はじめに:低エネルギー原子核物理学のめざすもの

- □核子多体系としての原子核の振る舞い
 - ← 核子間相互作用から理解する
- ▶ 静的な振る舞い:原子核構造論
 - ✓ 基底状態の性質
 (質量、大きさ、形など)
 ✓ 励起状態の性質

- ▶ ダイナミックス:原子核反応論
 - 原子核は複合粒子 ✓ 豊富な反応様式

- 弾性散乱
- 非弾性散乱
- 核子移行反応
- 核融合反応

はじめに:低エネルギー原子核物理学のめざすもの

- □核子多体系としての原子核の振る舞い
 - ← 核子間相互作用から理解する
- ▶ 静的な振る舞い:原子核構造論
 - ✓ 基底状態の性質
 (質量、大きさ、形など)
 ✓ 励起状態の性質

▶ ダイナミックス:原子核反応論

- 弾性散乱
- 非弾性散乱
- 核子移行反応
- 核融合反応

Nuclear Reactions

Shape, interaction, and excitation structures of nuclei \leftarrow scattering expt. cf. Experiment by Rutherford (α scatt.)

葉に光が当たら なければ緑は 反射しない ↓ 葉の形

<u>そもそも、ものが見えるとはどういうことか?</u>

原子核のようなミクロなものの大きさを測るのも基本的には同じ 何かをぶつけて、どのように散乱されるか観測する

<u>ラザフォード散乱</u>(ラザフォード、ガイガー、マースデン:1909年)

散乱の角度は高々 0.01 度

観測:たいていのα粒子はほとんど曲げられずに検出器に入る →ブドウパン模型は正しそうだ(?)

ラザフォード散乱 (ラザフォード、ガイガー、マースデン:1909年)

試しに検出器を後方角度に置いて見た (ブドウパン模型が正しければ、何も観測 しないはず)

Nuclear Reactions

Shape, interaction, and excitation structures of nuclei \leftarrow scattering expt. cf. Experiment by Rutherford (α scatt.)

http://www.th.phys.titech.ac.jp/~muto/lectures/QMII11/QMII11_chap21.pdf

K. Muto (TIT)

K. Sekiguchi et al., PRC89('14)064007

✓ elastic scattering

✓inelastic scattering

fundamental interaction between *a* and *A*

excitation spectrum of a nucleus *A*

 E_a

transfer reactions

✓ transfer reaction (pick-up reaction) transfer reaction (stripping reaction)

- interaction between *a* and *A*
- structure of *a* and *A*

level schem of ²⁰⁷Pb

level schem of ²⁰⁹Pb

hypernucleus production reactions

 $^{12}C(\pi^+,K^+) ^{12}{}_{\Lambda}C$ reaction

excitation spectrum of a hypernucleus A_A

O. Hashimoto and H. Tamura, Prog. in Part. and Nucl. Phys. 57 ('06)564

"reaction spectroscopy"

 \checkmark (e,e'K⁺) reaction

S.N. Nakamura et al., PRL110('13)012502

T. Gogami, Ph.D. Thesis (Tohoku U.) 2014

L. Tang et al., PRC90('14)034320

Cross sections

event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

Ì

R = N-

cross section

event rate (the number of event per unit time per target nucleus) : proportional to the incident flux

cross section

$$\longrightarrow R = N_{\mathsf{T}} \underbrace{\sigma} j$$

differential cross sections (angular distribution)

$$dR(\theta,\phi) = N_{\mathsf{T}} \cdot \frac{d\sigma}{d\Omega} \cdot j \cdot d\Omega \qquad \sigma = \int d\Omega \frac{d\sigma}{d\Omega}$$

units: 1 barn = 10^{-24} cm² = 100 fm² (1 mb = 10^{-3} b = 0.1 fm²)

Cross sections (experiments)

the number of target nucleus: $N_{T} = S \cdot t \cdot \rho_{T}$ beam intensity: $I = j \cdot S$ $dR(\theta,\phi) = I \cdot \frac{d\sigma}{d\Omega} \cdot t\rho_{\mathsf{T}} \cdot d\Omega(\epsilon) \leftarrow$

detection efficiency

Cross sections (theory)

center of mass frame

Cross sections

Born approximation

 $\psi_f(\boldsymbol{r}) = e^{i \boldsymbol{p}_f \cdot \boldsymbol{r} / \hbar}$ $\psi_i(\boldsymbol{r}) = e^{i\boldsymbol{p}_i\cdot\boldsymbol{r}/\hbar}$ V(r)θ

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + \underline{V(r)} - E\right)\psi(r) = 0$$

perturbation

transition rate for elastic scattering:

$$W_{fi} = \frac{2\pi}{\hbar} \int \frac{dp_f}{(2\pi\hbar)^3} |\langle \psi_f | V | \psi_i \rangle|^2 \delta(E_f - E_i)$$

= $\frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(\boldsymbol{q}) \right|^2$

$$\widetilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r} / \hbar} V(r) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(r)$$

Born approximation

 $\psi_f(\boldsymbol{r}) = e^{i \boldsymbol{p}_f \cdot \boldsymbol{r} / \hbar}$ $\psi_i(\boldsymbol{r}) = e^{i\boldsymbol{p}_i\cdot\boldsymbol{r}/\hbar}$ V(r)θ

$$W_{fi} = \frac{\mu p_i}{4\pi^2 \hbar^4} \int d\Omega \left| \tilde{V}(\boldsymbol{q}) \right|^2 \qquad \text{momentum} \\ \tilde{V}(\boldsymbol{q}) = \int d\boldsymbol{r} e^{i(\boldsymbol{p}_i - \boldsymbol{p}_f) \cdot \boldsymbol{r}/\hbar} V(\boldsymbol{r}) \equiv \int d\boldsymbol{r} e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} V(\boldsymbol{r})$$

incident flux: $j_{\text{inc}} = \rho_i v = p_i / \mu$

$$\sigma = \frac{W_{fi}}{j_{\text{inc}}} = \int d\Omega \frac{\left| \frac{\mu^2}{4\pi^2 \hbar^4} \right| \tilde{V}(q) \right|^2 }{ = \frac{d\sigma}{d\Omega} }$$

$$p_f \qquad p_f \qquad p_f \qquad p_i \qquad p$$

Electron scattering

$$V(r) = -e^2 \int dr' \frac{\rho_{ch}(r')}{|r - r'|}$$
$$\frac{d\sigma}{d\Omega} = \frac{Z_P^2 e^4}{(4E \sin^2 \theta/2)^2} |F(q)|^2$$
$$= \left(\frac{d\sigma_{Ruth}}{d\Omega}\right) |F(q)|^2$$

Form factor

$$F(\boldsymbol{q}) = \int e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} \rho_{\mathsf{Ch}}(\boldsymbol{r}) \, d\boldsymbol{r}$$

* relativistic correction:

cf. electron scattering off unstable nuclei (SCRIT)

proton radius puzzle

$$F(q) = \int e^{-iq \cdot r} \rho_{ch}(r) dr$$

$$\sim \int \left(1 - iq \cdot r - \frac{(qr)^2}{2} \cos^2 \theta + \cdots \right) \rho_{ch}(r) dr$$

$$\sim Z \left(1 - \frac{q^2}{6} \langle r^2 \rangle + \cdots \right)$$

Distorted Wave Born approximation (DWBA)

$$\left(-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{V(r)}{P} - E\right)\psi(r) = 0$$
perturbation

$$\implies \left(-\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) + \frac{V(r) - V_0(r)}{\mu} - E\right)\psi(r) = 0$$

perturbation

✓ inelastic scattering✓ transfer reactions

How to choose $V_0(r)$? : Optical model

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

Optical potential

$$V_{\text{opt}}(r) = V(r) - iW(r)$$
 (W > 0)
 $\longrightarrow \nabla \cdot j = \dots = -\frac{2}{\hbar}W|\psi|^2$

(note) Gauss's theorem

$$\int_{S} \boldsymbol{j} \cdot \boldsymbol{n} \, dS = \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{j} \, dV$$

$$-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{Z_P Z_T e^2}{r} + V_{\text{opt}}(r) - E \bigg) \psi(r) = 0$$

Woods-Saxon + volume & surface imaginary parts

H. Sakaguchi et al., PRC26 (1982) 944

Appendix: DWBA in ocean acoustics

Fishfinder

(backward) scattering of (ultra-)sonic waves due to fish etc.

 $dR(\theta,\phi) = N_{\mathsf{T}} \cdot \frac{d\sigma}{d\Omega} \cdot j \cdot d\Omega$ $N_{\mathsf{T}} = \frac{\frac{dR}{d\Omega}}{j \cdot \frac{d\sigma}{j\Omega}}$

one can know the number of fish $N_{\rm T}$ if one knows the differential cross sections

https://www.furuno.co.jp/technology/about/fishfinder1.html

Use of <u>the distorted wave Born approximation</u> to predict scattering by inhomogeneous objects: <u>Application to</u> squid

Benjamin A. Jones,^{a)} Andone C. Lavery, and Timothy K. Stanton Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1053 J. Accoust. Soc. Am. 125 ('09) 73 $10\log_{10}\sigma$ 0° (-)-60 -80 -100 -40 45° Target Strength (dB) -60 -80 100 90° -60 -80 -100 -40 135° Modeling of squid -60 -80 -100 10^{3} 10^{4} 10 Frequency (Hz) DWBA: local wave number Arms-folded numerical model (no fins) Analytical prolate spheroid model <---inside a squid Usable band in the experiment

Absorption cross sections

Reaction processes

Elastic scatt.
Inelastic scatt.
Transfer reaction
Compound nucleus formation (fusion)

Loss of incident flux (absorption)

reaction cross sections

total scattering cross section minus elastic cross section

$$\sigma_R = \sigma_{tot} - \sigma_{el}$$

- fusion
- inelastic
- transfer

Interaction cross sections and halo nuclei

transmission method

Interaction cross sections and halo nuclei

Discovery of halo nuclei

I. Tanihata, T. Kobayashi, O. Hashimoto et al., PRL55('85)2676; PLB206('88)592

Reaction cross sections

Glauber theory (optical limit approximation: OLA)

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$

> straight-line trajectory (high energy scattering)
 > adiabatic approximation
 > simplified treatment for multiple scattering: (1 − x)^N → e^{−Nx}

Density distribution which explains the experimental σ_R

r (fm) M. Fukuda et al., PLB268('91)339

$$\sigma_R \sim 2\pi \int_0^\infty b db \left[1 - \exp\left(-\sigma_{NN} \int d^2 s \rho_P^{(z)}(s) \rho_T^{(z)}(s-b)\right) \right]$$