User Tools

Site Tools


quantumespresso:respack

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
quantumespresso:respack [2020/08/17 18:56]
koudai [分極関数の計算]
quantumespresso:respack [2020/09/19 19:20]
koudai [計算の収束]
Line 8: Line 8:
     * https://www.cond-mat.de/events/correl11/      * https://www.cond-mat.de/events/correl11/ 
   * 日本語および英語のマニュアルでは使用例とその結果が充実しているので、初心者でも特に困ることはないと思います   * 日本語および英語のマニュアルでは使用例とその結果が充実しているので、初心者でも特に困ることはないと思います
-  * メモリを非常に多く使うため、普通の計算機ですとユニットセルに原子が10個くらいの物質が限界かと思われます。スパコンを使えば20個くらい行けるかもしれません +  * 計算は非常に重いので、普通の計算機ですとユニットセルに原子が10個くらいの物質が限界かと思われます。スパコンを使えば20個くらい行けるかもしれません 
   * f電子系やスピン軌道相互作用がある系には非対応   * f電子系やスピン軌道相互作用がある系には非対応
   * 擬ポテンシャルはノルム保存型のものにのみ対応しています。例えば以下のサイトからダウンロードできます   * 擬ポテンシャルはノルム保存型のものにのみ対応しています。例えば以下のサイトからダウンロードできます
Line 187: Line 187:
   * MPIのプロセス数は MPI_num_proc_per_qcomm * MPI_num_qcomm に一致させます   * MPIのプロセス数は MPI_num_proc_per_qcomm * MPI_num_qcomm に一致させます
   * 励起状態の計算になるので、多くの非占有バンドを取り入れる必要があります   * 励起状態の計算になるので、多くの非占有バンドを取り入れる必要があります
-  * この計算に一番時間がかかります 
   * バンドの数、エネルギーカットオフ、k点数、ユニットセルの体積に比例して非常に多くのメモリを消費します   * バンドの数、エネルギーカットオフ、k点数、ユニットセルの体積に比例して非常に多くのメモリを消費します
   * 観測される物理量としての光学応答を調べたければ通常のRPAを、相互作用パラメータを求めたければ制限RPAを使用します。それぞれ収束に必要なパラメータは異なるので注意してください。   * 観測される物理量としての光学応答を調べたければ通常のRPAを、相互作用パラメータを求めたければ制限RPAを使用します。それぞれ収束に必要なパラメータは異なるので注意してください。
Line 195: Line 194:
  
 &param_calc_int 内のパラメータが読み込まれます。 &param_calc_int 内のパラメータが読み込まれます。
-事前に制限RPA法(calc_chiqw で flg_cRPA=1)を使った計算が必要です。+事前に制限RPA法(calc_chiqw で flg_cRPA=1)を使ったすべてのq (flg_calc_type = 0) での計算が必要です。
  
   * 直接相互作用<code>   * 直接相互作用<code>
Line 209: Line 208:
 ====== 計算の収束 ======= ====== 計算の収束 =======
  
-分極関数の計算で収束させなければならないパラメータは次の2つです+分極関数の計算で収束させなければならないパラメータは次の3つです
  
   * k点数   * k点数
Line 218: Line 217:
  
   * k点数 ... SCF計算で全エネルギーを収束させたもの   * k点数 ... SCF計算で全エネルギーを収束させたもの
-  * Ecut_for_eps ... ecutwfcの1/20+  * Ecut_for_eps ... 2, 3, 4 Ryあたりで計算して様子を見る
  
-次の手順で収束させます(flg_calc_type=1としてEELSの結果をプロットして収束を確認するのが便利です)+次の手順で収束させます
  
-  - 多めの数のnbndでSCF計算を実行する(最初は非占有状態のバンドが50本くらいになるか、あるいはフェルミ準位より2,30eV程度上のバンドが入るくらいで試すと良い)+  - 多めの数のnbndでSCF計算を実行する(最初はフェルミ準位より2,30eV程度上のバンドが入るくらいで試すと良い)
   - (制限RPAの場合)相互作用の大きさを求めたい軌道のワニエ基底を計算する。   - (制限RPAの場合)相互作用の大きさを求めたい軌道のワニエ基底を計算する。
   - N_CALC_BAND に関して分極関数を収束させる。足りなくなったらnbndを増やしたSCF計算を再び行う   - N_CALC_BAND に関して分極関数を収束させる。足りなくなったらnbndを増やしたSCF計算を再び行う
quantumespresso/respack.txt · Last modified: 2024/02/03 18:42 by koudai