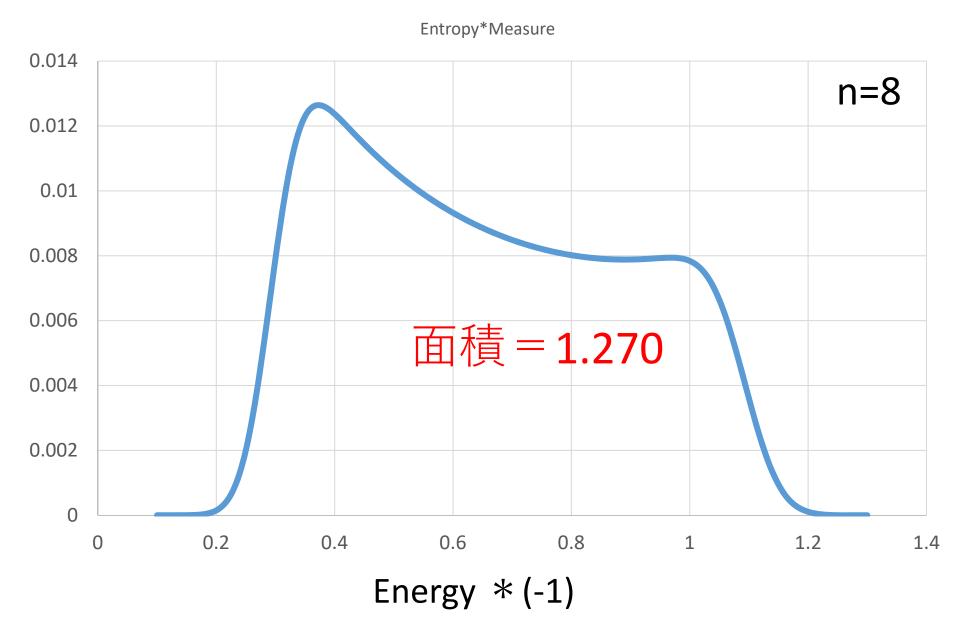
Data Sample Measure vs. Energy

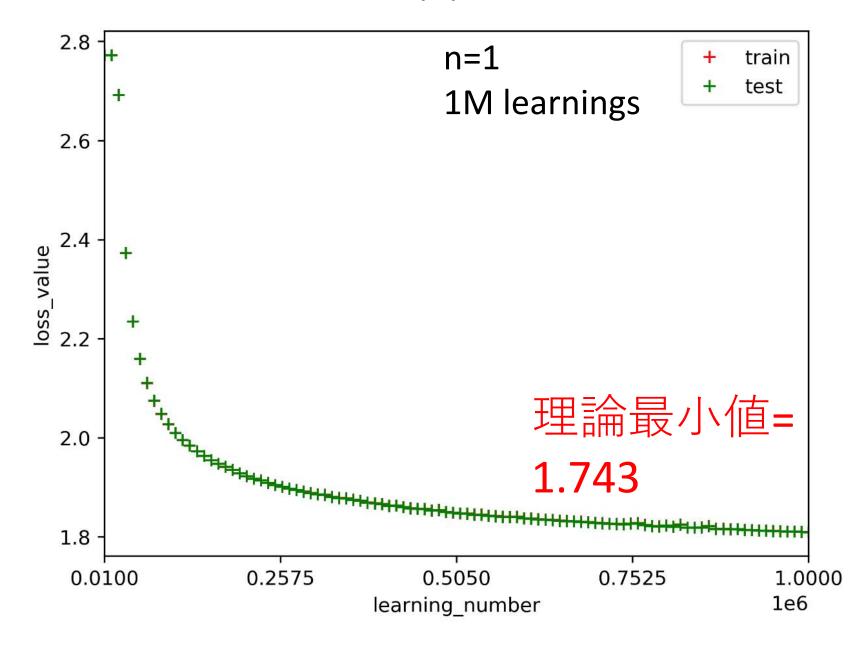


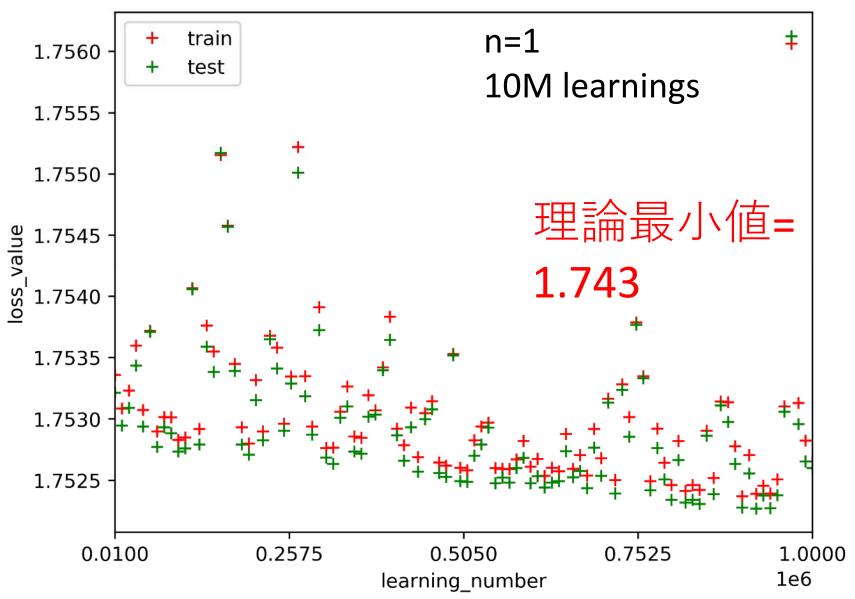
Entropy vs. Energy

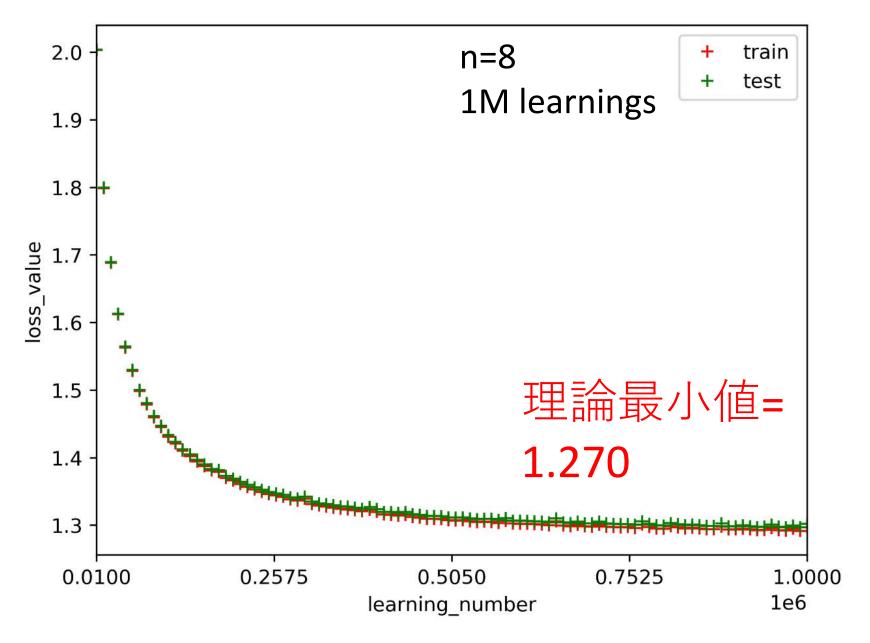


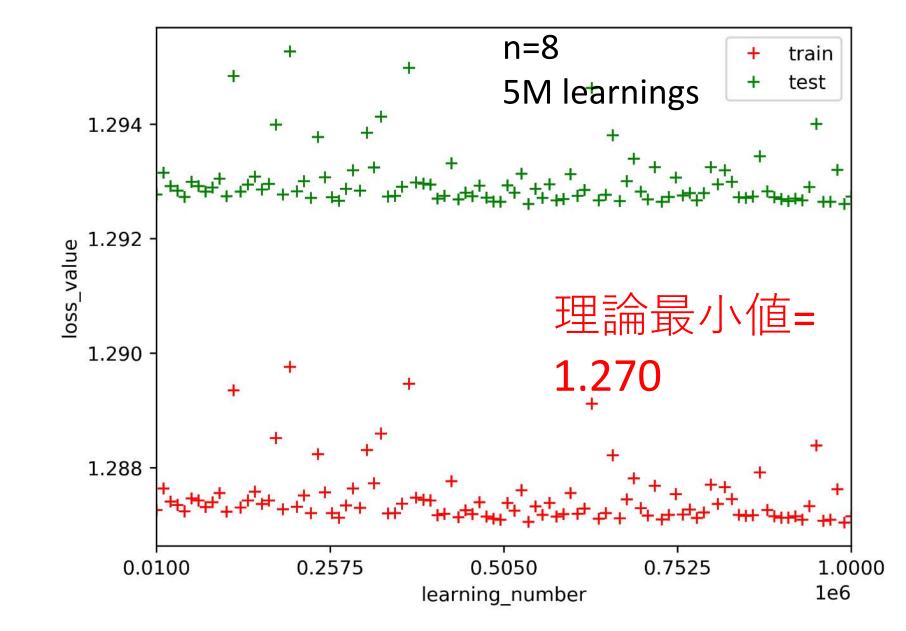
Entropy * Measure vs. Energy











完全最適化マシン:cross entropy 最小

$$x \longrightarrow y_j \longrightarrow q_j \iff p_j$$
 $y_j = w_j x + b_j$
 $q_j = \frac{\exp(y_j)}{\sum_k \exp(y_k)}$

$$q_j \propto \exp(w_j x + b_j) \iff p_j \propto \exp(-K_j E + F_j)$$

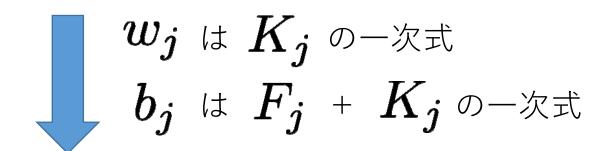
$$\exp(w_j x + b_j) * R(E) = \exp(-K_j E + F_j) \quad \forall E, j$$

$$x = -a_1 E - a_0$$
 $w_j x + b_j + c_1 E + c_0 = -K_j + F_j$
 $R(E) = \exp(c_1 E + c_0)$

完全最適マシン解

$$w_{j} = \frac{1}{a_{1}}(K_{j} + c_{1})$$

$$b_{j} = F_{j} + a_{0}w_{j} - c_{0}$$

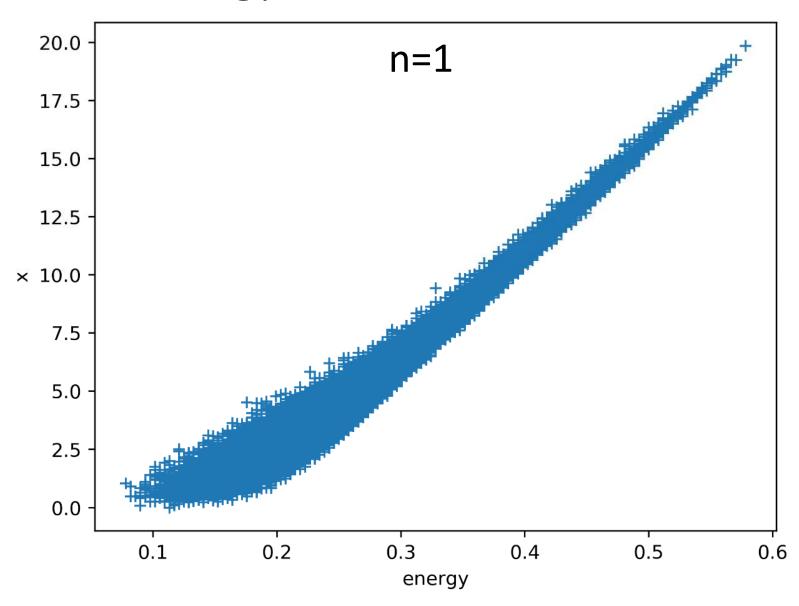


Free Energy が温度の関数として記録されている

マシンは $K_{m j}$ の情報は何も知らない 温度 $K_{m j}$ は等間隔である必要はない

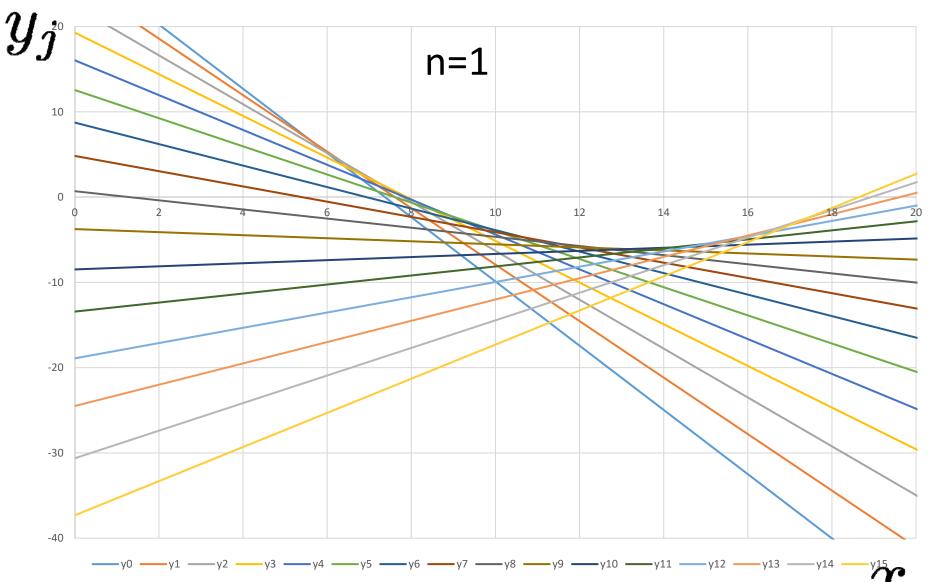
Free Energy の温度による2階微分は不定性なくわかる

x vs. energy

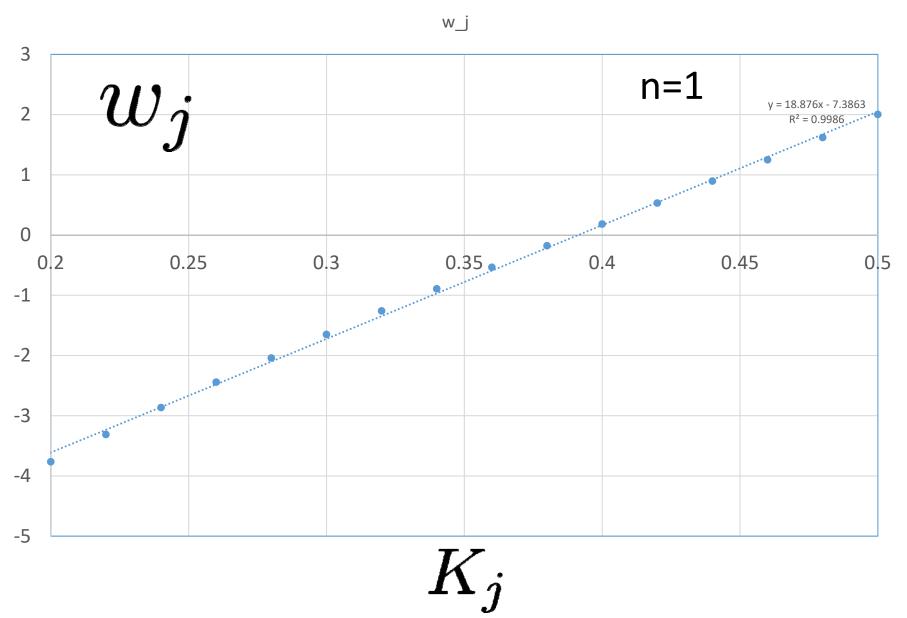


最終段全結合

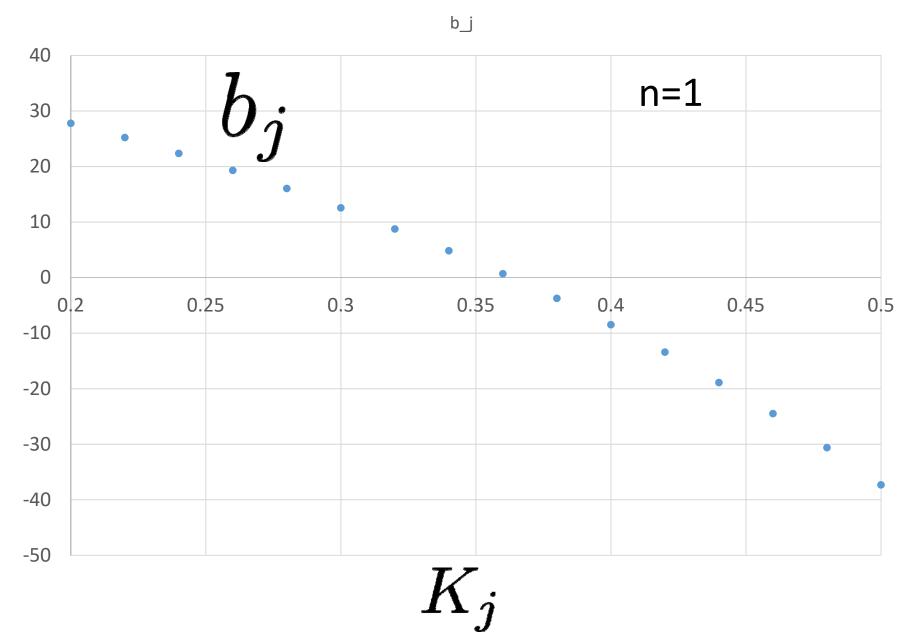
 $y_j = w_j x + b_j$



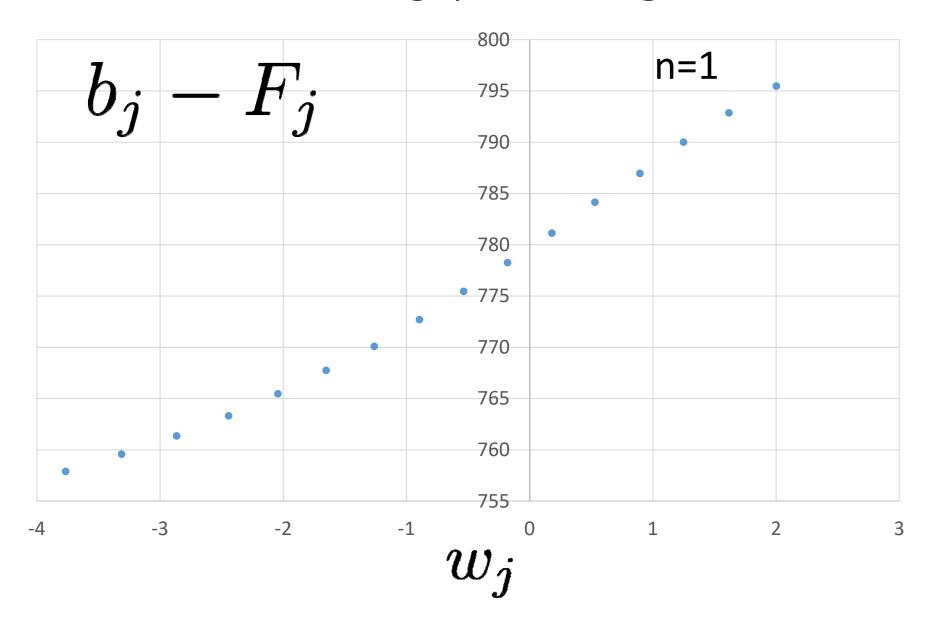
Machine Parameters: FC Weights



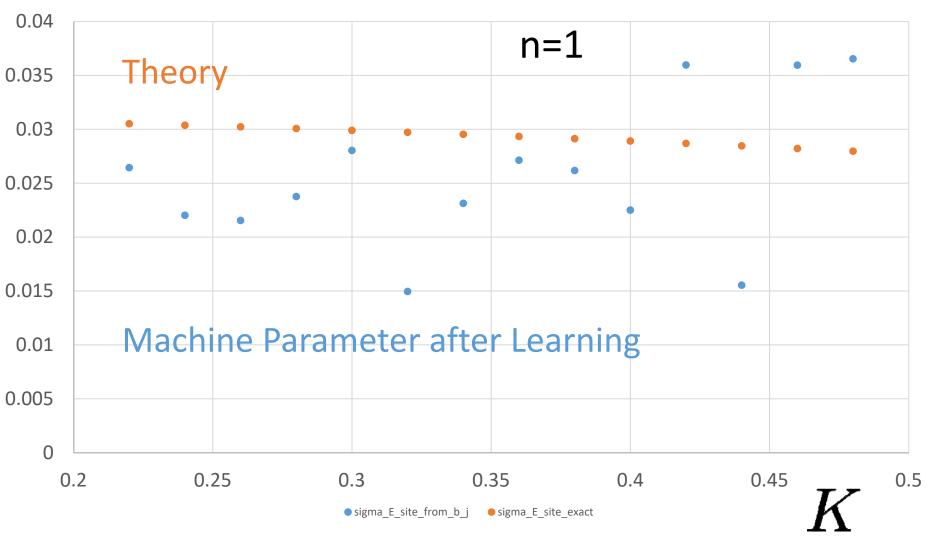
Machine Parameters: Bias



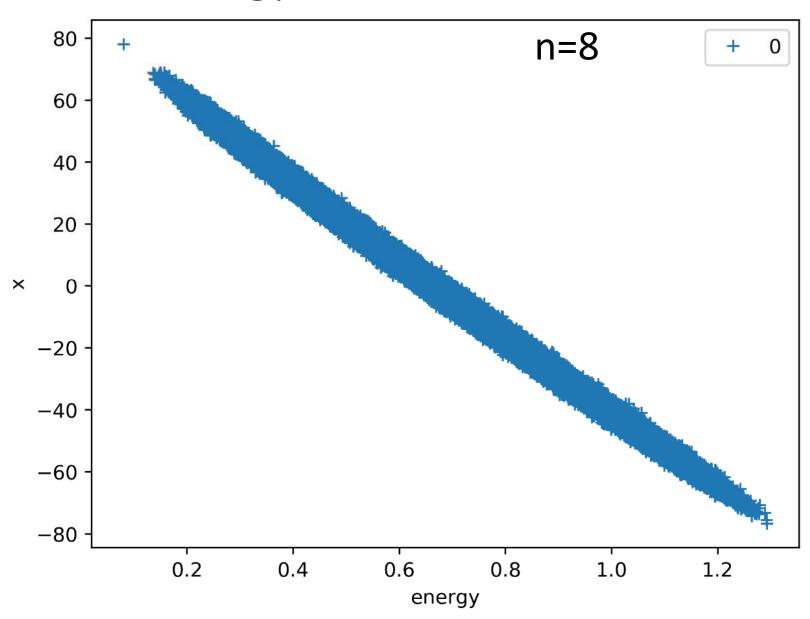
Bias — Free Energry vs. Weight



Specific Heat (Energy Fluctuation)

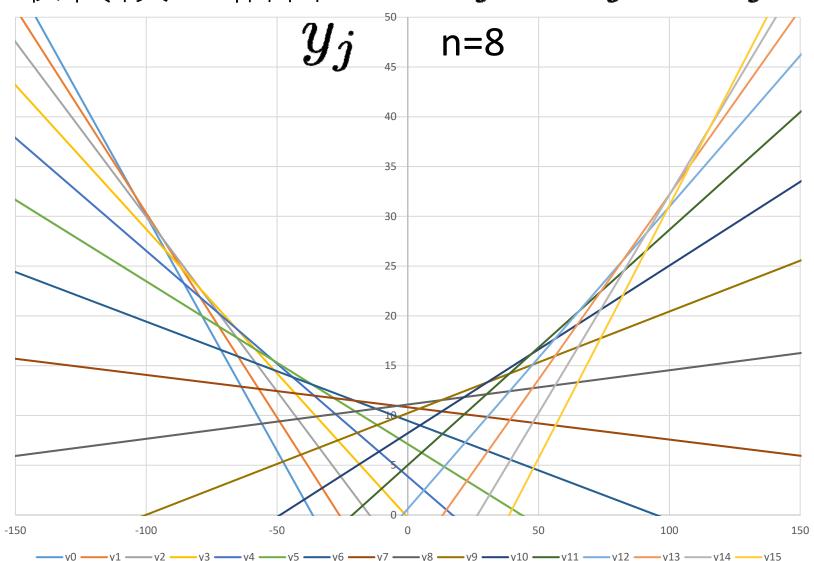


x vs. energy



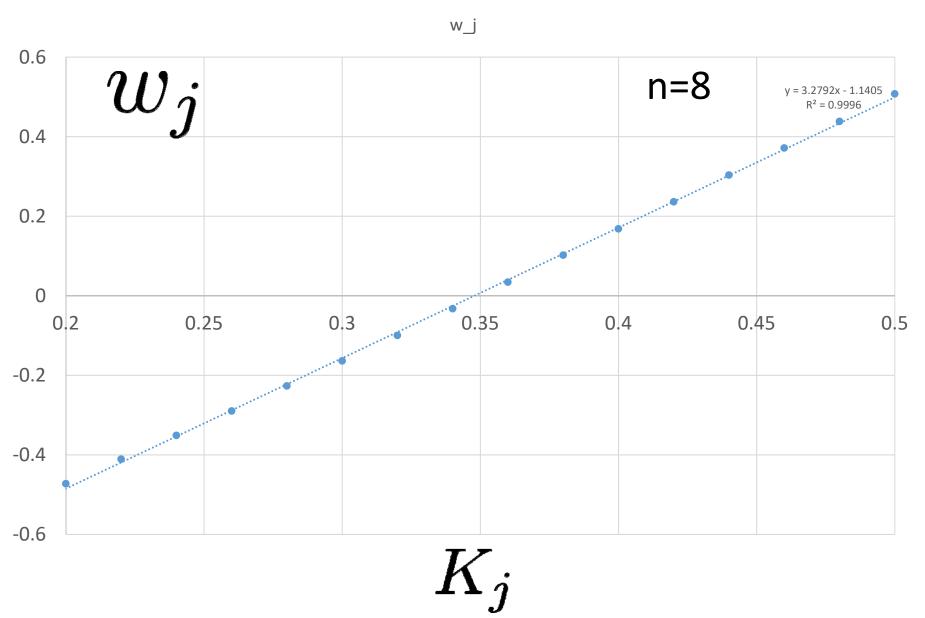
最終段全結合

$y_j = w_j x + b_j$

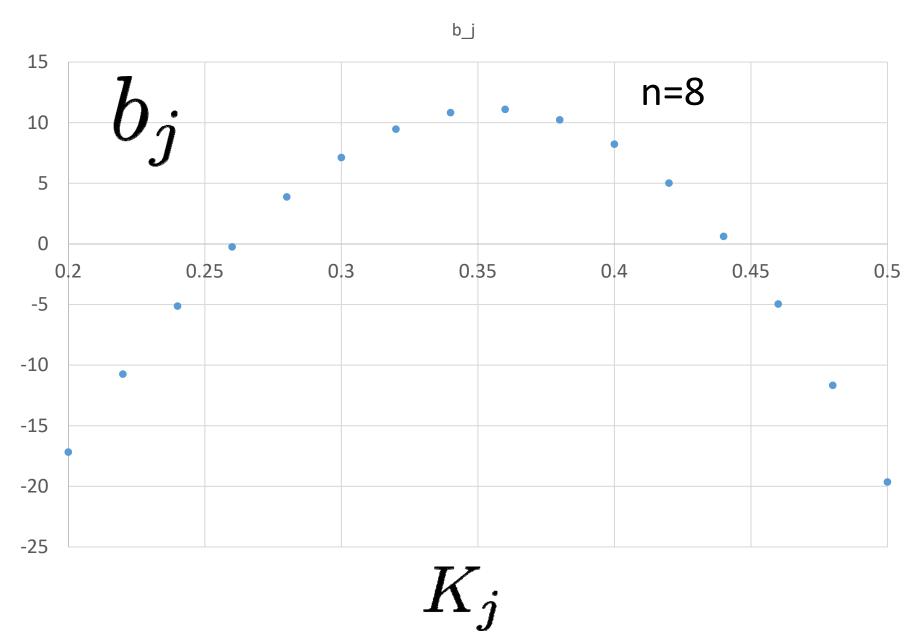


150 **X**

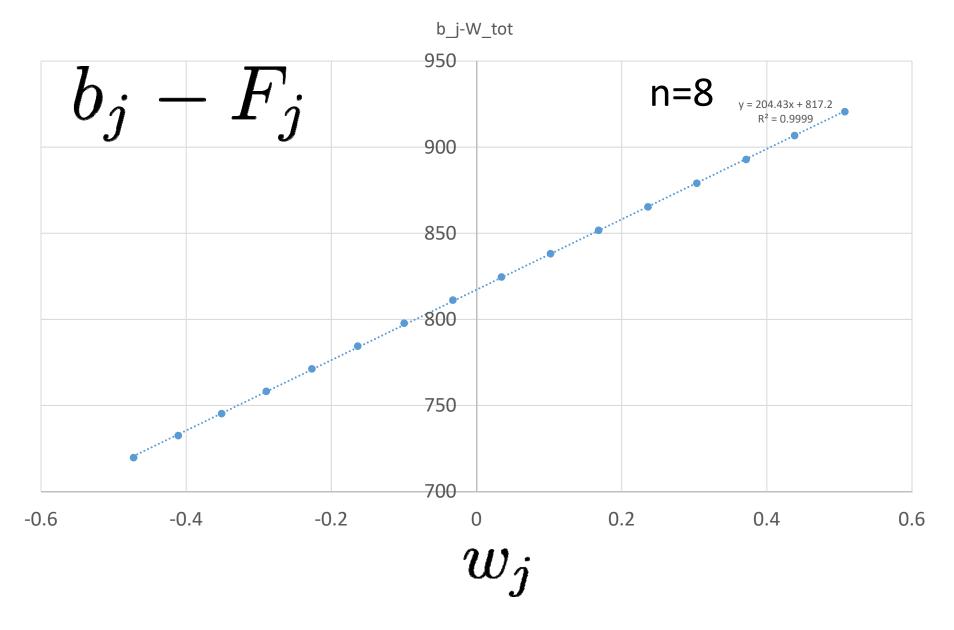
Machine Parameters: FC Weights



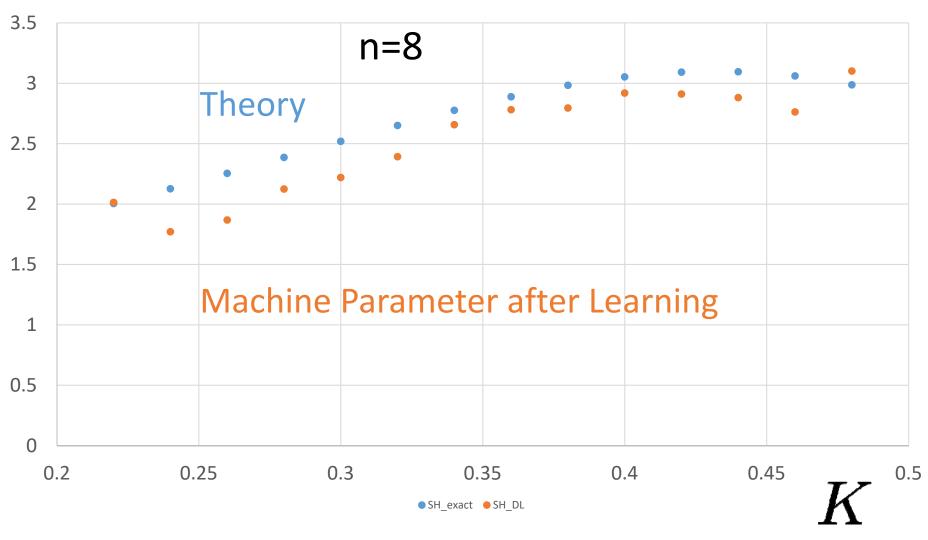
Machine Parameters: Bias



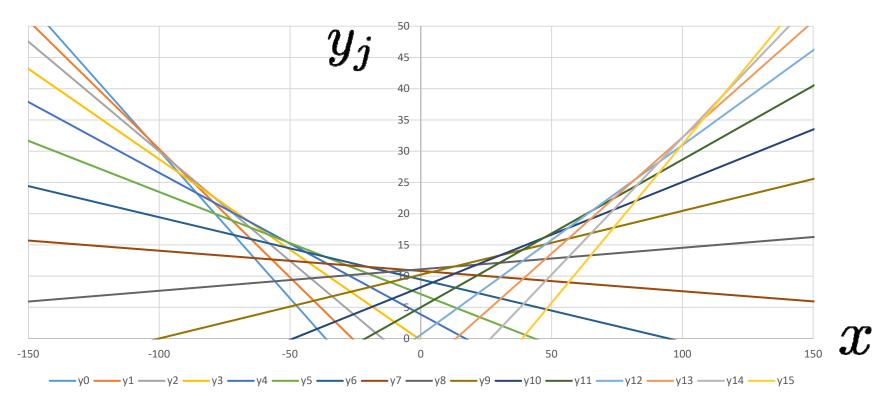
Bias — Free Energy vs. Weight



Specific Heat (Energy Fluctuation)



包絡線の正体 $y_j = w_j x + b_j$



$$y_j = -K_j E^* + F_j = -S_j$$
 +Energy の1次式

包絡線
$$=-S_{m j}(E^*)$$

包絡線
$$=-S_j(E^*)$$
 エントロピーの凸性 $w_j \propto \left| \frac{dS}{dE} \right|_j \propto K_j$

まとめ、あるいは、補足(蛇足)

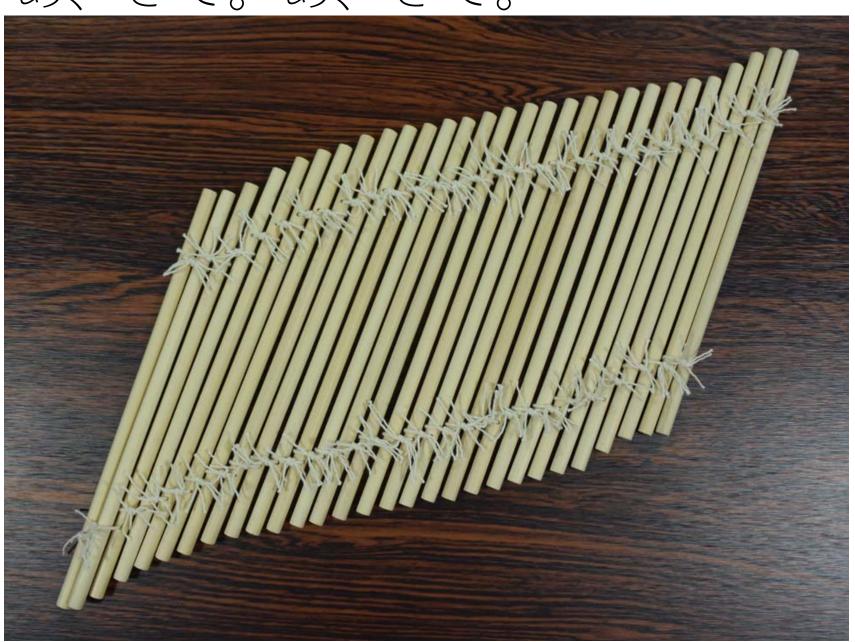
・ここまでの結論の本質的部分、すなわち、

完全最適解においては、w_jは温度の一次式、b_jはfree energy + 温度の一次式、となる

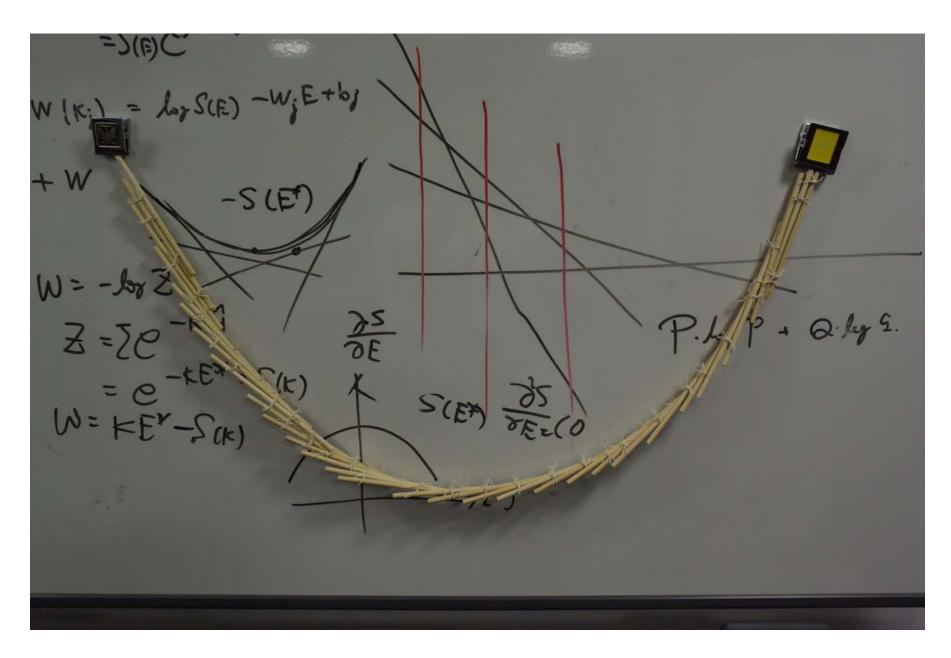
は、モデルの詳細、次元に依らない。更に、外部磁場を入れても成立する。 従ってw_jは相転移特異性を持つ物理量(秩序変数)とはならない。 この結論は、これまでの報告(Tanaka&Tomiya, Arai,Ohzeki&Tanaka)とは見解を異にする。

- ・もともと、「次元解析」的に、w_jは温度側の量であって、物理量側の量ではない。この理由からも、秩序変数にはなれない。
- ・完全最適解にはたくさんのcross entropy flat direction が存在するので、解は無数(多次元)にある。(1次式不定性、filter不定性・・・)
- ・いろいろな非現実的ハミルトニアンで機械を試すと面白い。
- ・くりこみ群との関係性については、結局、前に進んでいない。 RBMを用いた解析を進める必要があるだろう。(cf. Iso, Shiba&Yokoo)

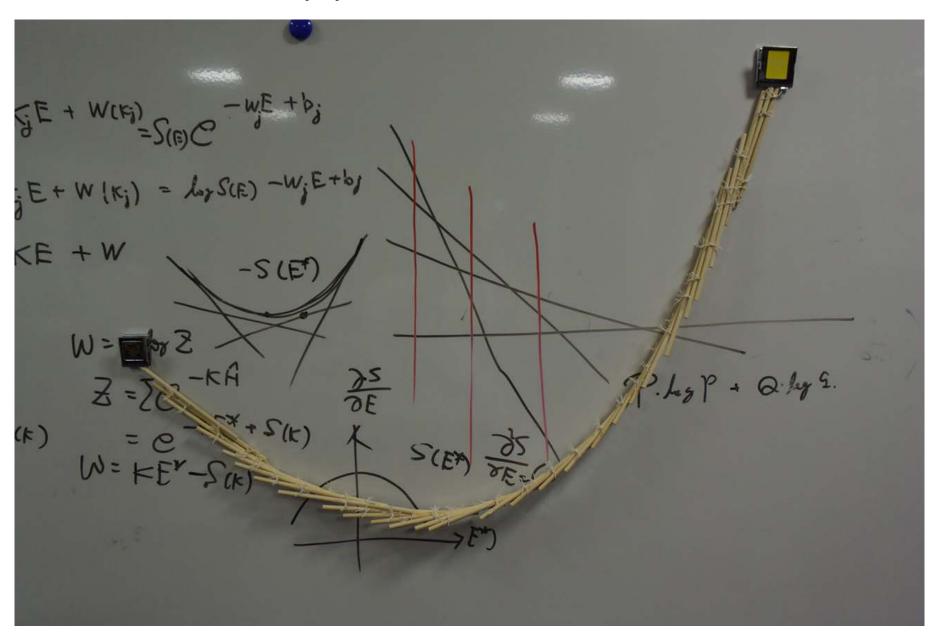
謝辞:藤井康弘,小内伸之介,堀祐輔,熊本真一郎の各氏との非常に有意義で刺激的な相互作用に、そして、深層学習の基本をご教示いただいた 安田宗樹氏に深く感謝する。 あ、さて。あ、さて。



Full Connection : 凸多角形



Cross Entropy Flat Direction



Entropy !!!

