Pairing Correlations

$$
{ }_{83}^{209} \mathrm{Bi}_{126}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+\mathrm{p}
$$

\qquad
${ }^{209}$ Bi
${ }^{210}{ }_{84} \mathrm{Po}_{126}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+2 \mathrm{p}$
expectation of the indep. particle model:
$\mathrm{E}=0:\left[h_{9 / 2} \bigotimes h_{9 / 2}\right]^{I} \quad(I=0,2,4,6,8)$
$\mathrm{E}=0.89 \mathrm{MeV}:\left[h_{9 / 2} \bigotimes f_{7 / 2}\right]^{I}$
($I=1,2,3,4,5,6,7,8$)
\# of states below 1 MeV : 13

${ }^{210}{ }_{84} \mathrm{Po}_{126}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+2 \mathrm{p}$

expectation of the indep. particle model:

$$
\begin{aligned}
& \mathrm{E}=0:\left[h_{9 / 2} \bigotimes h_{9 / 2}\right]^{I} \quad(I=0,2,4,6,8) \\
& \mathrm{E}=0.89 \mathrm{MeV}:\left[h_{9 / 2} \bigotimes f_{7 / 2}\right]^{I} \quad(I=1,2,3,4,5,6,7,8)
\end{aligned}
$$

\longmapsto \# of states below $1 \mathrm{MeV}: 13$
observed spectra:

$$
\begin{array}{rc}
1.20 \mathrm{MeV} & \begin{array}{l}
4^{+} \\
0.81 \mathrm{MeV} \\
\\
2^{+} \\
0
\end{array} \\
& 0^{+}
\end{array}
$$

Effects of the residual interaction

$$
H=\sum_{i=1}^{A}\left(-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+V_{\mathrm{HF}}(i)\right)+\underline{\underline{\frac{1}{2}} \sum_{i, j}^{A} v\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)-\sum_{i} V_{\mathrm{HF}}(i)}
$$

Effects of the residual interaction

$$
\begin{aligned}
& H=\sum_{i=1}^{A}\left(-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+V_{H F}(i)\right)+\xlongequal[\frac{1}{2} \sum_{i, j}^{A} v\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)-\sum_{i} V_{H F}(i)]{ } \\
& \sim-g \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \quad \text { (short range force) } \\
&=-g \frac{\delta\left(r-r^{\prime}\right)}{r r^{\prime}} \sum_{\lambda \mu} Y_{\lambda \mu}^{*}(\widehat{\boldsymbol{r}}) Y_{\lambda \mu}\left(\widehat{\boldsymbol{r}}^{\prime}\right)
\end{aligned}
$$

$\Delta E_{I} \sim\left\langle[j \bigotimes j]^{I}\right|-g \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\left|[j \bigotimes j]^{I}\right\rangle$

$$
=-g F_{r} \frac{(2 j+1)^{2}}{2}\left(\begin{array}{ccc}
j & j & I \\
1 / 2 & -1 / 2 & 0
\end{array}\right)^{2}
$$

(for even j)

$$
F_{r}=\int d r \frac{u_{j l}^{4}(r)}{4 \pi r^{2}} \quad \text { (radial integral) }
$$

$$
\Delta E_{I} \sim-g F_{r} \frac{(2 j+1)^{2}}{2}\left(\begin{array}{ccc}
j & j & I \\
1 / 2 & -1 / 2 & 0
\end{array}\right)^{2} \equiv-g F_{r} A(j j ; I)
$$

$A(j j ; I)$	$I=0$	$I=2$	$I=4$	$I=6$
$j=5 / 2$	3.00	0.685	0.286	---
$j=7 / 2$	4.00	0.95	0.467	0.233

$$
0^{+}, 2^{+}, 4^{+}, 6^{+}, \ldots . .
$$

without residual interaction
with residual
interaction

Simple interpretation:

$I=0$ pair

$I \neq 0$ pair

The spatial overlap is the largest for the $I=0$ pair.

"Pairing Correlation"

(note) The $I=2 j$ pair is unfavoured due to the Pauli principle.
(note)
$\psi\left(l^{2} ; L=0\right)=\sum_{\mu}\langle l \mu l-\mu \mid L=0,0\rangle Y_{l \mu}\left(\widehat{\boldsymbol{r}}_{1}\right) Y_{l-\mu}\left(\widehat{\boldsymbol{r}}_{2}\right)=Y_{l 0}\left(\theta_{12}\right) / \sqrt{4 \pi}$

$0^{+}, 2^{+}, 4^{+}, 6^{+}, \ldots .$.

without residual interaction

with residual
interaction

The ground state spin of nuclei
$>$ Even-even nuclei: 0^{+}
$>$ Even-odd nuclei: the spin of the valence particle

Mass Formula (Even-odd mass difference)

Extra binding when like nucleons form a spin-zero pair

Example:

$$
\begin{aligned}
& { }^{210}{ }_{82} \mathrm{~Pb}_{128}=208{ }_{82} \mathrm{~Pb}_{126}+2 \mathrm{n} \\
& { }^{210}{ }_{83} \mathrm{Bi}_{127}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+\mathrm{n}+\mathrm{p}
\end{aligned}
$$

$$
{ }^{209}{ }_{82} \mathrm{~Pb}_{127}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+\mathrm{n}
$$

$$
{ }^{209}{ }_{83} \mathrm{Bi}_{126}={ }^{208}{ }_{82} \mathrm{~Pb}_{126}+\mathrm{p}
$$

$$
\begin{aligned}
B_{\text {pair }} & =\Delta \quad & & (\text { for even }- \text { even }) \\
& =0 & & (\text { for even }- \text { odd }) \\
& =-\Delta & & (\text { for odd }- \text { odd })
\end{aligned}
$$

