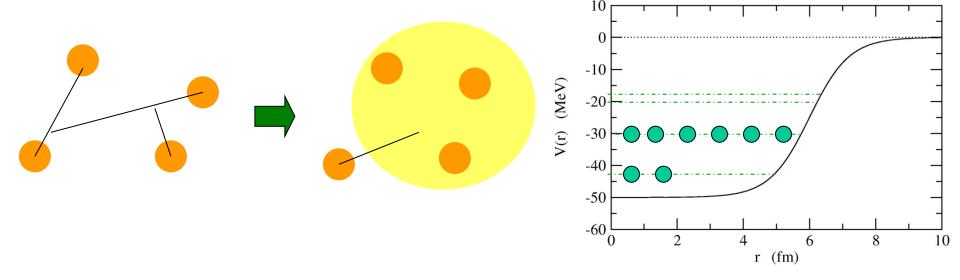
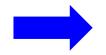
Pairing Correlation(対相関)

平均場近似

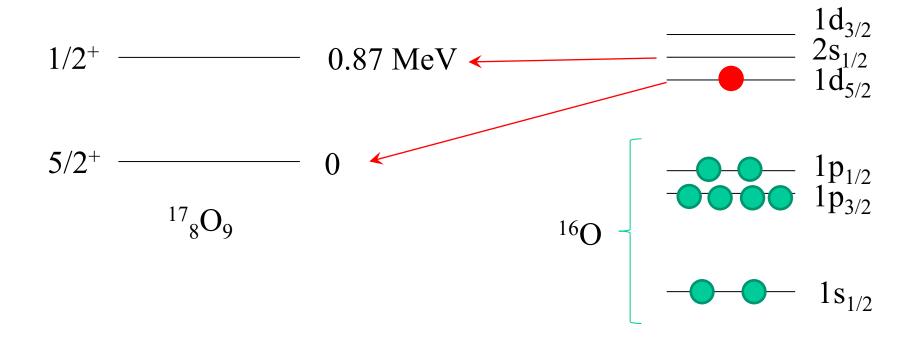


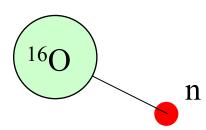
ポテンシャルの中での **一一** 独立粒子描像

核子間の相互作用: 核子の感じるポテンシャル としてのみ

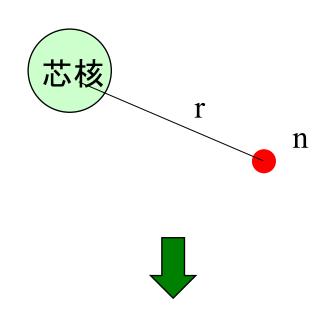


魔法数の説明

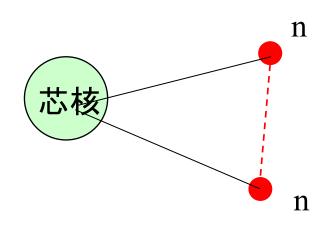




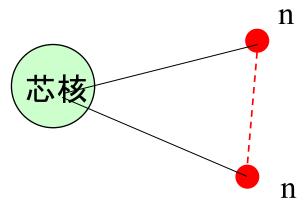
対相関



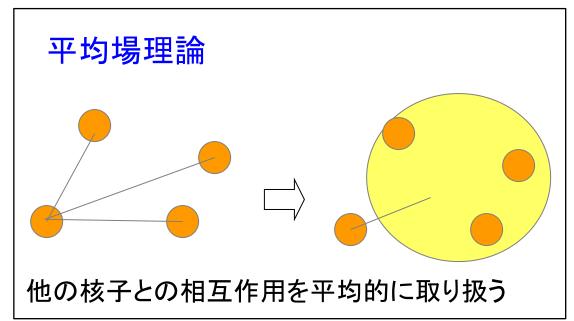
芯核のまわりに中性子が2個あるとどうなる?



2中性子間に働く相互作用の影響は?



2中性子間に働く相互作用の影響は?

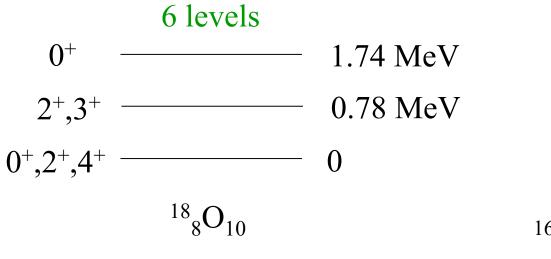


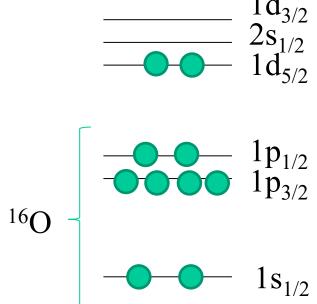
単純な平均場近似 → 2中性子が独立に運動 (2中性子間の相互作用は平均ポテンシャル にのみ反映される)

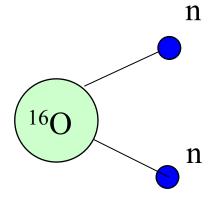
$$1/2^{+}$$
 0.87 MeV $= \frac{1d_{3/2}}{2s_{1/2}}$ $\frac{1d_{5/2}}{1d_{5/2}}$ $\frac{5/2^{+}}{17_8O_9}$ 0 $\frac{1p_{1/2}}{1p_{3/2}}$ $\frac{1p_{1/2}}{1p_{3/2}}$ $\frac{1s_{1/2}}{1s_{1/2}}$ $\frac{1d_{3/2}}{1s_{1/2}}$ $\frac{1d_{3/2}}{1d_{5/2}}$ $\frac{1d_$

2 MeV 以下に少なくとも6本の状態(?)

単純な平均場近似:



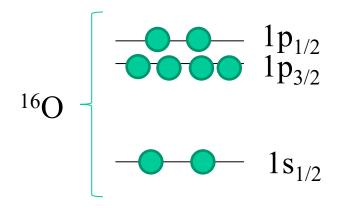




単純な平均場近似:

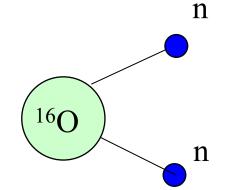
$$0^{+}$$
 — 1.74 MeV $2^{+},3^{+}$ — 0.78 MeV $0^{+},2^{+},4^{+}$ — 0

$\begin{array}{c} & 1d_{3/2} \\ 2s_{1/2} \\ 1d_{5/2} \end{array}$



実際には:

たったの2本!



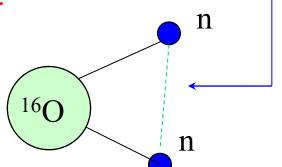
$$H = \sum_{i} T_{i} + \sum_{i < j} v_{ij} \to H = \sum_{i} (T_{i} + V_{i}) + \sum_{i < j} v_{ij} - \sum_{i} V_{i}$$

平均からのずれ (残留相互作用)

残留相互作用は完全に無視してもよいのか?

答え:no

開殻原子核では重要な役割を果たす ことが知られている(ペアリング)



(note) 摂動論がいい条件

$$H = H_0 + \Delta V$$

 $H_0 |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(0)}\rangle$

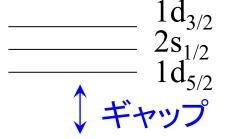
$$\to |\phi_n\rangle = |\phi_n^{(0)}\rangle + \sum_{m \neq n} \frac{\langle \phi_m^{(0)} | \Delta V | \phi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} |\phi_m^{(0)}\rangle$$

$$|\langle \phi_m^{(0)} | \Delta V | \phi_n^{(0)} \rangle| \ll |E_n^{(0)} - E_m^{(0)}|$$
 なら ΔV を無視できる

$$H = H_0 + \Delta V$$

$$|\langle \phi_m^{(0)} | \Delta V | \phi_n^{(0)} \rangle| \ll |E_n^{(0)} - E_m^{(0)}|$$
なら ΔV を無視できる

$$H = \sum_{i} T_{i} + \sum_{i < j} v_{ij} \to H = \sum_{i} (T_{i} + V_{i}) + \sum_{i < j} v_{ij} - \sum_{i} V_{i}$$



平均からのずれ (残留相互作用)

ギャップのためにΔEが大きい

→ 残留相互作用を無視できる

開殻核: ΔE が小さい

→ 残留相互作用を無視できない

対相関(ペアリング)

$$H = \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{HF}}(i) \right) + \underbrace{\frac{1}{2} \sum_{i,j}^{A} v(\boldsymbol{r}_i, \boldsymbol{r}_j) - \sum_{i} V_{\mathsf{HF}}(i)}_{i}$$

簡単のために、残留相互作用としてデルタ関数を仮定してみる (超短距離力)

$$v_{\mathsf{res}}(\boldsymbol{r}, \boldsymbol{r}') \sim -g \, \delta(\boldsymbol{r} - \boldsymbol{r}')$$

摂動論で残留相互作用の効果を見積もってみる:

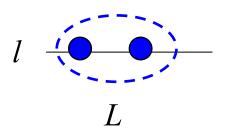
対相関(ペアリング)

$$H = \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{HF}}(i) \right) + \underbrace{\frac{1}{2} \sum_{i,j}^{A} v(r_i, r_j) - \sum_{i} V_{\mathsf{HF}}(i)}_{i}$$

簡単のために、残留相互作用としてデルタ関数を仮定してみる (超短距離力)

$$v_{\mathsf{res}}(\boldsymbol{r}, \boldsymbol{r}') \sim -g \, \delta(\boldsymbol{r} - \boldsymbol{r}')$$

摂動論で残留相互作用の効果を見積もってみる:



非摂動な波動関数:

角運動量lの状態に中性子2個、それが 全角運動量Lを組んでいる

$$|(ll)LM\rangle = \sum_{m,m'} \langle lmlm'|LM\rangle \psi_{lm}(\mathbf{r})\psi_{lm'}(\mathbf{r}')$$

対相関(ペアリング)

$$v_{\mathsf{res}}({m r},{m r}') \sim -g\,\delta({m r}-{m r}')$$

$$l$$
 L

$$|l| \langle l| LM \rangle = \sum_{m,m'} \langle lmlm' | LM \rangle \psi_{lm}(\mathbf{r}) \psi_{lm'}(\mathbf{r}')$$

残留相互作用によるエネルギー変化:

$$\Delta E_L = \langle (ll)LM|v_{\text{res}}|(ll)LM\rangle$$

$$= -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \begin{pmatrix} l & l & L \\ 0 & 0 & 0 \end{pmatrix}^2$$

$$I_r^{(l)} = \int_0^\infty r^2 dr (R_l(r))^4$$

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \left(\begin{array}{cc} l & l \\ 0 & 0 \end{array} \right)^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

A(ll;L)	L=0	L=2	L=4	L=6	L=8
l=2	5.00	1.43	1.43		
l=3	7.00	1.87	1.27	1.63	
l=4	9.00	2.34	1.46	1.26	1.81

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \left(\begin{array}{cc} l & l \\ 0 & 0 \end{array} \right)^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

A(ll;L)	L=0	L=2	L=4	L=6	L=8
l=2	5.00	1.43	1.43		
l=3	7.00	1.87	1.27	1.63	
l=4	9.00	2.34	1.46	1.26	1.81

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \begin{pmatrix} l & l & L \\ 0 & 0 & 0 \end{pmatrix}^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

A(ll;L)	L=0	L=2	L=4	L=6	L=8
l=2	5.00	1.43	1.43		
l=3	7.00	1.87	1.27	1.63	
l=4	9.00	2.34	1.46	1.26	1.81

$$0^+, 2^+, 4^+, 6^+, \dots$$

残留相互作用なし

$$\Delta E_L = -g I_r^{(l)} \frac{(2l+1)^2}{4\pi} \begin{pmatrix} l & l & L \\ 0 & 0 & 0 \end{pmatrix}^2 \equiv -g I_r^{(l)} \frac{A(ll;L)}{4\pi}$$

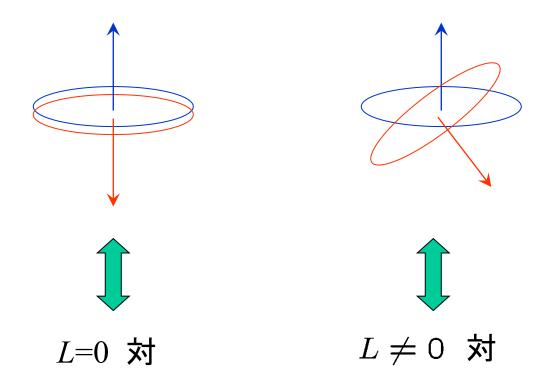
A(ll;L)	L=0	L=2	L=4	L=6	L=8
l=2	5.00	1.43	1.43		
l=3	7.00	1.87	1.27	1.63	
l=4	9.00	2.34	1.46	1.26	1.81

残留相互作用なし

残留相互作用あり

 0^{+}

簡単な解釈:



L=0 対に対して空間的重なりが最大(エネルギー的に得)

"対相関"

 $0^+, 2^+, 4^+, 6^+, \dots$

6⁺ 4⁺ 2⁺

残留相互作用なし

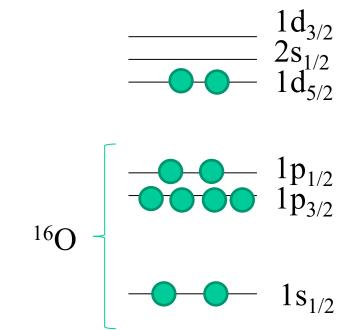
残留相互作用 あり

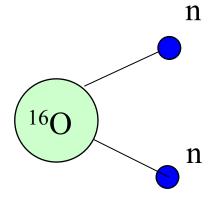
原子核の基底状態のスピン

- ▶偶々核:例外なしに 0+
- ▶ 奇核: 最外殻核子の角運動量と一致

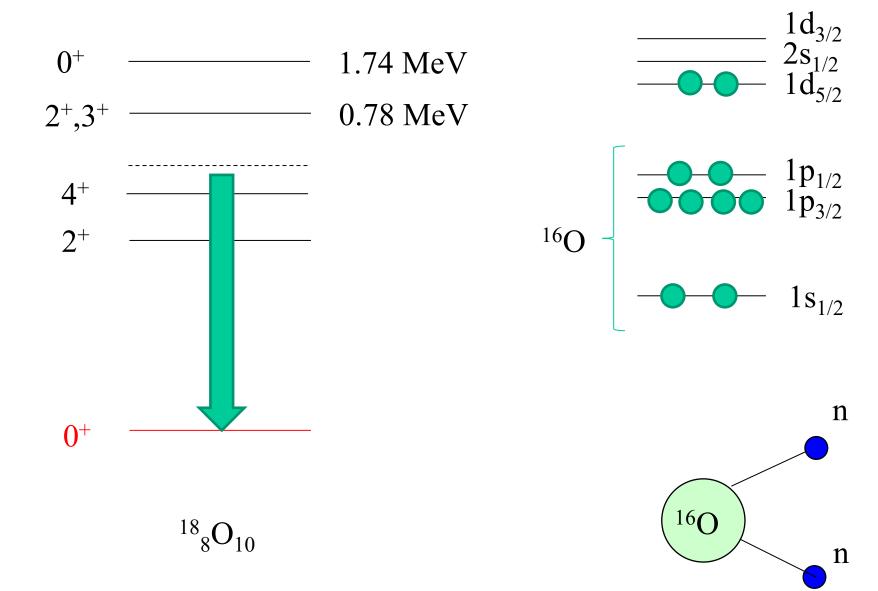
単純な平均場近似:

$$0^{+}$$
 1.74 MeV
 $2^{+},3^{+}$ 0.78 MeV
 $0^{+},2^{+},4^{+}$ 0





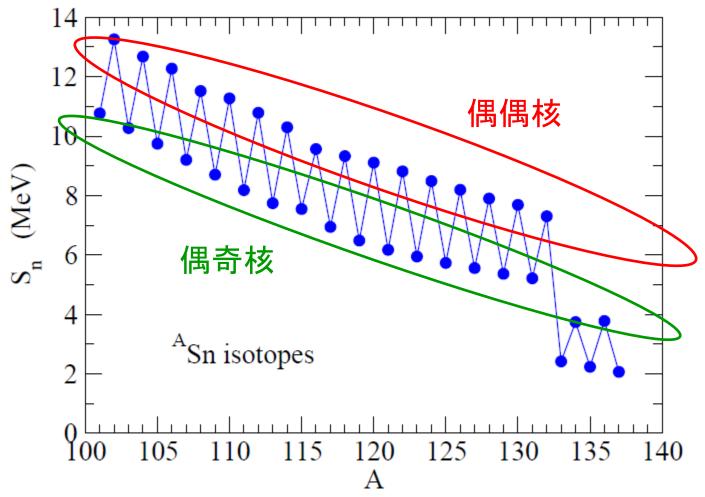
単純な平均場近似:



対相関エネルギー

even-odd staggering

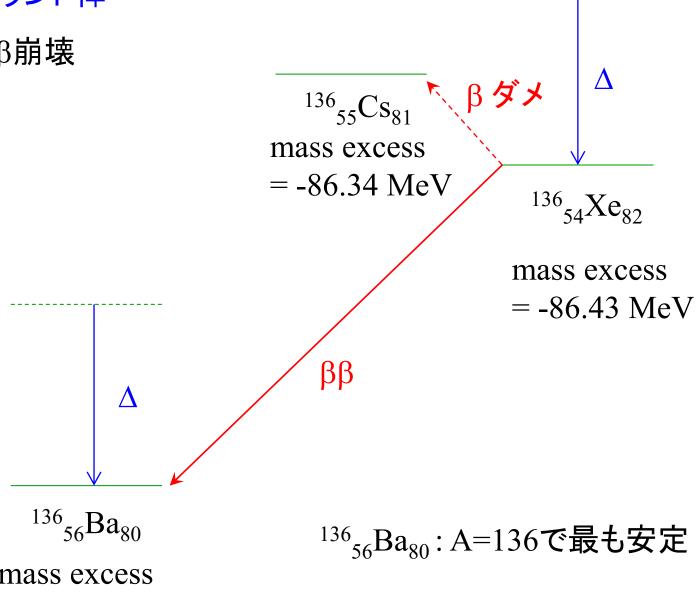
偶数個の中性子から1つ中性子 を取る方が奇数個から取るより 大きなエネルギーが必要:対相関



1n separation energy: $S_n(A,Z) = B(A,Z) - B(A-1,Z)$

(参考)カムランド禅

¹³⁶Xeの2重β崩壊



mass excess = -88.89 MeV

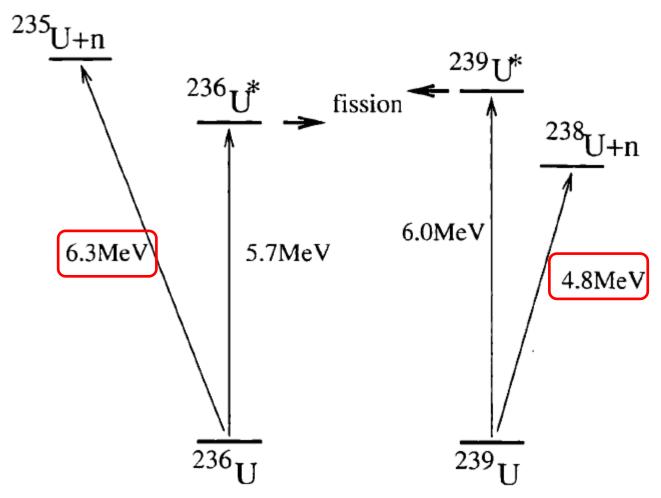
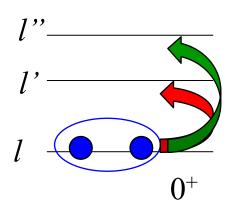
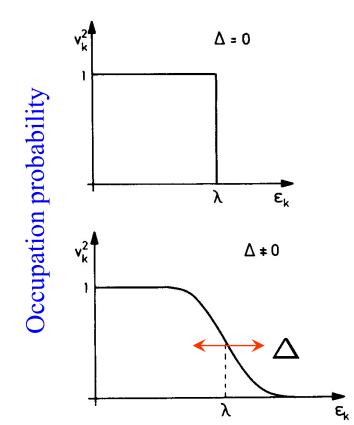


Fig. 6.6. Levels of the systems A=236 and A=239 involved in the fission of 236 U and 239 U. The addition of a motionless (or thermal) neutron to 235 U can lead to the fission of 236 U. On the other hand, fission of 239 U requires the addition of a neutron of kinetic energy $T_n=6.0-4.8=1.2\,\mathrm{MeV}$.

波動関数:

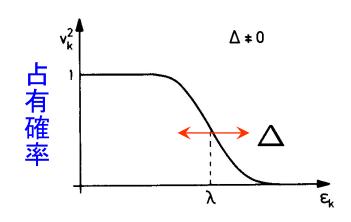




$$|\Psi_{0}^{+}\rangle = |(ll)L = 0\rangle$$

$$+ \sum_{l'} \frac{\langle (l'l')L = 0|v_{\text{res}}|(ll)L = 0\rangle}{2\epsilon_{l} - 2\epsilon_{l'}} |(l'l')L = 0\rangle + \cdots$$

波動関数:



$$|\Psi_{g.s.}\rangle =$$

$$\frac{2s_{1/2}}{1d_{5/2}} + \frac{2s_{1/2}}{1d_{5/2}} + \frac{1d_{3/2}}{2s_{1/2}} + \cdots$$

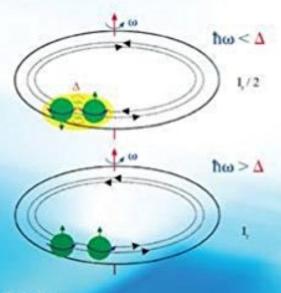
いろいろな配位を混ぜることによって対相関エネルギーを稼ぐ

→ 各軌道は部分的にのみ占有されることになる

占有確率はエネルギーを最小化するように決定 cf. BCS 理論 超流動状態

Fifty Years Nuclear BCS

Pairing in Finite Systems



Ricardo A Broglia Vladimir Zelevinsky

editors

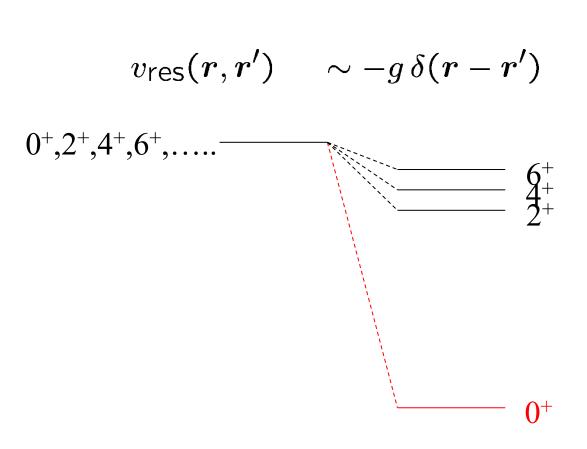
Nuclear Superfluidity

Pairing in Finite Systems

D. M. BRINK R. A. BROGLIA

CAMBRIDGE MONOGRAPHS
ON PARTICLE PHYSICS, NUCLEAR PHYSICS
AND COSMOLOGY

24



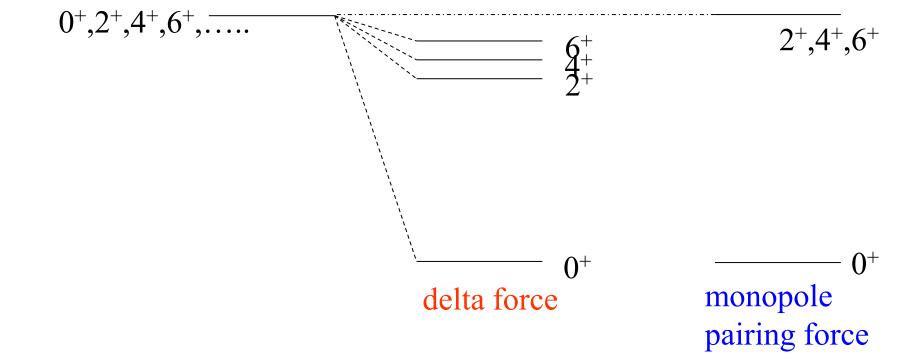
デルタ関数のままでもいいが、説明を簡単にするために もう少し簡単にした相互作用を導入する。

Simplified pairing interaction

$$V = -GP^{\dagger}P; \quad P^{\dagger} = \sum_{\nu>0} a_{\nu}^{\dagger} a_{\overline{\nu}}^{\dagger}$$

 $ar{
u}$: the time reversed state of u

e.g.,
$$|\nu\rangle = |njlm\rangle$$
, $|\bar{\nu}\rangle = |njl - m\rangle$



Simplified pairing interaction

$$V=-G\,P^\dagger P; \quad P^\dagger = \sum_{\nu>0} a_\nu^\dagger a_{\overline{\nu}}^\dagger \quad {\overline{\nu}} \quad {\rm in the \ time \ reversed \ state} \quad {\rm of \ } \nu$$

$$H = \sum_{k} \epsilon_k (a_k^{\dagger} a_k + a_{\overline{k}}^{\dagger} a_{\overline{k}}) - G\left(\sum_{k>0} a_k^{\dagger} a_{\overline{k}}^{\dagger}\right) \left(\sum_{k>0} a_{\overline{k}} a_k\right)$$

$$H = \begin{pmatrix} 2\epsilon_1 - G & -G & 0 & 0 \\ -G & 2\epsilon_2 - G & 0 & 0 \\ 0 & 0 & \epsilon_1 + \epsilon_2 & 0 \\ 0 & 0 & 0 & \epsilon_1 + \epsilon_2 \end{pmatrix}$$

$$\rightarrow \Psi_{g.s.} = C_1 \Psi_1 + C_2 \Psi_2$$