芯核+2核子系の共鳴状態

- ~ 2核子放出崩壊現象~
 - -2陽子放出崩壊
 - 一2中性子放出崩壊

クーロン分解と2核子放出崩壊

クーロン分解

2核子放出崩壊

→ よりクリーンな情報?

「正真正銘の」2核子放出崩壊

「正真正銘の」2核子放出崩壊

連続的な2核子放出(1核子放出が2回起きる)

「正真正銘の」2核子放出崩壊

連続的な2核子放出 (1核子放出が2回起きる)

もしZが偶数だと

直接 (Z+2,N) から (Z,N) に遷移

「正真正銘の」2核子放出崩壊

寿命が十分長ければ(例えば 10⁻¹⁴ 秒以上) 「放射性」2陽子放出崩壊 V.I. Goldansky, Nucl. Phys. 19 ('60) 482

(類似の現象)

Kamland-ZEN

理論的予言: V.I. Goldansky, Nucl. Phys. 19 ('60) 482 Y.B. Zel'dovich, Sov. Phys. JETP 11 ('60) 812

最初の実験的観測:

⁴⁵Fe 核: M. Pfutzner et al., Euro. Phys. J. A14 ('02) 279 J. Giovinazzo et al., PRL 89 ('02) 102501

*6Be の2陽子放出崩壊の最初の観測は 1966 年。 ただし、τ = 7.15 (47) x 10⁻²¹ 秒なので、「放射性」 崩壊とは言えない。

B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71 ('08) 046301

理論的予言: V.I. Goldansky, Nucl. Phys. 19 ('60) 482 Y.B. Zel'dovich, Sov. Phys. JETP 11 ('60) 812

最初の実験的観測:

45Fe 核: M. Pfutzner et al., Euro. Phys. J. A14 ('02) 279 J. Giovinazzo et al., PRL 89 ('02) 102501

B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71 ('08) 046301

その後の45Fe 核の実験

ガス・チェンバーの中 を走らせて CCD カメラ で写真をとる

角度分布の解析: $p^2 \sim 30\%$, $f^2 \sim 70\%$ の三体模型計算 とよく合う

K. Miernik et al., PRL 99 ('07) 192501

ただし、

- ✓ 何故ふた山構造になるのか
- ✓ 何故前方ピークになるのかなどはよくわかっていない (そのような議論をあまり見かけない)

⁶Be と ⁴⁵Fe で全く 違う分布

→ 理由は議論され ていない

(クーロン三体系の計算 が大変であまり計算をす る人がいない)

実験データ

L.V. Grigorenko et al., PLB677 ('09) 30

2核子放出崩壊におけるダイ・プロトン相関の効果

T. Oishi, K.H., and H. Sagawa, PRC90 ('14) 034303

非束縛核にダイプロトン相関があると、2陽子放出崩壊にどのような 影響を及ぼすのか?

考察: 運動量空間でのダイ・ニュートロン/ダイ・プロトン相関

$$\Psi(\mathbf{r},\mathbf{r}') = \alpha \Psi_{ee}(\mathbf{r},\mathbf{r}') + \beta \Psi_{oo}(\mathbf{r},\mathbf{r}') \longrightarrow \theta_r = 0:$$
 增大

─→ フーリエ変換

$$\tilde{\Psi}(\mathbf{k}, \mathbf{k}') = \int e^{i\mathbf{k}\cdot\mathbf{r}} e^{i\mathbf{k}'\cdot\mathbf{r}'} \Psi(\mathbf{r}, \mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

$$e^{i\boldsymbol{k}\cdot\boldsymbol{r}} = \sum_{l} (2l+1)i^{l} \dots \longrightarrow i^{l} \cdot i^{l} = i^{2l} = (-)^{l}$$

$$\tilde{\Psi}(\mathbf{k}, \mathbf{k}') = \alpha \tilde{\Psi}_{ee}(\mathbf{k}, \mathbf{k}') - \beta \tilde{\Psi}_{oo}(\mathbf{k}, \mathbf{k}') \longrightarrow \theta_{\mathbf{k}} = \pi : \mathbf{\sharp} \mathbf{t}$$

*不確定性関係の観点からも理解可

座標空間での2粒子密度:

運動量空間での2粒子密度:

2粒子放出崩壊への帰結

実際にこのようになっているのか? → 時間発展の方法で確かめる。

時間発展法による量子トンネル崩壊の記述

時間発展法による量子トンネル崩壊の記述

時間発展法による2陽子放出崩壊の記述

$$H = \frac{p_1^2}{2\mu} + \frac{p_2^2}{2\mu} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{p_1 \cdot p_2}{A_{cm}}$$

① $V_{nC}(r) \rightarrow V_{nC}^{\text{mod}}(r)$ としてポテンシャル内部に閉じ込められた波束をつくる。

時間発展法による2陽子放出崩壊の記述

$$H = \frac{p_1^2}{2\mu} + \frac{p_2^2}{2\mu} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{p_1 \cdot p_2}{A_{cm}}$$

- ① $V_{nC}(r) \rightarrow V_{nC}^{mod}(r)$ としてポテンシャル内部に閉じ込められた波束をつくる。
- ② t = 0 で $V_{nC}^{\text{mod}}(r) \rightarrow V_{nC}(r)$ と戻し、 波束の時間発展をモニターする。

T座標のプロットとV座標の プロットを組合せ →崩壊のダイナミックス

⁶Be → ⁴He + p + p 崩壊への適用

T. Oishi, K.H., and H. Sagawa, PRC90 ('14) 034303

中間状態(5Li)の幅が大きいものの、「正真正銘」の2陽子崩壊 に近い状況

初期波動関数

一粒子ポテンシャルを変形させて2陽子を閉じ込める

密度分布の偏り =ダイ・プロトン相関

時間発展

 $\Psi(\mathbf{r}_1, \mathbf{r}_2; t) = C(t)\Psi_0(\mathbf{r}_1, \mathbf{r}_2) + \Psi_d(\mathbf{r}_1, \mathbf{r}_2; t)$ として $\Psi_d(t)$ に関する密度分布をプロット

時間発展

ダイ・プロトン放出 +分解

> 相関ありの 三体崩壊

時間発展

この予想通りの2陽子放出

ダイ・プロトン相関の果たす役割

- $\checkmark p^2, f^2, h^2$ の配位のみ取り入れる \rightarrow 奇数角運動量のみ
- ✓ pp 間の引力を強めて Q 値が同じになるようにする (V_{cp} は同じ)

初期分布

:対称的な分布(ダイ・プロトン相関なし)

correlated な成分と anti-correlated な成分の両方 (連続的放出が主成分)

l = odd に限定した計算は 崩壊幅を過小評価

> ✓ダイ・プロトン的な 成分が小

√ s² 成分が入って
いない

対相関の果たす役割

 $v_{pp} = 0$ とし、Q 値を再現するように一粒子ポテンシャルを深くする

純粋な1陽子放出の連続

V_{cp} を変化させて Q_{2p} を変える

対相関により崩壊幅が減少する

同じ Q_{2p}

- → pairing なしの方が 深い核力ポテンシャル (低い障壁)
- → 崩壊幅が大きくなる

実験データとの比較 →より長時間の時間発展が必要

Grigorenko によると、R~ 10⁵ fm くらいまでとらないと収束しない (長距離クーロン力のため) ← 計算上挑戦的課題

L.V. Grigorenko et al., PLB677 ('09) 30

2中性子放出崩壊現象

R.J. Charity, Eur. Phys. J. Plus 131 ('16) 63

²⁶O 核の2中性子放出崩壊

- E. Lunderbert et al., PRL108 ('12) 142503 (MSU)
- C. Caesar et al., PRC88 ('13) 034313 (GSI)
- Y. Kondo et al., PRL116 ('16) 102503 (RIKEN)

$$E(^{26}O) = 150^{+50}_{-150} \text{ keV (MSU)}$$
 $= 749 \text{ keV}$
 $= 68\%/95\% \text{ conf. level)}$
 $= 18 + -3 + -4 \text{ keV (RIKEN)}$

E. Lunderberg et al., PRL108 ('12) 142503

C. Caesar et al., PRC88 ('13) 034313

Y. Kondo et al., PRL116('16)102503

$$E_{\text{decay}} = 18 + / - 3 + / - 4 \text{ keV}$$

2体部分系(25O)の新スペクトル

Y. Kondo et al., PRL116('16)102503

$$E = +770^{+20}_{-10} \text{ keV}$$

 $\Gamma = 172(30) \text{ keV}$

$$E = +749 (10) \text{ keV}$$

 $\Gamma = 88 (6) \text{ keV}$

n+24O 模型と矛盾しない値

3体模型による 26O の2中性子放出崩壊の解析

K.H. and H. Sagawa, PRC89 ('14) 014331; PRC93 ('16) 034330

cf. 実験: 27 F (201 MeV/u) + 9 Be $\rightarrow {}^{26}$ O $\rightarrow {}^{24}$ O + n + n

²⁷Fの基底状態(束縛)

FSI → グリーン関数法 ← 連続状態

3体模型による 26O の2中性子放出崩壊の解析

崩壊スペクトル:

$$\frac{dP}{dE} = \int dE' |\langle \Psi_{E'} | \Phi_0 \rangle|^2 \delta(E - E') = \frac{1}{\pi} \Im \langle \Phi_0 | \frac{1}{H - E - i\eta} | \Phi_0 \rangle$$

cf. ボロミアン核のクーロン励起

$$\frac{dB(E1)}{dE} \propto \sum_{f} \left| \langle \Psi(E_f) | \hat{D}_0 | \Psi_0 \rangle \right|^2 \delta(E - E_f) = \frac{1}{\pi} \Im \langle \Psi_0 | \hat{D}_0^{\dagger} G(E) \hat{D}_0 | \Psi_0 \rangle$$

* 今は自発的な崩壊なので外場 D_0 が不要

相関のあるグリーン関数:

$$G(E) = G_0(E) - G_0(E)v(1 + G_0(E)v)^{-1}G_0(E)$$

← 連続状態の効果

= G(E)

無相関グリーン関数

$$G_0(E) = \sum_{j_1, l_1} \sum_{j_2, l_2} \int de_1 de_2 \frac{|\psi_1 \psi_2\rangle \langle \psi_1 \psi_2|}{e_1 + e_2 - E - (\eta)} \longrightarrow \text{small, finite } \eta$$

崩壊エネルギー・スペクトル

K.H. and H. Sagawa,

- PRC89 ('14) 014331
- PRC93('16)034330

リファレンス状態: ²⁷F の束縛 (d_{3/2})² 状態

²⁶O がどのように 作られたかには あまり依存しない

dP/dE: ²⁶O の3体共鳴 の性質

$$\frac{dP}{dE} = (\langle \Psi_E | \Phi_0 \rangle)^2 = \int dE' (\langle \Psi_{E'} | \Phi_0 \rangle)^2 \, \delta(E - E')$$

崩壊エネルギー・スペクトル

K.H. and H. Sagawa,

- PRC89 ('14) 014331
- PRC93('16)034330

理研のデータ: E ~ 1.28+0.11_{-0.08} MeVに ¬ 明確なピーク

3体模型計算:

(MeV) $\frac{1.498}{1.282} = \frac{(d_{3/2})^2}{2^+}$ $\Gamma = 0.12 \text{ MeV}$

0.018 ----- 0+

K.H. and H. Sagawa, PRC90('14)027303; PRC, 93('16) 034330.

<u>ボックス近似による2粒子密度:26Oにおけるダイニュートロン相関</u>

放出2中性子の角度相関

遷移振幅

$$G = (H - E - i\eta)^{-1} = (H_0 + v - E - i\eta)^{-1}$$

 $G_0 = (H_0 - E - i\eta)^{-1}$

$$\Im[G] = (1 + G_0^{\dagger}v)^{-1} \Im[G_0] (1 + vG_0)^{-1}$$

$$\frac{dP}{dE} = \frac{1}{\pi} \Im \langle \Phi_0 | G | \Phi_0 \rangle
= \frac{1}{\pi} \langle \Phi_0 | (1 + G_0^{\dagger} v)^{-1} \Im [G_0] (1 + vG_0)^{-1} | \Phi_0 \rangle
= \frac{1}{\pi} \Im \sum_f \frac{|\langle \psi_f^{(0)} | (1 + vG_0)^{-1} | \Phi_0 \rangle|^2}{E_f^{(0)} - E - i\eta} = \frac{1}{\pi} \Im \sum_f \frac{|M_{fi}|^2}{E_f^{(0)} - E - i\eta}$$

$$M_{fi} = \langle \psi_f^{(0)} | (1 + vG_0)^{-1} | \Phi_0 \rangle$$

放出2中性子の角度相関

遷移振幅

$$G = (H - E - i\eta)^{-1} = (H_0 + v - E - i\eta)^{-1}$$

$$G_0 = (H_0 - E - i\eta)^{-1}$$

$$\frac{dP}{dE} = \frac{1}{\pi} \Im \langle \Phi_0 | G | \Phi_0 \rangle
= \frac{1}{\pi} \Im \sum_{f} \frac{|\langle \psi_f^{(0)} | (1 + vG_0)^{-1} | \Phi_0 \rangle|^2}{E_f^{(0)} - E - i\eta} = \frac{1}{\pi} \Im \sum_{f} \frac{|M_{fi}|^2}{E_f^{(0)} - E - i\eta}$$

$$M_{fi} = \langle \psi_f^{(0)} | (1 + vG_0)^{-1} | \Phi_0 \rangle$$

$$\frac{d^2P}{d\hat{k}_1 d\hat{k}_2} \sim \int k_1^2 dk_1 k_2^2 dk_2 |f(k_1, k_2)|^2$$

放出2中性子の角度相関

K.H. and H. Sagawa, PRC89 ('14) 014331; PRC93 ('16) 034330.

$$P(\theta) \sim |\langle k_1 k_2 | (1 + vG_0)^{-1} | \Phi_0 \rangle|^2$$

相関 → 逆方向 (θ = 180度)への放出が増大

主な寄与: 3体波動関数のうち s波及び p波の成分(遠心力障壁の影響がゼロまたは小さい)

*高いl の成分: 遠心カポテンシャルのために大きく抑制 ($E_{decay} \sim 18 \text{ keV}, e_1 \sim e_2 \sim 9 \text{ keV}$)

主な寄与: 3体波動関数のうち s波及び p波の成分 (遠心力障壁の影響がゼロまたは小さい)

最後に:この集中講義全体のまとめ

- 1. イントロダクション:中性子過剰核の物理 この講義で何をカバーするのか(概観)
- 2. 1粒子ハロー核の性質 角運動量とハロー現象
- 3. 非束縛核と共鳴現象 ポテンシャル共鳴の一般論 1陽子放出
- 4. 変形した不安定核 結合チャンネル系の束縛状態と共鳴状態
- 5. 原子核における対相関と2中性子ハロー核 ボロミアン核、ダイニュートロン相関
- 6.3体模型による記述
- 7. 2核子放出崩壊現象(2陽子放出、2中性子放出)
- ハドロン分野のM1やM2が聞いても面白いと思える講義(にしたい)

