# ドリップ線の外側の原子核: 一粒子共鳴状態の性質

- ードリップ線の外側の原子核
- ー共鳴状態の一般論
- ー共鳴状態の様々な記述法
- 一陽子放出崩壊



横軸を中性子の数、縦軸を陽子の数にとった2次元マップ (■は地球上に存在する安定な原子核)

#### 核図表



横軸を中性子の数、縦軸を陽子の数にとった2次元マップ (■は地球上に存在する安定な原子核)

- Z ~20くらいまでは N~Z
- Z > 20 になると N > Z

p-p間力 p-n間力 n-n間力

どれも同じ強さ?

n-n 束縛系なし p-p 束縛系なし

n-p 束縛系あり(重陽子)

→ pn 間の引力がより強い (量子力学:3次元ポテンシャルの束縛状態 ←引力が強い場合のみ) •「Z~20くらいまでは N~Z」になる理由(原子核の対称エネルギー)

#### 2つの理由

- 1. 中性子間力や陽子間力よりも中性子一陽子間力の方が強い cf. 重陽子
- 2. パウリ原理



両方とも(同じ A = N+Z であれば) N~Z にした方が得する

• それでは、何故「Z > 20 では N > Z」となるか?

#### クーロンカの影響

pp, pn, nn:核力(強い引力)

pp: +クーロンカ(斥カ)



中性子の数を増やして引力をかせぐ (クーロン斥力を打ち消す)

対称エネルギーでは損をするが、トータルとしては得をする。

#### 核図表

$$^{236}U \rightarrow ^{141}Cs + ^{93}Rb + 2n$$
 (核分裂)



- ✓ 原発の問題
- ✓ 中性子過剰核を生成する1つの有力な方法

## 束縛エネルギーの実験データ



## もし、それぞれの核子が近くのα個の粒子とだけ相互作用するとしたら:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$





#### もし、それぞれの核子が近くのα個の粒子とだけ相互作用するとしたら:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$



$$\alpha = \frac{4\pi}{2} r_{\rm int}^3 \cdot \rho$$

小さな原子核だと



$$\rightarrow B/A \propto A - 1$$



#### もし、それぞれの核子が近くのα個の粒子とだけ相互作用するとしたら:

$$B \sim \alpha A/2 \longrightarrow B/A \sim \alpha/2 \text{ (const.)}$$



$$\alpha = \frac{4\pi}{2}r_{\rm int}^3 \cdot \rho$$

## 小さな原子核だと



$$\rightarrow B/A \propto A - 1$$







# ドリップ線の外側の原子核: 一粒子共鳴状態の性質

- ードリップ線の外側の原子核
- ー共鳴状態の一般論
- 一共鳴状態の様々な記述法
- 一陽子放出崩壊

# 酸素同位体のドリップ線

#### 酸素原子核 (Z=8)

- ✓ 安定同位体: <sup>16</sup>O (99.757%), <sup>17</sup>O (0.038%), <sup>18</sup>O (0.205%)
- ✓ <sup>24</sup>O の発見: A.G. Artukh et al., PL32B (1970) 43



<sup>40</sup>Ar の破砕 M. Langevin et al., PL150B ('85) 71

250 は不検出



D. Guillemaud-Mueller et al., PRC41 ('90) 937

26O は不検出



H. Sakurai et al.,

PLB448 ('99) 180

28O は不検出



酸素の中性子ドリップ線は 24O で確定。25,26,28O は非束縛。

#### 25O はどのように見えるのか?

22O 23O 24O 25O 26O

 $^{26}_{9}F_{17}$ から1つ陽子を抜いて  $^{25}_{8}O_{17}$ を 生成  $\rightarrow$  1中性子を放出して崩壊





Y. Kondo et al., PRL116 ('16) 102503

1d3/2 の「準束縛」状態と解釈することができる



実際のポテンシャル

束縛状態はE < 0の領域のみ



実際のポテンシャル

束縛状態はE < 0の領域のみ

このようにポテンシャルを 変更すると

*→ E>0* でも束縛状態が できる

= 準束縛(準安定)状態







束縛状態 = 無限の寿命

実際には有限の寿命で 障壁をトンネルし崩壊

「準束縛(準安定)状態」





## ガモフ状態





トンネル効果で波動関数が
沁み出し、外向きの波として崩壊

⇒ エネルギーを複素数にしなければならない:

$$E
ightarrow E_R - irac{\Gamma}{2}$$
  
共鳴エネルギー

共鳴幅

# ガモフ状態





 $E
ightarrow E_R - irac{\Gamma}{2}$ 

トンネル効果で波動関数が
沁み出し、外向きの波として崩壊

$$P_{\text{sur}}(t) \equiv |\langle \psi(0)|\psi(t)\rangle|^2$$

$$= |\langle \psi(0)|e^{-iHt/\hbar}|\psi(0)\rangle|^2$$

$$= |\langle \psi(0)|e^{-i(E_R-i\Gamma/2)t/\hbar}|\psi(0)\rangle|^2$$

$$= e^{-\Gamma t/\hbar} \longrightarrow \hbar/\Gamma$$
が準安定状態の寿命

まず実際の現象から

陽子非束縛核 16gF7

<sup>17</sup><sub>10</sub>Neから1つ陽子を抜いて <sup>16</sup><sub>9</sub>Fを生成 → 崩壊スペクトル



R.J. Charity, Eur. Phys. J. Plus 131 ('16) 63

# <sup>15</sup>O + p 弾性散乱の断面積



 $\theta_{\rm cm} = 180 {\rm deg.}$ 

I. Stefan et al., PRC90('14) 014307

共鳴エネルギーで弾性散乱の断面積が増大(共鳴散乱)

次に散乱理論

#### 自由粒子の運動:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - E\right)\psi(r) = 0$$

#### ✔解:

$$\psi(\mathbf{r}) \propto j_l(kr) Y_{lm}(\hat{\mathbf{r}}) \chi_{m_s}$$

#### ✓遠方での振る舞い:

$$j_l(kr) \rightarrow \frac{1}{kr}\sin(kr - \frac{l\pi}{2})$$

$$= \frac{-1}{2ikr} \left(e^{-i(kr - l\pi/2)} - e^{i(kr - l\pi/2)}\right)$$

## 自由粒子の運動:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - E\right)\psi(r) = 0$$

#### ✓解:

$$\psi(\mathbf{r}) \propto j_l(kr) Y_{lm}(\hat{\mathbf{r}}) \chi_{m_s}$$

#### ✓遠方での振る舞い:

$$j_l(kr) \rightarrow \frac{1}{kr}\sin(kr - \frac{l\pi}{2})$$

$$= \frac{-1}{2ikr} \left(e^{-i(kr - l\pi/2)} - e^{i(kr - l\pi/2)}\right)$$



## 次に散乱理論

#### ポテンシャル中の運動:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(r) - E\right)\psi(r) = 0$$

#### ✓解:

$$\psi(\mathbf{r}) \propto R_l(r) Y_{lm}(\hat{\mathbf{r}}) \chi_{m_s}$$

#### ✓遠方での振る舞い:

$$R_l(r) \rightarrow \frac{-1}{2ikr} \left( e^{-i(kr-l\pi/2)} -S_l(E) e^{i(kr-l\pi/2)} \right)$$

\* 吸収がなければ |S<sub>I</sub>(E)| = 1



# 自由粒子の運動:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - E\right)\psi(r) = 0$$

$$\psi(\mathbf{r}) \propto j_l(kr) Y_{lm}(\hat{\mathbf{r}}) \chi_{m_s}$$

# ✓遠方での振る舞い:

$$j_l(kr) \rightarrow \frac{1}{kr}\sin(kr - \frac{l\pi}{2})$$

$$= \frac{-1}{2ikr} \left(e^{-i(kr - l\pi/2)} - e^{i(kr - l\pi/2)}\right)$$



# 次に散乱理論

## <u>ポテンシャル中の運動:</u>

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(r) - E\right)\psi(r) = 0$$

✓解:

$$\psi(\mathbf{r}) \propto R_l(r) Y_{lm}(\hat{\mathbf{r}}) \chi_{m_s}$$

✓遠方での振る舞い:

$$R_l(r) \rightarrow \frac{-1}{2ikr} \left( e^{-i(kr-l\pi/2)} -S_l(E) e^{i(kr-l\pi/2)} \right)$$

\* 吸収がなければ |S<sub>l</sub>(E)| = 1

位相のずれ (phase shift)

$$S_l(E) = e^{2i\delta_l(E)}$$



$$R_l(r) 
ightarrow -rac{e^{i\delta_l(E)}}{kr} ext{sin}(kr-l\pi/2+\delta_l(E))$$

#### 共鳴があると位相のずれはどう振る舞う?



#### 共鳴があると位相のずれはどう振る舞う?





$$rR_{jl}(r) \rightarrow \sqrt{\frac{2m}{\pi k \hbar^2}} \sin\left(kr - \frac{l\pi}{2} + \delta_{jl}(E)\right); \quad \int d\mathbf{r} \psi_E(\mathbf{r}) \psi_{E'}^*(\mathbf{r}) = \delta(E - E')$$



$$rR_{jl}(r) \rightarrow \sqrt{\frac{2m}{\pi k \hbar^2}} \sin\left(kr - \frac{l\pi}{2} + \delta_{jl}(E)\right); \qquad \int d\mathbf{r} \psi_E(\mathbf{r}) \psi_{E'}^*(\mathbf{r}) = \delta(E - E')$$



$$rR_{jl}(r) \rightarrow \sqrt{\frac{2m}{\pi k \hbar^2}} \sin\left(kr - \frac{l\pi}{2} + \delta_{jl}(E)\right); \quad \int d\mathbf{r} \psi_E(\mathbf{r}) \psi_{E'}^*(\mathbf{r}) = \delta(E - E')$$



$$rR_{jl}(r) \rightarrow \sqrt{\frac{2m}{\pi k \hbar^2}} \sin\left(kr - \frac{l\pi}{2} + \delta_{jl}(E)\right); \quad \int d\mathbf{r} \psi_E(\mathbf{r}) \psi_{E'}^*(\mathbf{r}) = \delta(E - E')$$



$$rR_{jl}(r) \rightarrow \sqrt{\frac{2m}{\pi k \hbar^2}} \sin\left(kr - \frac{l\pi}{2} + \delta_{jl}(E)\right); \quad \int d\mathbf{r} \psi_E(\mathbf{r}) \psi_{E'}^*(\mathbf{r}) = \delta(E - E')$$



on-resonance:

波動関数は障壁の内側で 大きな振幅 off-resonance: 障壁の内側では振幅が 小さい



#### on-resonance:

波動関数は障壁の内側で 大きな振幅

#### 障壁内部の存在確率

$$P_{\mathsf{in}} \equiv \int_0^{r_b} r^2 dr \left| R_{jl}(r) \right|^2$$



 $^{26}_{9}F_{17}$ から1つ陽子を抜いて  $^{25}_{8}O_{17}$ を 生成  $\rightarrow$  1中性子を放出して崩壊



 $^{26}_{9}F_{17}$ から1つ陽子を抜いて  $^{25}_{8}O_{17}$ を 生成  $\rightarrow$  1中性子を放出して崩壊





 $^{26}_{9}F_{17}$ から1つ陽子を抜いて  $^{25}_{8}O_{17}$ を 生成  $\rightarrow$  1中性子を放出して崩壊









$$\frac{dP}{dE} = |\langle \Phi_{\text{ref}} | \Psi_E \rangle|^2 = \int dE' |\langle \Phi_{\text{ref}} | \Psi_{E'} \rangle|^2 \delta(E - E')$$

$$\rightarrow \frac{1}{\pi} Im \int dE' |\langle \Phi_{\text{ref}} | \Psi_{E'} \rangle|^2 \frac{1}{E' - E - i\eta}$$

Reference state:



$$= 1 / (H - E - i\eta) = G(E)$$

$$\lim_{\eta \to 0} \frac{1}{x - i\eta} = P\frac{1}{x} + i\pi\delta(x)$$

有限の η でも計算できる (数値計算上便利)

## ガモフ状態と散乱状態の関係

- ◆よく、「共鳴状態=S行列の極(ポール)」という言い方を聞くけど、 それはどういう意味?
- ◆どうしてS行列のポールが共鳴状態と関係しているの?

# ガモフ状態と散乱状態の関係



## 外向波境界条件

$$u_l(r) \to \mathcal{N} e^{i(kr-l\pi/2)}$$

$$E 
ightarrow E_R - i \frac{\Gamma}{2}$$

#### 散乱状態



## 散乱の境界条件

$$u_l(r) \rightarrow \mathcal{N}\left(e^{-i(kr-l\pi/2)} - S_l(E) e^{i(kr-l\pi/2)}\right)$$
 $S_l(E) = e^{2i\delta_l(E)}$ 

E: real

## ガモフ状態と散乱状態の関係

#### 散乱状態



## 散乱の境界条件

E: real

$$u_l(r) \rightarrow \mathcal{N}\left(e^{-i(kr-l\pi/2)}\right)$$
  
 $-S_l(E) e^{i(kr-l\pi/2)}$   
 $S_l(E) = e^{2i\delta_l(E)}$ 

もし、 $S_l(E)$  が発散するような E があれば、

$$u_l(r) \sim \widetilde{\mathcal{N}} e^{i(kr-l\pi/2)}$$

(外向波)

ただし、エネルギー E を複素平面へ解析接続しなければならない:

$$E
ightarrow E_R - irac{\Gamma}{2}$$



# Breit-Wigner の公式

S-行列が 
$$\epsilon=E_R-irac{\Gamma}{2}$$
 で極を持つとすると、

$$S(E) = e^{2i\delta_0(E)} \cdot \frac{E - \epsilon^*}{E - \epsilon} \qquad \longleftarrow |S(E)| = 1$$

 $\delta_0(E)$  は E のゆるやかな関数 (background phase shift)

## このとき、

$$S(E) = e^{2i\delta_0(E)} \cdot \frac{E - E_R - i\Gamma/2}{E - E_R + i\Gamma/2}$$
$$= e^{2i\delta_0(E)} \left( 1 - \frac{i\Gamma}{E - E_R + i\Gamma/2} \right)$$

## Breit-Wigner の公式

S-行列が 
$$\epsilon = E_R - i \frac{\Gamma}{2}$$
 で極を持つとすると、

$$S(E) = e^{2i\delta_0(E)} \cdot \frac{E - \epsilon^*}{E - \epsilon} \qquad \longleftarrow |S(E)| = 1$$

 $\delta_0(E)$  は E のゆるやかな関数 (background phase shift)

$$E - \epsilon^* = c e^{i\delta_r(E)}$$
 とすると、
$$S(E) = e^{2i\delta_0(E)} \cdot \frac{c e^{i\delta_r(E)}}{c e^{-i\delta_r(E)}} = e^{2i\delta_0(E)} e^{2i\delta_r(E)}$$

$$E - \epsilon^* = E - E_R - i\Gamma/2 = c e^{i\delta_r} = c(\cos \delta_r + i \sin \delta_r)$$

$$\longrightarrow \tan \delta_r = \frac{\sin \delta_r}{\cos \delta_r} = \frac{-\Gamma/2}{E - E_R}$$



$$\delta(E) = \delta_r(E) + \delta_0(E) = \tan^{-1}\left(\frac{\Gamma}{2(E_R - E)}\right) + \delta_0(E)$$

## Breit-Wigner の公式

# 幅が狭ければ、位相のずれが π/2 を切る時に共鳴



## Breit-Wigner formula:

$$\delta(E) = \tan^{-1} \frac{\Gamma}{2(E_R - E)} + \delta_0(E)$$

$$V_0 = -50 \text{ MeV}$$
  
 $R_0 = 1.27 * 200^{1/3} \text{ fm}$   
 $a = 0.67 \text{ fm}$   
 $\mu = 200 m_N / 201$ 

(note) ただし、幅が広いと π/2 とは限らない

$$\delta(E) = \tan^{-1} \frac{\Gamma}{2(E_R - E)} + \delta_0(E)$$

background phase shift



Gamow state: 
$$E = 6.01$$
 MeV  $\Gamma = 2.22$  MeV

# 井戸型ポテンシャルの例



波動関数の接続条件により S 行列が解析的に求まる:

$$U_l(E) = \frac{L_l(E) - S_l(E) + iP_l(E)}{L_l(E) - S_l(E) - iP_l(E)} e^{2i\phi_l}$$

$$L_{l} \equiv R \left(\frac{d}{dr}u_{l}(r)\right)_{r=R} \frac{1}{u_{l}(R)}$$

$$F_{l}(r) \equiv kr j_{l}(kr), \quad G_{l}(r) \equiv -kr n_{l}(kr)$$

$$F'_{l}(r) \equiv R \frac{dF_{l}}{dr}, \quad G'_{l}(r) \equiv R \frac{dG_{l}}{dr}$$

$$F'_{l}(r) \equiv R \frac{dF_{l}}{dr}, \quad G'_{l}(r) \equiv R \frac{dG_{l}}{dr}$$

$$F'_{l}(r) \equiv R \frac{dF_{l}}{dr}, \quad G'_{l}(r) \equiv R \frac{dG_{l}}{dr}$$

$$F'_{l}(r) \equiv R \frac{dF_{l}}{dr}, \quad G'_{l}(r) \equiv R \frac{dG_{l}}{dr}$$

$$e^{2i\phi_{l}} = \frac{G_{l}(R) - iF_{l}(R)}{G_{l}(R) + iF_{l}(R)}$$



井戸型ポテンシャルと Woods-Saxon ポテンシャル (a = 0.67 fm) の比較

K.H., H. Sagawa, S. Kanaya, A. Odahara, PTEP, in press (2019); arXiv: 1903.01634 (nucl-th)

$$U_l(E) = \frac{L_l(E) - S_l(E) + iP_l(E)}{L_l(E) - S_l(E) - iP_l(E)} e^{2i\phi_l}$$

幅が狭い時の近似式 (Bohr-Mottelson, Appendix 3F-2)

ポール・エネルギーの実部:  $L_l(E_r) - S_l(E_r) \sim 0$ 

$$U_l(E) = \left(1 - \frac{i\Gamma_l}{E - E_r + i\frac{\Gamma_l}{2}}\right) e^{2i\phi_l}$$

$$L_l(E) - S_l(E) \sim L_l(E_r) - S_l(E_r) - \frac{1}{\gamma_l^2} (E - E_r)$$
  
=  $-\frac{1}{\gamma_l^2} (E - E_r)$ 

$$\Gamma_l \equiv 2P_l \gamma_l^2$$



(点線:球ベッセル関数など のべき展開を用いて更に 簡単化)

## 変形核へも拡張可能

K.H., H. Sagawa, S. Kanaya, A. Odahara, PTEP, in press (2019); arXiv: 1903.01634 (nucl-th)

散乱問題:正の実数エネルギー(これが物理的な観測量)



複素エネルギー(または複素運動量)平面で実軸の近くの S 行列の極



極低エネルギーでの散乱を考える(従って s-wave のみ)

effective range expansion:

$$k \cot \delta(k) \sim -\frac{1}{a} + \frac{1}{2}r_ek^2 + \cdots$$

散乱長はE=0の束縛状態を作るときに正で発散



Woods-Saxon ポテンシャルで ポテンシャルの深さを変える

 $(R = 2.736 \text{ fm}, a_0 = 0.67 \text{ fm})$ 

# 散乱長の物理的意味

半径 R の井戸型ポテンシャル:

$$a = R \left( 1 - \frac{\tan \kappa R}{\kappa R} \right)$$

$$\kappa = \sqrt{\frac{2mV_0}{\hbar^2}}$$

 $u(r) = A \sin(\kappa r) \quad (r < R)$ 

$$f(r) \equiv u(R) + u'(R)(r - R)$$

$$\text{if } r = a \, \text{Te} f(a) = 0.$$

すなわち、散乱長は r = R で波動関数を一次近似したときに、その直線が x 軸を切る点。



極低エネルギーでの散乱を考える(従って s-wave のみ)

effective range expansion:

$$k \cot \delta(k) \sim -\frac{1}{a} + \frac{1}{2}r_ek^2 + \cdots$$

このとき、

$$S(k) = \frac{e^{i\delta}}{e^{-i\delta}} = \frac{\cos \delta + i \sin \delta}{\cos \delta - i \sin \delta}$$
$$= \frac{\cot \delta + i}{\cot \delta - i}$$
$$\sim \frac{-1/a + ik}{-1/a - ik}$$

極は  $k=irac{1}{a}$ 

a < 0 なら virtual 状態、a > 0 なら(浅い)束縛状態

極低エネルギーでの散乱を考える(従って s-wave のみ)

effective range expansion: 
$$k \cot \delta(k) \sim -\frac{1}{a} + \frac{1}{2}r_ek^2 + \cdots$$

このとき、
$$S(k) \sim rac{-1/a + ik}{-1/a - ik}$$

極は 
$$k = i\frac{1}{a}$$

極が実軸に近い ---> |a| が大

このとき、弾性散乱の全断面積:

$$\sigma = \frac{4\pi}{k^2} \sin^2 \delta = \frac{4\pi}{(k \cot \delta)^2 + k^2} \sim 4\pi a^2 \qquad \text{: large}$$

# 陽子ドリップ線を越えた原子核の陽子放出崩壊



中性子数 <del>→</del> (同位元素の種類)

# 陽子放出崩壊

## 陽子ドリップ線を越えた原子核



# 多くの(基底状態)陽子放出核が発見

実験の観測量: 陽子の放出エネルギー $E_{
m p}$ と崩壊半減期  $T_{1/2}$ 



小浦寛之氏(JAEA) のスライドより



Figure 3 Proton-nucleus potential calculated for the proton emitter  $^{167}$ Ir. The inset shows the proton-decay half-lives calculated using the WKB approximation for three values of the angular momentum  $\ell$ , compared to the experimental values for the ground and isomeric transitions.

A~150-160 領域における 典型的な値

> $V_{\rm b} \sim 10 \text{ MeV} (l=0)$  $E_{\rm p} \sim 1 \text{ MeV}$

 $R_{\text{turn}}$ : 80~100 fm

 $\Gamma : 10^{-18} \sim 10^{-22} \text{ MeV}$ 

 $T_{1/2}$ : 100 µs~1 sec

陽子放出崩壊の一つの特徴: 半減期が *l* に敏感

陽子崩壊を通じて陽子過剰核の陽子一粒子状態の l を決定できる

P.J. Woods and C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47 ('97)541

# グリーン関数法(非常に幅の狭いガモフ状態の幅を求める方法)

S.G. Kadmensky et al., Sov. J. Nucl. Phys. 14 ('72) 193 C.N. Davids and H. Esbensen, PRC61 ('00) 054302 K.H., PTP Suppl. 146 ('02) 348

$$\left[ -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_{\text{cent}}(r) + V(r) - \left( E - \frac{i}{2} \Gamma_0 \right) \right] u(r) = 0$$

$$V(r) \to \frac{Ze^2}{r} \quad (r \to \infty)$$

まず  $\Gamma_0 = 0$  とし位相のずれが  $\delta = \pi/2$  となる散乱状態を求める:

$$\phi(r) \sim r^{l+1} \qquad (r \to 0)$$
 $\rightarrow \widetilde{\mathcal{N}}G_l(kr) \qquad (r \to \infty)$ 

このときのエネルギー Eが共鳴のエネルギー。

# グリーン関数法(非常に幅の狭いガモフ状態の幅を求める方法)

$$\left[ -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V_{\text{cent}}(r) + V(r) - \left( E - \frac{i}{2} \Gamma_0 \right) \right] u(r) = 0$$

まず  $\Gamma_0 = 0$  とし位相のずれが  $\delta = \pi/2$  となる散乱状態を求める:

$$\phi(r) \sim r^{l+1} \qquad (r \to 0)$$
 $\rightarrow \widetilde{\mathcal{N}}G_l(kr) \qquad (r \to \infty)$ 

このときのエネルギー E が共鳴のエネルギー。幅は次のように求める。

Gell-Mann-Goldberger 変換

cf. DWBA

$$\begin{split} & [\widehat{T} + V - E]\Psi = 0 \\ & \hookrightarrow \left[\widehat{T} + \frac{Ze^2}{r} - E\right]\Psi = \left(\frac{Ze^2}{r} - V\right)\Psi \\ & \hookrightarrow \Psi \sim \frac{1}{\widehat{T} + \frac{Ze^2}{r} - E - i\eta} \left(\frac{Ze^2}{r} - V\right)\Phi_{\nwarrow} \end{split}$$

 $\Gamma_0 = 0$  として求めた 定常波

$$\Psi \sim \frac{1}{\widehat{T} + \frac{Ze^2}{r} - E - i\eta} \left( \frac{Ze^2}{r} - V \right) \Phi$$

(note)

$$\left\langle \boldsymbol{r} \left| \left( \widehat{T} + \frac{Ze^2}{r} - E - i\eta \right)^{-1} \right| \boldsymbol{r'} \right\rangle = \frac{2\mu}{k\hbar^2} \frac{O_l(kr_>)}{r_>} \mathcal{Y}_{jl}(\widehat{r}_>) \cdot \mathcal{Y}_{jl}^*(\widehat{r}_<) \frac{F_l(kr_<)}{r_<}$$

原点正則

外向波



$$u(r) \to \mathcal{N}O_l(kr) = \mathcal{N}(G_l(kr) + iF_l(kr)) \quad (r \to \infty)$$

$$\mathcal{N} = -\frac{2\mu}{\hbar^2 k} \int_0^\infty r^2 dr \, F_l(kr) \left( V(r) - \frac{Ze^2}{r} \right) \phi(r)$$

$$\Gamma_0 = (\text{outgoing flux}) / (\text{normalization}):$$

$$\frac{\hbar^2 k}{\mu} \mathcal{N}^2$$

# 共鳴状態に対する他の計算法

- ✓ stabilization method
- ✓ complex scaling method
- ✓ACCC法

## stabilization method

box 境界条件=散乱状態の離散化



#### stabilization method

 $R_0 = 1.27 * 200^{1/3} \text{ fm}$ 

 $\mu = 200 \, m_{\rm N} / 201$ 

a = 0.67 fm

box 境界条件=散乱状態の離散化



✓ R<sub>box</sub> が大きい方が dk が小

## 共鳴がある場合



共鳴のエネルギーで離散化 されたエネルギーが安定化

"stabilization method" A.U. Hazi and H.S. Taylor, PRA 1 ('70) 1109

*L*<sup>2</sup>基底で共鳴エネルギーと 共鳴幅を計算する

## 共鳴がある場合



共鳴のエネルギーで離散化 されたエネルギーが安定化

"stabilization method" A.U. Hazi and H.S. Taylor, PRA 1 ('70) 1109 L<sup>2</sup>基底で共鳴エネルギーと 共鳴幅を計算する

# 何故共鳴準位が安定するのか?

$$u_l(r) \to \sin\left(kr - \frac{l\pi}{2} + \delta_l(E)\right) \quad \Longrightarrow \quad kR - \frac{l\pi}{2} + \delta_l(E) = n\pi$$

$$R$$
 で微分すると:  $\frac{\partial k}{\partial B}R + k + \frac{\partial \delta_l}{\partial B} = 0 \longrightarrow R\frac{\partial k}{\partial E} \cdot \frac{\partial E}{\partial B} + k + \frac{\partial \delta_l}{\partial E} \cdot \frac{\partial E}{\partial B} = 0$ 

$$\frac{\partial \delta_l}{\partial E}$$
 = large -

共鳴準位: 
$$\frac{\partial \delta_l}{\partial E} = \text{large} \longrightarrow \boxed{\frac{\partial E}{\partial R} = \text{small}} \qquad \frac{\partial E}{\partial R} \sim -k \left(\frac{\partial \delta_l}{\partial E}\right)^{-1} < 0$$

## 共鳴がある場合



共鳴のエネルギーで離散化 されたエネルギーが安定化

"stabilization method"
A.U. Hazi and H.S. Taylor,
PRA 1 ('70) 1109

 $L^2$ 基底で共鳴エネルギーと 共鳴幅を計算する

C.H. Maier, L.S. Cederbaum, and W. Domcke, J. of Phys. B13 ('80) L119 L. Zhang et al., PRC77 ('08) 014312

# ✓ 複素座標スケーリング法(北大グループ)

$$r \to re^{i\theta}, p \to pe^{-i\theta}$$

として H(q)を対角化。



スライド: 明孝之氏

✓ <u>ACCC</u> (Analytic Continuation in the Coupling Constant)法

$$H \to H + \delta \cdot V$$

として  $\delta \sim 1$  で求めた束縛レベルのエネルギーを  $x = \sqrt{\delta - \delta_0}$ 

の関数として  $\delta=0$  に外挿  $(\delta_0$  はゼロ束縛となる  $\delta$ )



S. Aoyama, PRC68('03)034313