the origin of the peak

if each nucleon can interact only α -nucleons close by:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$

$$\alpha = \frac{4\pi}{3}r_{\text{int}}^3 \cdot \rho$$

B/A

A

if each nucleon can interact only α -nucleons close by:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$

a small nucleus

B/A

if each nucleon can interact only α -nucleons close by:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$

Coulomb interaction nuclear interaction *r*_{int} *r*_{int} *B*/A $\rightarrow B/A \propto A - 1$ A \rightarrow α +1

Superheavy elements

the island of stability (安定的島)

November, 2016

A complication

> Fusion of medium-heavy systems:

Fusion of heavy and super-heavy systems:

Heavy-ion fusion reactions for superheavy elements

Element 113 (RIKEN, K. Morita et al.)

70 Zn (Z=30) + 209 Bi (Z=83) $\longrightarrow ^{278}$ Nh (Z=113) + n

K. Morita et al., J. Phys. Soc. Jpn. 81('12)103201

only 3 events for 553 days experiment

Theory: Lagenvin approach

multi-dimensional extension of:

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

 γ : friction coefficient R(t): random force

Chemistry of superheavy elements

Are they here in the periodic table?
Does Nh show the same chemical properties as B, Al, Ga, In, and Tl?

relativistic effect : important for large Z

 $E = mc^2$

Solution of the Dirac equation (relativistic quantum mechanics) for a hydrogen-like atom:

$$E_{1S} = mc^2 \sqrt{1 - (Z\alpha)^2} \sim mc^2 \left(1 - \frac{(Z\alpha)^2}{2} - \frac{(Z\alpha)^4}{8} + \cdots \right)$$

relativistic effect

Famous example of relativistic effects: the color of gold

1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo

Gold looked like silver if there was no relativistic effects!

Chemistry of superheavy elements

How do the relativistic effects alter the periodic table for SHE? What is the color of superheavy elements?

 \rightarrow big open questions

Magic Numbers of Atoms and Nuclei : quantum mechanics of many-Fermion systems

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. Identical particles: Fermions and Bosons
- 2. Simple examples: systems with two identical particles
- 3. Pauli principle
- 4. Magic numbers

Introduction

atom = nucleus + many electrons nucleus = many protons + many neutrons

Quantum mechanics for those many Fermion systems?

two particles are identical: particle 1 and 2 cannot be distinguished $\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

$$[H, P_{12}] = 0$$

where

 $P_{12}\Psi(1,2) = \Psi(2,1)$ exchange operator

wave functions have to be simultaneous eigen-states of H and P_{12}

$$[H, P_{12}] = 0$$

where

 $P_{12}\Psi(1,2) = \Psi(2,1)$ exchange operator

wave functions have to be simultaneous eigen-states of H and P_{12}

Eigen-values of P_{12}

$$P_{12}\Psi(1,2) = \Psi(2,1)$$

$$(P_{12})^2\Psi(1,2) = P_{12}\Psi(2,1) = \Psi(1,2)$$

$$(P_{12})^{-} = 1$$

Natural Laws: each particle has a definite value of P_{12} (independent of e.g., experimental setup and temperature)

particles with a half-integer spin: $P_{12} = -1$ ("Fermion")
electrons, protons, neutrons,....

$$\Psi^{(-)}(1,2) = \frac{1}{\sqrt{2}} [\Psi(1,2) - \Psi(2,1)]$$

particles with an integer spin: $P_{12} = +1$ ("Boson")
photons, pi mesons,....

$$\Psi^{(+)}(1,2) = \frac{1}{\sqrt{2}} [\Psi(1,2) + \Psi(2,1)]$$

Simple examples: systems with two identical particles

Assume a spin-independent Hamiltonian for a two-particle system:

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V(r_1, r_2)$$

 \rightarrow separable between the space and the spin

$$\Psi(x_1, x_2) = \Psi_{\text{space}}(r_1, r_2) \cdot \Psi_{\text{spin}}$$

Simple examples: systems with two identical particles

Assume a spin-independent Hamiltonian for a two-particle system:

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V(r_1, r_2)$$

 \rightarrow separable between the space and the spin

$$\Psi(x_1, x_2) = \Psi_{\text{space}}(r_1, r_2) \cdot \Psi_{\text{spin}}$$

spin-zero bosons

no spin \rightarrow symmetrize the spatial part

$$\Psi(r_1, r_2) = \Psi_{\text{space}}(r_1, r_2) \\ = \frac{1}{\sqrt{2}} [\phi(r_1, r_2) + \phi(r_2, r_1)]$$

Simple examples: systems with two identical particles

$$\Psi(x_1, x_2) = \Psi_{\text{space}}(r_1, r_2) \cdot \Psi_{\text{spin}}$$

spin-1/2 Fermions $\Psi(x_1, x_2) = -\Psi(x_2, x_1)$

Spin part:

$$|S = 1\rangle = |\uparrow\uparrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), |\downarrow\downarrow\rangle \text{ symmetric}$$
$$|S = 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \text{ anti-symmetric}$$

spatial part: anti-symmetric for
$$S = 1$$

symmetric for $S = 0$
 $\Psi_{S=0}(x_1, x_2) = \frac{1}{\sqrt{2}} [\phi(r_1, r_2) + \phi(r_2, r_1)] | S = 0 \rangle$
 $\Psi_{S=1}(x_1, x_2) = \frac{1}{\sqrt{2}} [\phi(r_1, r_2) - \phi(r_2, r_1)] | S = 1 \rangle$

$$= |f(\theta)|^2 + |f(\pi - \theta)|^2 \pm f^*(\theta)f(\pi - \theta) \pm f(\theta)f^*(\pi - \theta)$$

+: for spatially symmetric, and – : for spatially anti-symmetric

¹⁶O + ¹⁶O elastic scattering

Phys. Rev. 123('61)878

¹⁶O + ¹⁶O elastic scattering

Pauli exclusion principle and Slater determinants

Pauli exclusion principle: two identical Fermion cannot take the same state

Let us assume:

$$H(1,2) = \frac{p_1^2}{2m} + V(r_1) + \frac{p_2^2}{2m} + V(r_2)$$
$$\equiv h_1 \qquad \equiv h_2$$

(no interaction between 1 and 2)

separation of variables \rightarrow a product form of wave function

$$\left(\frac{p^2}{2m} + V(r)\right)\phi_n(x) = \epsilon_n\phi_n(x); \quad x \equiv (r,\sigma)$$
$$\longrightarrow \quad \Psi^{(-)}(x_1, x_2) = \frac{1}{\sqrt{2}}[\phi_n(x_1)\phi_{n'}(x_2) - \phi_n(x_2)\phi_{n'}(x_1)]$$

Pauli exclusion principle and Slater determinants

Pauli exclusion principle: two identical Fermion cannot take the same state

$$H(1,2) = \frac{p_1^2}{2m} + V(r_1) + \frac{p_2^2}{2m} + V(r_2)$$

separation of variables \rightarrow a product form of wave function

$$\left(\frac{p^2}{2m} + V(r)\right)\phi_n(x) = \epsilon_n\phi_n(x); \quad x \equiv (r,\sigma)$$
$$\longrightarrow \quad \Psi^{(-)}(x_1, x_2) = \frac{1}{\sqrt{2}}[\phi_n(x_1)\phi_{n'}(x_2) - \phi_n(x_2)\phi_{n'}(x_1)]$$

(Pauli principle)

The lowest state of many-Fermion systems = put particles from the bottom of the potential well (Pauli principle) Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

r

Magic numbers

Hydrogen-like potential:

 $V(r) = -\frac{Ze^2}{r}$

$$E_n = -\frac{(Z\alpha)^2}{2n^2}mc^2$$

3S	3P	3D
2S	2P	

 $\alpha = \frac{e^2}{\hbar c} \sim \frac{1}{137}$

 $n = n_r + l + 1$

1**S**

Magic numbers			-	2	
Hydrogen-like pote	ntial:	V(r) =	$=-\frac{Z\epsilon}{r}$		
degeneracy = 2 (s	* (2 l +1) pin x l_z)		$E_n =$	$-\frac{(Z\alpha)^2}{2n^2}m^2$	c ²
3S [2] 3P	[6] 3D	[10]		$\alpha = \frac{e^2}{\hbar c} \sim \frac{1}{12}$	27
2S [2] 2P	[6]			$n = n_r + l + l$	- 1

Magic numbers	- ²
Hydrogen-like potential:	$V(r) = -\frac{Ze^2}{r}$
degeneracy = $2 * (2 l + 1)$ (spin x l_z)	$E_n = -\frac{(Z\alpha)^2}{2n^2}mc^2$
3S [2] 3P [6] 3D	$\alpha = \frac{e^2}{1} \sim \frac{1}{1}$
2S [2] 2P [6]	$hc 137$ $n = n_r + l + 1$
$\stackrel{\bullet}{\longrightarrow} He$ 1S [2]	

Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

He

1S [2]

degeneracy = 2 * (2 *l* + 1) V_{ee} 3S [2] 3P [6] 3D [10] 2S [2] 2P [6] Ne $E_n = -\frac{(Z\alpha)^2}{2n^2} mc^2$ $\alpha = \frac{e^2}{\hbar c} \sim \frac{1}{137}$ $n = n_r + l + 1$ Magic numbers Hydrogen-like potential: $V(r) = -\frac{Ze^2}{r}$

Periodic Table of elements

Magic numbers

similar magic numbers also in atomic nuclei

Extra binding for N or Z = 2, 8, 20, 28, 50, 82, 126 (magic numbers)

 $\square > Very stable$ ${}^{4}_{2}He_{2}, {}^{16}{}_{8}O_{8}, {}^{40}{}_{20}Ca_{20}, {}^{48}{}_{20}Ca_{28}, {}^{208}{}_{82}Pb_{126}$

Extra binding for N or Z = 2, 8, 20, 28, 50, 82, 126 (magic numbers)

 $\square > Very stable$ ${}^{4}_{2}He_{2}, {}^{16}_{8}O_{8}, {}^{40}_{20}Ca_{20}, {}^{48}_{20}Ca_{28}, {}^{208}_{82}Pb_{126}$

 $V_{ls}(r) \boldsymbol{l} \cdot \boldsymbol{s}$

Lucky accident for the origin of lie

Atomic magic numbers electron #: 2, 10, 18, 36, 54, 86

参考:望月優子 ビデオ「元素誕生の謎にせまる」

Nuclear magic numbers proton # or neutron # 2, 8, 20, 28, 50, 82, 126

 \Rightarrow e.g., ${}^{16}_{8}O_{8}$ (double magic)

many oxygen nuclei:
 produced during
 nucleosynthesis

oxygen: chemically active

several complex chemical reactions, leading to the birth of life

http://rarfaxp.riken.go.jp/~motizuki/contents/genso.html

Everything is made from atoms.

Nuclear Physics is important for many things. Nuclei have very rich nature.

Nuclear Physics is interesting!

