

これまでは、芯核のまわりに核子(中性子) が1個ある場合を考えてきた

芯核のまわりに中性子が2個あるとどうなる?

2中性子間に働く相互作用の影響は?

開設原子核では対相関が重要な役割

2 MeV 以下に少なくとも6本の状態(?)

単純な平均場近似:

単純な平均場近似:

対相関(ペアリング)

$$H = \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{HF}}(i) \right) + \frac{1}{2} \sum_{i,j}^{A} v(r_i, r_j) - \sum_i V_{\mathsf{HF}}(i)$$
$$= v_{\mathsf{res}}(r, r')$$

簡単のために、残留相互作用としてデルタ関数を仮定してみる (超短距離力)

$$v_{\mathsf{res}}({m r},{m r}')\sim -g\,\delta({m r}-{m r}')$$

<u> 摂動論で残留相互作用の効果を見積もってみる:</u>

非摂動な波動関数:

$$\left| |(ll)^{LM} \right\rangle = \sum_{m,m'} \langle lmlm' | LM \rangle \psi_{lm}(r) \psi_{lm'}(r')$$

$$\rightarrow \Delta E_L = \langle (ll)^{LM} | v_{\text{res}} | (ll)^{LM} \rangle$$

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \left(\begin{array}{cc} l & l \\ 0 & 0 \end{array} \right)^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

単純な平均場近似:

<u>弱束縛核における対相関</u>

$H = \sum_{i} T_{i} + \sum_{i < j} v_{ij} \to H = \sum_{i} (T_{i} + V_{i}) + \sum_{i < j} v_{ij} - \sum_{i} V_{i}$

平均からのずれ (残留相互作用)

中性子過剰核の物理

- ✓ 弱束縛系
- ✓ 残留相互作用(対相関)
- ✓ 連続状態との結合

ポテンシャルの井戸に束縛された相互作用する多フェルミオン系

•自己無撞着性

残留相互作用 → 引力 110 ^{12}C 10 / °В °В °Be ¹⁰Be ¹¹Be ¹²Be 'Be ۴Lİ 7L ⁸Li °He 'He ⁴He °Не ЗΗ Ή ²Н n

13

 ^{12}B

۳B

٩li

"ボロミアン核"

¹⁵C

¹⁴B

14

¹³B

11

He

不安定

安定

ボロミアン核の構造 ✓多体相関のため non-trivial ✓多くの注目を集めている

<u>ボロミアンの語源</u>

ボッロメオ家の紋章 (13世紀、北イタリア)

3つの輪はつながっているけど、どれか1つを はずすとバラバラになる =ボロミアン・リング

ちなみに日本でも。。。。。

三つ輪違い紋 (徳川旗本金田家の紋)

大神(おおみわ)神社 奈良県桜井市

バランタイン・エール(アメリカのビール)

<u>ボロミアン原子核</u>

→ 3体模型(芯核 + n + n)による記述

(参考)ブルニアン・リンク:拡張されたボロミアン

結び目理論: 位相幾何学の分野(数学)

n=3: Borromean

(参考)ブルニアン原子核

cf. N. Curtis et al., PRC77('08)021301(R)

ダイ・ニュートロン相関

原子核中での2中性子の空間的配置?

独立粒子 →片方の中性子がどこにいようとも関知せず

対相関が働くとどうなるか?

この問題はかなり古くから議論されてきた

NPA288('77)397

G.F. Bertsch, R.A. Broglia, and C. Riedel, NPA91('67)123

2中性子は空間的に局在している(ダイ・ニュートロン相関)

cf. A.B. Migdal, "Two interacting particles in a potential well", Soviet J. of Nucl. Phys. 16 ('73) 238. Dineutron 相関とはどういうものか? 相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例)¹⁸O = ¹⁶O + n + n cf. ¹⁶O + n : 3つの束縛状態(1d_{5/2}, 2s_{1/2}, 1d_{3/2}) i) 2中性子相関がない場合 $|nn\rangle = |(1d_{5/2})^2\rangle$ 中性子1を z_1 に置いたときの中性子2の分布:

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓2つの粒子が独立に運動 ✓中性子1がどこにいても中性子2の分布は影響されない

 $\langle AB \rangle = \langle A \rangle \langle B \rangle$

Dineutron 相関とはどういうものか?相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例) $^{18}O = ^{16}O + n + n$ cf. $^{16}O + n : 3$ つの束縛状態 ($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$)ii) 2中性子相関が同パリティ状態 (束縛状態)にのみ働く場合 $|nn\rangle = \alpha |(1d_{5/2})^2 \rangle + \beta |(2s_{1/2})^2 \rangle + \gamma |(1d_{3/2})^2 \rangle$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓中性子1とともに中性子2の分布が変化(2中性子相関)
 ✓ただし、中性子2は z₁ と -z₁の両方にピーク
 → このようなものは di-neutron 相関とは言わない

Dineutron 相関とはどういうものか?相関: $\langle AB \rangle \neq \langle A \rangle \langle B \rangle$ 例) $^{18}O = ^{16}O + n + n$ cf. $^{16}O + n : 3$ つの束縛状態 ($1d_{5/2}, 2s_{1/2}, 1d_{3/2}$)ii) 2中性子相関が同パリティ状態 (束縛状態)にのみ働く場合 $|nn\rangle = \alpha |(1d_{5/2})^2 \rangle + \beta |(2s_{1/2})^2 \rangle + \gamma |(1d_{3/2})^2 \rangle$

ペアリングを適当に効かせても2中性子の空間分布がコンパクト になるとは限らない

✓パリティ混合が本質的な役割
 (dineutron 相関)

cf. F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6-4-20246-6-4-20246-6-4-20246 ii) 正十負パリティ(束縛十連続状態)

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

なぜ違うパリティ状態の混合が重要か?

$\Psi(\mathbf{r},\mathbf{r}') = \left[C_{ee} \phi_e(\mathbf{r}) \phi_e(\mathbf{r}') + C_{oo} \phi_o(\mathbf{r}) \phi_o(\mathbf{r}') \right] |S=0\rangle$ とする。

$$\Psi(\boldsymbol{r},-\boldsymbol{r}') = \left[C_{ee}\phi_e(\boldsymbol{r})\phi_e(\boldsymbol{r}') - C_{oo}\phi_o(\boldsymbol{r})\phi_o(\boldsymbol{r}')\right]|S=0\rangle$$

$$\rho(\mathbf{r}, \mathbf{r}) = C_{ee}^{2} |\phi_{e}(\mathbf{r})|^{4} + C_{oo}^{2} |\phi_{o}(\mathbf{r})|^{2} + C_{ee} C_{oo} [\phi_{e}^{*}(\mathbf{r})]^{2} [\phi_{o}(\mathbf{r})]^{2} + c.c.$$

z (fm)

$$\rho(r, -r) = C_{ee}^{2} |\phi_{e}(r)|^{4} + C_{oo}^{2} |\phi_{o}(r)|^{2} \xrightarrow{-6 - 4 - 2 \ 0 \ 2 \ 4 \ 6} z \text{ (fm)}$$

$$-C_{ee}C_{oo} [\phi_{e}^{*}(r)]^{2} [\phi_{o}(r)]^{2}$$

$$+c.c.$$

干渉項の入り方が逆

(ちなみに)2粒子間の相互作用が斥力だと?

(ちなみに)2粒子間の相互作用が斥力だと?

cf. He 原子の場合(電子間のクーロン斥力)

Bertsch-Esbensenの3体模型

 ${}^{11}\text{Li} = {}^{9}\text{Li} + n + n$ ${}^{6}\text{He} = {}^{4}\text{He} + n + n$

G.F. Bertsch and H. Esbensen,

Ann. of Phys. 209('91)327

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56('99)3054K.H. and H. Sagawa, PRC72('05)044321

密度に依存する接触型相互作用 $v_{nn}(r_1, r_2) = v_0(1 + \alpha \rho_c(r))$ $\times \delta(r_1 - r_2)$

V-座標

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56('99)3054

$$v_{nn}(r_1, r_2) = v_0 \,\delta(r_1 - r_2)$$

この相互作用でnn散乱のs波の散乱長を計算すると:

$$a_{nn} = \frac{\pi}{2} \cdot \frac{\alpha}{1 + \alpha k_c} \qquad \left(\alpha = \frac{v_0}{2\pi^2} \frac{m}{\hbar^2}, \quad E_{\text{cut}} = \frac{\hbar^2 k_c^2}{m}\right)$$

(ゼロレンジの相互作用 \longleftrightarrow カットオフ E_{cut} の導入) cf. $\tilde{v}_{nn}(p) = v_0$

$$v_0 = \frac{2\pi^2 \hbar^2}{m} \cdot \frac{2a_{nn}}{\pi - 2k_c a_{nn}}$$

$$a_{nn}$$
を一定のまま
 E_{cut} を大きくすると
 v_0 の絶対値は小さくなる

v₀を一定のまま単純に E_{cut}を大きくすると引力 が強くなる

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56('99)3054

$$v_{nn}(\boldsymbol{r}_1,\boldsymbol{r}_2)=v_0\,\delta(\boldsymbol{r}_1-\boldsymbol{r}_2)$$

$$v_0 = \frac{2\pi^2 \hbar^2}{m} \cdot \frac{2a_{nn}}{\pi - 2k_c a_{nn}}$$

* この相互作用は有限核では強すぎる cf. ¹⁸O の3体計算: *E*= -28.1 MeV (実験値は -12.2 MeV)

→ 核内で引力を弱める(斥力項を密度依存型として導入) $v_{nn}(r_1, r_2) = \delta(r_1 - r_2) \left(v_0 + \frac{v_{
ho}}{1 + \exp[(r_1 - R_{
ho})/a_{
ho}]} \right)$

(密度依存性の詳細はよく分からないので、ここでは WS 型にする)

核内(小さい R)では E_{cut} が実効的に大きくなる
 →相互作用が実効的に強くなる
 →核内で相互作用を弱める必要がある
 (密度依存項の導入)

基底状態の構造 (J^π = 0⁺)

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$= \frac{p_1^2}{2\mu} + \frac{p_2^2}{2\mu} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{p_1 \cdot p_2}{A_c m}$$

$$\frac{1}{\mu} = \frac{1}{m} + \frac{1}{A_c m}$$

波動関数を適当な基底で展開して対角化する

$$\Psi_{gs}(\boldsymbol{r}, \boldsymbol{r}') = \sum_{k} \alpha_{k} \Phi_{k}(\boldsymbol{r}, \boldsymbol{r}')$$
$$\longrightarrow \sum_{k'} \langle \Phi_{k} | H | \Phi_{k'} \rangle \alpha_{k'} = E \alpha_{k}$$

基底状態の構造 (J^π = 0⁺)

$$H = \frac{p_1^2}{2\mu} + \frac{p_2^2}{2\mu} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{p_1 \cdot p_2}{A_c m}$$

$$v_{nn}$$
及び $rac{oldsymbol{p}_1\cdotoldsymbol{p}_2}{A_cm}$ がないときの解:

$$\Phi_{nn'lj}(\boldsymbol{r},\boldsymbol{r}') = \mathcal{A}[\psi_{njl}(\boldsymbol{r})\psi_{n'jl}(\boldsymbol{r}')]^{(00)}$$
$$\left[\frac{p^2}{2\mu} + V_{nC}(r)\right]\psi_{njlm_j}(\boldsymbol{r}) = \epsilon_{njl}\psi_{njlm_j}(\boldsymbol{r})$$

*
$$J = 0 \rightarrow j_1 = j_2, \ \pi = + \rightarrow l_1 = l_2$$

この基底で波動関数を展開する:

$$\Psi_{gs}(\boldsymbol{r}, \boldsymbol{r}') = \sum_{nn'lj} \alpha_{nn'lj} \Phi_{nn'lj}(\boldsymbol{r}, \boldsymbol{r}')$$

パウリ原理:芯核の軌道は展開の基底から除外

基底状態の構造 (J^π = 0⁺)

$$H = \frac{p_1^2}{2\mu} + \frac{p_2^2}{2\mu} + V_{nC}(r_1) + V_{nC}(r_2) + v_{nn} + \frac{p_1 \cdot p_2}{A_c m}$$

$$\Psi_{gs}(\boldsymbol{r}, \boldsymbol{r}') = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \left[\psi_{njl}(\boldsymbol{r}) \psi_{n'jl}(\boldsymbol{r}') \right]^{(00)}$$

連続状態(散乱状態)は 箱の中に入れて離散化 離散化の影響

 $E_{\text{cut}} = 40 \text{ MeV}$ として $\underline{R}_{\text{box}} = 30 \text{ fm}$ のときに $S_{2n} = 975 \text{ keV}$ を再現するように密度依存項のパラメーターを調整 → このパラメータで R_{box} を変えて計算

→ 結果は R_{box} にあまり依存しないが、R_{box} ごとに パラメーターの微調整が必要

ファデーエフ法との比較

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56('99)3054

¹¹Li 核に対する三体模型計算:

$$V_{nc}(r) = -7.8 \exp[-(r/2.55)^2]$$
 MeV

ファデーエフ計算:
$$v_{nn}(r_{12}) = -31 \exp[-(r_{12}/1.8)^2]$$
 MeV

Bertsch-Esbensen: v_{nn} = 密度に依存するゼロレンジ相互作用 (DDDI)

	<i>S</i> _{2n} (keV)	r_{c-2n}^{2} (fm)	$r_{\rm nn}^{2}$ (fm)
Faddeev	318	28.1	62.4
DDDI	318	27.6	62.9
DDDI (no-rec.)	569	20.3	49.0

¹¹Li及び⁶He 核におけるダイニュートロン相関

K. H. and H. Sagawa, Phys. Rev. C72 ('05) 044321

$$\Psi_{gs}(\boldsymbol{r}, \boldsymbol{r}') = \sum_{nn'lj} \alpha_{nn'lj} \Phi_{nn'lj}(\boldsymbol{r}, \boldsymbol{r}')$$

Nucleus	S_{2n} (MeV)	$\langle r_{nn}^2 angle \ ({ m fm}^2)$	$\langle r_{c-2n}^2 angle \ ({ m fm}^2)$	dominant config.	fraction (%)	S=0 (%)
⁶ He	0.975	21.3	13.2	$(p_{3/2})^2$	83.0	87.0
¹¹ Li	0.295	41.4	26.3	$(p_{1/2})^2$	59.1	60.6

* n-⁹Li 系にバーチャル状態 (s波の散乱長: $a = -30^{+12}_{-31}$ fm) * n-⁴He 系にはバーチャル状態なし (a = +4.97 + -0.12 fm)

¹¹Li及び⁶He 核におけるダイニュートロン相関

K. H. and H. Sagawa, Phys. Rev. C72 ('05) 044321

$$\Psi_{gs}(\mathbf{r},\mathbf{r}') = \sum_{nn'lj} \alpha_{nn'lj} \Phi_{nn'lj}(\mathbf{r},\mathbf{r}')$$

密度分布

$$\rho(\mathbf{r}, \mathbf{r}') = \sum_{m_1, m_2} |\langle \chi_{m_1} \chi_{m_2} | \Psi_{gs} \rangle|^2 \\ = \rho_{S=0}(\mathbf{r}, \mathbf{r}') + \rho_{S=1}(\mathbf{r}, \mathbf{r}')$$

(密度分布を見やすくするために) $r_1 = r_2 = r$ ととり、 $r \ge \theta_{12}$ の関数として プロットする

さらに 8π²r⁴sinθ₁₂ の重みをかける (note)

 $\int_{0}^{\infty} 4\pi r_{1}^{2} dr_{1} \int_{0}^{\infty} r_{2}^{2} dr_{2} \int_{0}^{\pi} 2\pi \sin \theta_{12} d\theta_{12} \rho(r_{1}, r_{2}, \theta_{12}) = 1$

▶ふた山構造▶長いテール(ハロー構造)

重みをかけた方が構造を見やすい

<u>角度分布:相補的なプロット</u>

<u>¹¹Liと⁶Heの比較</u>

<u>3体模型計算による dineutron 相関</u>

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

 $x^2 y^2 \rho_2(x, y)$ for ⁶He

FIG. 1. Spatial correlation density plot for the 0^+ ground state of ⁶He. Two components—di-neutron and cigarlike—are shown schematically.

Yu.Ts. Oganessian, V.I. Zagrebaev, and J.S. Vaagen, *PRL82('99)4996* M.V. Zhukov et al., *Phys. Rep. 231('93)151*

> "di-neutron" 配位 "cigar-like" 配位

¹¹Liと⁶Heの比較

for $(p_{1/2})^2$ or $(p_{3/2})^2$

対相関力がある場合とない場合の比較:

 ^{11}Li

• 対相関がないと、2つの対称的なピーク(p_{1/2} 状態を反映)。

- 対相関があると、大きいθにあるピークが抑制され、
 小さいθにあるピークが増幅する(ダイニュートロン相関)。
- 小さい θ にあるピークのテールがのびる(ハロー構造)。

―― 対相関による連続状態との結合の効果

<u>重い中性子過剰核の dineutron 相関</u>

M. Matsuo, K. Mizuyama, and Y. Serizawa, PRC71('05)064326 Skyrme HFB

N. Pillet, N. Sandulescu, and P. Schuck, PRC76('07)024310 Gogny HFB

(注) dineutron 相関は弱束縛に特有な現象というわけではない

N. Pillet, N. Sandulescu, and P. Schuck, PRC76 ('07) 024310

むしろ、対相関力による異なるパリティ状態の混合が本質的

dineutron 相関は異なるパリティ状態の混合によって生じる

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6 -4 -2 0 2 4 6

z (fm) パリティ混合

-6 -4 -2 0 2 4 6 z (fm)

2中性子は空間的に局在(dineutron相関)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

弱束縛核

- →連続状態のためにパリティ混合が起きやすい + 表面領域における対相関力の増大
- →dineutron 相関が増幅される
 - cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
 - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326

M. Matsuo, PRC73('06)044309