Nuclear Reactions

Shape, interaction, and excitation structures of nuclei — scattering expt.

http://www.th.phys.titech.ac.jp/~muto/lectures/QMII11/QMII11_chap21.pdf K. Muto (TIT)

Nuclear fusion reactions

Niels Bohr (1936)

Neutron capture of nuclei \rightarrow compound nucleus

N. Bohr, Nature 137 ('36) 351

cf. Experiment of Enrico Fermi (1935) many very narrow (=long life-time) resonances (width ~ eV)

M. Asghar et al., Nucl. Phys. 85 ('66) 305

Niels Bohr (1936)

Neutron capture of nuclei \rightarrow compound nucleus


```
Wikipedia
```

forming a compound nucleus with heavy-ion reactions = H.I. fusion

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flare reaching 588 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Proton Neutron γ Gamma Ray

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Inter-nucleus potential

Two interactions:
1. Coulomb force

long range repulsion

2. Nuclear force

short range attraction

<u>potential barrier</u> due to a cancellation between the two (Coulomb barrier)

Above-barrier energies
 Sub-barrier energies

 (energies around the Coulomb barrier)
 Deep sub-barrier energies

two obvious reasons:

superheavy elements

```
cf. <sup>209</sup>Bi (<sup>70</sup>Zn,n) <sup>278</sup>Nh
V_B \sim 260 \text{ MeV}
E_{cm}^{(exp)} \sim 262 \text{ MeV}
```

two obvious reasons:

NASA, Skylab space station December 19. 1973, solar flare reaching 588 000 km off solar surface

nuclear astrophysics (nuclear fusion in stars) cf. extrapolation of data

two obvious reasons:

✓ superheavy elements

 \checkmark nuclear astrophysics

other reasons:

reaction dynamics
 strong interplay between reaction and structure
 cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

two obvious reasons:

✓ superheavy elements

 \checkmark nuclear astrophysics

other reasons:

✓ reaction dynamics

strong interplay between reaction and structure

cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

- many types of intrinsic degrees of freedom (several types of collective vibrations, deformation with several multipolarities)
- energy dependence of tunneling probability cf. alpha decay: fixed energy

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

Quantum Tunneling Phenomena

For a parabolic barrier.....

cf. WKB approximation

One dimensional Schrodinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + (V(x) - E)\psi(x) = 0$$

$$\implies \frac{d^2}{dx^2}\psi(x) + \frac{p^2(x)}{\hbar^2}\psi(x) = 0, \qquad p(x) \equiv \sqrt{2m(E - V(x))}$$

$$\psi(x) = e^{iS(x)/\hbar}$$

$$\psi' = \frac{i}{\hbar} S' \psi$$

$$\psi'' = \frac{i}{\hbar} S'' \psi - \frac{1}{\hbar^2} (S')^2 \psi$$

$$\frac{i}{\hbar}S'' - \frac{1}{\hbar^2}(S')^2 + \frac{p(x)^2}{\hbar^2} = 0$$

cf. WKB approximation

$$i\hbar S'' - (S')^2 + p(x)^2 = 0$$

Expand S as: $S(x) = S_0(x) + \hbar S_1(x) + \hbar^2 S_2(x) + \cdots$

$$S_0(x) = \pm \int^x p(x') dx'$$

$$S_1(x) = \frac{i}{2} \ln p(x) + const.$$

$$\psi(x) = e^{iS(x)/\hbar} \sim \frac{1}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int^x p(x') dx'}$$

$$\psi(x) = e^{iS(x)/\hbar} = \frac{1}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int^x p(x') dx'}$$

this wave function breaks down at *x* which satisfies p(x) = 0.

$$p(x) = \sqrt{2m(E - V(x))} \rightarrow V(x) = E$$
 (a turning point)

cf. WKB approximation

if applied to a tunneling problem:

$$P(E) = \exp\left[-2\int_{a}^{b} dx \sqrt{\frac{2m}{\hbar^{2}}(V(x) - E)}\right]$$

for a Coulomb potential

$$P = \exp\left[-2\int_{R}^{b} dr \sqrt{\frac{2\mu}{\hbar^{2}}\left(\frac{Z_{1}Z_{2}e^{2}}{r} - E\right)}\right]$$

$$P = \exp\left[-2\int_{R}^{b} dr \sqrt{\frac{2\mu}{\hbar^{2}} \left(\frac{Z_{1}Z_{2}e^{2}}{r} - E\right)}\right]$$

 $G \sim \sqrt{\frac{2\mu R}{\hbar^2} Z_1 Z_2 e^2} \left(\pi \sqrt{\frac{Z_1 Z_2 e^2}{RE}} - 4 \right)$ $P = e^{-G}$

(note) for $R \rightarrow 0$

$$G \sim \sqrt{\frac{2\mu R}{\hbar^2}} Z_1 Z_2 e^2 \left(\pi \sqrt{\frac{Z_1 Z_2 e^2}{RE}} \right) = \pi Z_1 Z_2 e^2 \sqrt{\frac{2\mu}{\hbar^2 E}} = 2\pi \frac{Z_1 Z_2 e^2}{\hbar v}$$
$$\equiv \eta (E)$$

$$P(E) \sim e^{-2\pi\eta(E)}$$

Sommerfeld parameter

The simplest approach to fusion: potential model

Potential model: V(r) + absorption

$$\sigma_{\mathsf{fus}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1)P_l(E)$$

 $P_l(E)$: barrier penetrability

Comparison with experimental data: large enhancement of σ_{fus}

Potential model: V(r) + absorption

Comparison with experimental data: large enhancement of σ_{fus}

Potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

¹⁵⁴Sm : a typical deformed nucleus

Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

* Sub-barrier enhancement also for non-deformed targets: couplings to low-lying collective excitations → coupling assisted tunneling

Enhancement of tunneling probability : a problem of two potential barriers

$$P(E) = P(E; V_0) \to w_1 P(E; V_1) + w_2 P(E; V_2)$$

"barrier distribution" due to couplings to excited states in projectile/target nuclei Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

Coupled-channels method: a quantal scattering theory with excitations

if written down more explicitly:

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) + \epsilon_k - E \end{bmatrix} \psi_k(r) + \sum_{k'} \langle \phi_k | V_{\text{coup}} | \phi_{k'} \rangle \psi_{k'}(r) = 0$$

excitation energy

excitation operator

Coupled-channels method: a quantal scattering theory with excitations

full order treatment of excitation/de-excitation dynamics during reaction

Inputs for C.C. calculations

i) Inter-nuclear potential

a fit to experimental data at above barrier energies ii) Intrinsic degrees of freedom

in most of cases, (macroscopic) collective model (rigid rotor / harmonic oscillator)

- C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)
 - ✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

K.H., N. Takigawa, PTP128 ('12) 1061

K.H. and N. Takigawa, PTP128 ('12) 1061

barrier distribution: a problem of two potential barriers

 $P(E) = P(E; V_0) \to w_1 P(E; V_1) + w_2 P(E; V_2)$

Fusion barrier distribution

$$D_{\rm fus}(E) = \frac{d^2(E\sigma_{\rm fus})}{dE^2}$$

- ♦ N. Rowley, G.R. Satchler, and P.H. Stelson, PLB254 ('91) 25
- ◆ J.X. Wei, J.R. Leigh et al., PRL67 ('91) 3368
- ♦ M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48 ('98) 401
- ◆ A.M. Stefanini et al., Phys. Rev. Lett. 74 ('95) 864

