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even-even nuclei: always 0+  (no exception)

Spin and parity of the ground state of nuclei

l

Pairing correlations  



Simple interpretation:

I=0  pair pair

The spatial overlap is the largest for the I=0 pair.

“Pairing Correlation”



Di-neutron correlation

What is the spatial structure of the 

two-valence neutrons?

If the two neutrons moved independently, 

one neutron does not care where the other 

neutron is. 

How does this change due to 

the pairing correlation?



Three-body model : microscopic understanding of  di-neutron correlation

core

n

n

r1

r2

11Li, 6He

the ground state of this three-body Hamiltonian 

and also the density distribution 

(e.g.,) expand the wf  with the eigen-functions for H without Vnn

and determine the expansion coefficients



With pairingWithout pairing [1p1/2]
2

11Li    a distribution of one of the neutrons when the other neutron is at 

(z1, x1)=(3.4 fm, 0)

Comparison between with and without paring correlations

• When no pairing, symmetric between z and –z. 

The distribution does not change whereever the 2nd neutron is. 

• When with pairing, the nearside density is enhanced. 

The distribution changes when the 2nd neutron moves. 



What is Di-neutron correlation? Correlation：

Example: 18O = 16O + n + n
cf. 16O + n : 3 bound states (1d5/2, 2s1/2, 1d3/2)

i) Without nn interaction:

z1 = 2 fmz1 = 1 fm z1 = 3 fm z1 = 4 fm

Distribution of the 2nd neutron when the 1st neutron is at z1 :

Two neutrons move independently

No influence of the 2nd neutron from the 1st neutron



What is Di-neutron correlation? Correlation：

Example: 18O = 16O + n + n
cf. 16O + n : 3 bound states (1d5/2, 2s1/2, 1d3/2)

z1 = 2 fmz1 = 1 fm z1 = 3 fm z1 = 4 fm

distribution changes according to the 1st neutron (nn correlation)

but, the distribution of the 2nd neutron has peaks both at z1 and –z1

this is NOT called the di-neutron correlation

ii) nn interaction: works only on the positive parity (bound) states 



What is Di-neutron correlation? Correlation：

Example: 18O = 16O + n + n
cf. 16O + n : 3 bound states (1d5/2, 2s1/2, 1d3/2)

z1 = 2 fmz1 = 1 fm z1 = 3 fm z1 = 4 fm

spatial correlation: the density of the 2nd neutron localized close 

to the 1st neutron (dineutron correlation)

parity mixing: essential role

iii) nn interaction: works also on the continuum states 

cf. F. Catara et al., PRC29(‘84)1091



dineutron correlation: caused by the admixture of different parity states

R
r

F. Catara, A. Insolia, E. Maglione, 

and A. Vitturi, PRC29(‘84)1091

interference of even and odd partial waves

RRR

r



spatial localization of two neutrons 

(dineutron correlation)

K.H. and H. Sagawa, 

PRC72(’05)044321

→easy to mix different parity states due to 

the continuum couplings

＋ enhancement of pairing on the surface

parity mixing

cf. Migdal, Soviet J. of Nucl. Phys. 16 (‘73) 238

Bertsch, Broglia, Riedel, NPA91(‘67)123

weakly bound systems

11Li



pairing gap in infinite nuclear matter

M. Matsuo, PRC73(’06)044309



spatial localization of two neutrons 

(dineutron correlation)

K.H. and H. Sagawa, 

PRC72(’05)044321

→easy to mix different parity states due to 

the continuum couplings

＋ enhancement of pairing on the surface

parity mixing

cf. Migdal, Soviet J. of Nucl. Phys. 16 (‘73) 238

Bertsch, Broglia, Riedel, NPA91(‘67)123

weakly bound systems

11Li

dineutron correlation: enhanced

cf.  - Bertsch, Esbensen, Ann. of Phys. 209(’91)327 

- M. Matsuo, K. Mizuyama, Y. Serizawa, 

PRC71(‘05)064326



The BCS theory Many-particles in non-degenerate levels

~ mean-field approx. for the pairing channel ~

Simplified pairing interaction

: the time reversed state 

of 
e.g.,

0+,2+,4+,6+,…..

0+

2+4+6+

delta force
0+

2+,4+,6+

monopole 

pairing force
Cf. Metallic superconductivity

: an operator to create

an I = 0 pair 



Solve the pairing Hamiltonian

in the mean-field approximation

 Mean-field approximation:

particle number violation

we consider instead of H :



Bogoliubov transformation

(Quasi-particle operator)

Transform H’ in a form of

g.s.:    

1st excited state: at Ek

…. and so on.



(note)                                                         : occupation probability

Ground state wave function:

(note)

Self-consistency condition:

Gap equation



l

Wave function:

l’

l”

0+

Each orbit is occupied only partially. 

cf. BCS theory



i) Trivial solution: always exists

ii) Superfluid solution

G a/o N large

Normal-Superfulid phase transitionNumber fluctuation
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Quasi-particle excitations 

g.s. of even-even nuclei:

One quasi-particle states:

Wave function for odd-mass nuclei

Two quasi-particle states:

Excited state of the even-even nuclei

Energy gap

(note) no pairing limit: 

(particle-hole excitation)



Ring-Schuck

gap
gap gap



Effects of pairing on moment of inertia

no pairing

no pairing G.F. Bertsch,

in “Fifty years of 

nuclear BCS”



Even-odd mass difference and pairing gap 

Bohr-Mottelson

(’69)



Hartree-Fock-Bogoliubov (HFB) Theory

HF+BCS method: first solve HF, and then solve the gap equation

s.p. wave functions, occupation probabilities, 

chemical potential, pairing gaps

Hartree-Fock-Bogoliubov (HFB) theory: 

both wave functions and occupation probabilities

at the same time

cf. weakly bound systems



u,v factors  u, v functions



Application of the HFB method 

Density of 110Zr (SHFB-SLy4)

A. Blazkiewicz et al., 

PRC71(’05)054231

Systematics of β2 and S2n

M.V. Stoitsov et al., PRC68(’03)054312



34Ne, 42Mg

100Zn

Deformed drip-line nuclei

M.V. Stoitsov et al., PRC68(’03)054312



 

potential energy surface for fission process

A. Staszczak, A. Baran, J. Dobaczewski,

and W. Nazarewicz, PRC80 (‘09) 014309


