# Unbound nucleus <sup>26</sup>O Ground state decay and 2<sup>+</sup> state

# Kouichi Hagino (Tohoku Univ.) Hiroyuki Sagawa (Univ. of Aizu)





- 1. Di-neutron correlations in neutron-rich nuclei
- 2. Two-neutron decays of <sup>26</sup>O: three-body model
  - decay energy spectrum
  - angular distribution of two neutrons
- 3. Energy of the first 2<sup>+</sup> state in <sup>26</sup>O
- 4. Summary

Di-neutron correlations in neutron-rich nuclei

Strong di-neutron correlations in neutron-rich nuclei

- ✓ Borromean nuclei (3body calc.) Bertsch-Esbensen ('91) Zhukov et al. ('93) Hagino-Sagawa ('05) Kikuchi-Kato-Myo ('10)
- ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07)



K.H. and H. Sagawa, PRC72('05)044321 spatial localization of two neutrons
(dineutron correlation)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

dineutron correlation: caused by the admixture of different parity states





R

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091



-6-4-20246 z (fm) parity mixing

-6 -4 -2 0 2 4 z (fm) spatial localization of two neutrons
(dineutron correlation)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

## weakly bound systems

- → easy to mix different parity states due to the continuum couplings
  - + enhancement of pairing on the surface

→ dineutron correlation: enhanced

- cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
  - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326



# Di-neutron correlations in neutron-rich nuclei

Strong di-neutron correlations in neutron-rich nuclei



 ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07) How to probe it?

Coulomb breakup T. Nakamura et al. cluster sum rule (mean value of  $\theta_{nn}$ )  $\triangleright$  pair transfer reactions  $\blacktriangleright$  two-proton decays Coulomb 3-body problem <u>two-neutron decays</u> 3-body resonance due to a centrifugal barrier MoNA (<sup>16</sup>Be, <sup>13</sup>Li, <sup>26</sup>O) SAMURAI (<sup>26</sup>O) GSI (<sup>26</sup>O)

Two-neutron emission decays of <sup>26</sup>O (MoNA@MSU)

E. Lunderberg et al., PRL108 ('12) 142503 Z. Kohley et al., PRL 110 ('13)152501

 $^{27}$ F (82 MeV/u) +  $^{9}$ Be  $\rightarrow ^{26}$ O  $\rightarrow ^{24}$ O + n + n



#### 3-body model calculation for Borromean nuclei



$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$



# 3-body model analysis for <sup>26</sup>O decay

K.H. and H. Sagawa, PRC89 ('14) 014331

#### cf. Expt. : ${}^{27}F(82 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$





### $\geq$ <sup>24</sup>O + n potential

Woods-Saxon potential C.R. Hoffman et al., PRL100('08)152502  $e_{2s1/2} = -4.09 (13) \text{ MeV},$  $e_{1d3/2} = +770^{+20}$  keV,  $\Gamma_{1d3/2} = 172(30)$  keV  $\geq \frac{25}{F} + n \text{ potential}$  $(^{24}\text{O} + \text{n})$  potential  $(\delta V_{1s})$ pn tensor interaction T. Otsuka et al., PRL95('05)232502  $e_{1d3/2}$  (<sup>26</sup>F) = - 0.811 MeV <u>In interaction (density-dependent zero-range interaction)</u>

 $---E_{exp}$  (<sup>27</sup>F) = -2.80(18) MeV

#### Decay energy spectrum



### $\geq \frac{24O + n \text{ potential}}{24O + n \text{ potential}}$

Woods-Saxon potential to reproduce  $e_{2s1/2} = -4.09 (13) \text{ MeV},$   $e_{1d3/2} = +770^{+20} \text{ keV},$  $\Gamma_{1d3/2} = 172(30) \text{ keV}$ 

## ▶<u>nn interaction</u>

density-dep. contact interaction

$$E(^{27}F) = -2.69 \text{ MeV}$$

 $\frac{dP_I}{dE} = \sum_k |\langle \Psi_k^{(I)} | \Phi_{\mathsf{ref}}^{(I)} \rangle|^2 \,\delta(E - E_k) \qquad \text{overlap with a ref.} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ G^{(I)}(E) = G_0^{(I)}(E) - G_0^{(I)}(E)v(1 + G_0^{(I)}(E)v)^{-1}G_0^{(I)}(E) \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \text{state} \leftarrow 2n \text{ config. with} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5 F + n + n} \\ \frac{2^5 F + n + n}{2^5$ 

#### ← continuum effects

#### Decay energy spectrum

with final state nn interaction



Sensitivity to the initial wave function (how <sup>26</sup>O is formed)



## Angular correlation of the two emitted neutrons



K.H. and H. Sagawa, PRC89 ('14) 014331

correlation  $\rightarrow$  enhancement of back-to-back emissions  $\langle \theta_{nn} \rangle = 115.3^{\circ}$  $\leftarrow$  dineutron correlation





main contributions: *s*- and *p*-waves in three-body wave function (no or low centrifugal barrier)

\*higher *l* components: largely suppressed due to the centrifugal pot. ( $E_{decay} \sim 0.14 \text{ MeV}, e_1 \sim e_2 \sim 0.07 \text{ MeV}$ )

## $2^+$ state in ${}^{26}O$

#### Kondo et al. : a prominent second peak at $E \sim 1.3$ MeV



cf. sdpf-m:  $E_{2+} = 2.62 \text{ MeV}$  (Y. Utsuno) [according to Suzuki-san] ab-initio calc. with chiral NN+3N:  $E_{2+} = 1.6 \text{ MeV}$ (C. Caesar et al., PRC88('13)034313) continuum shell model:  $E_{2+} = 1.8 \text{ MeV}$ 

(A. Volya and V. Zelvinsky, PRC74 ('14) 064314)

<u>2<sup>+</sup> state of <sup>26</sup>O</u> Kondo et al. : a prominent second peak at  $E \sim 1.3$  MeV

(]



MeV)  

$$\frac{1.54}{1.354} = \frac{(d_{3/2})^2}{2^+}$$

a textbook example of pairing interaction!

cf. another set of parameters:  $E(0^+) = 5 \text{ keV}$  $E(2^+) = 1.338 \text{ MeV}$ 

K.H. and H. Sagawa, PRC90('14)027303



|                                    | <sup>25</sup> O (3/2 <sup>+</sup> ) | <sup>26</sup> O (2 <sup>+</sup> ) |
|------------------------------------|-------------------------------------|-----------------------------------|
| Experiment                         | $+ 770^{+20}_{-10} \text{ keV}$     | ~ 1.3 MeV                         |
| USDA                               | 1301 keV                            | 1.9 MeV                           |
| USDB                               | 1303 keV                            | 2.1 MeV                           |
| sdpf-m (Utsuno)                    | ?                                   | 2.6 MeV                           |
| chiral NN+3N                       | 742 keV                             | 1.6 MeV                           |
| continuum SM<br>(Volya-Zelevinsky) | 1002 keV                            | 1.8 MeV                           |
| 3-body model<br>(Hagino-Sagawa)    | 770 keV<br>(input)                  | 1.354 MeV                         |



# 2n emission decay of <sup>26</sup>O ← three-body model with density-dependent zero-range interaction: continuum calculations: relatively easy

- ✓ Decay energy spectrum: strong low-energy peak
- ✓ Energy distribution of 2 neutrons: three-body resonance
- $2^+$  energy
- ✓ Angular distributions: enhanced back-to-back emission

→ dineutron emission



## □open problems

✓ Analyses for <sup>16</sup>Be, <sup>13</sup>Li (especially angular distributions)
 ✓ Decay width?