Taking a snapshot of a nucleus

: an intersection between low-energy and relativistic H.I. collisions

Kouichi Hagino Kyoto University, Kyoto, Japan

- 1. Introduction
- 2. Low-energy Nuclear Reactions: overview
- 3. Role of deformation in sub-barrier fusion reactions
- 4. A short comment on relativistic heavy-ion collisions
- 5. Summary

New Frontiers in Nuclear Physics and Nuclear Astrophysics (NNPA2025), TARLA, Ankara, Turky, 2025.9.1-5

Snapshots

taking snapshots of a "slow" motion with a high-speed camera $\tau_{\rm camera} \ll \tau_{\rm motion}$

https://www.sony.jp/ichigan/products/ILCE-7M3/feature_3.html

(photos with a Sony camera α 7III)

taking snapshots of a nucleus with a "fast" nuclear reaction

 $\tau_{\rm reaction} \ll \tau_{\rm nucleus}$

Snapshots

taking a snapshot of a nucleus with a "fast" nuclear reaction

low-energy H.I. fusion reactions of a deformed nucleus

relativistic H.I. collisions with a deformed nucleus

J. Jia et al., Nucl. Sci. Tech. 35, 220 (2024)

increasing interests in recent years

Introduction: low-energy nuclear reactions

nucleus: a composite system

- ✓ various sort of reactions
- ✓ an interplay between nuclear structure and reaction

shapes, excitations,

- elastic scattering
- inelastic scattering
- transfer reactions
- breakup reactions
- fusion reactions

Andrea Vitturi (1949-2024)

Andrea was a world expert of heavy-ion reactions.

- > many papers with Carlos Dasso (Dasso-Vitturi)
- ➤ I met Andrea for the first time in summer, 1994.
 - I was a master course student.
 - My supervisor, Noboru Takigawa, took me with him to a month visit to David Brink at Trento.
 - At the time, we traveled to Padova and Catania.

"Inelastic scattering"
S. Landowne and A. Vitturi,
"Treatise of Heavy-Ion Science"
Vol. 1 (1984).

Role of breakup in subbarrier fusion reactions

M.S. Hussein, M.P. Pato, L.F. Canto, and R. Donangelo, PRC46, 377 (1992). N. Takigawa, M. Kuratani, and H. Sagawa, PRC47, R2470 (1993).

Does the presence of ¹¹Li breakup channels reduce the cross section for fusion processes?

C. H. Dasso^{1,2} and A. Vitturi³

¹The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

²Sektion Physik der Universität München, D-85748, Garching, Germany

³University of Padova and Istituto Nazionale di Fisica Nucleare, Padova, Italy

(Received 10 December 1993)

Both $V_{\rm DPP}$ and $W_{\rm DPP}$ should be taken into account

→ enhancement of fusion cross sections (a schematic 2-channel problem)

C.H. Dasso and A. Vitturi, Phys. Rev. C50, R12 (1994).

Role of breakup in subbarrier fusion reactions

- ✓ in 1998-2000, I was a post-doc at INT, Seattle.
- ✓ Andrea visited Seattle to attend a program of INT
- ✓ We discussed about fusion of unstable nuclei, and later Andrea invited me to Padova for a month (Lorenzo Fortunato was a student at that time).

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61, 037602 (2000).

K.Hagino, A. Vitturi, F. Perez-Bernal, and H. Sagawa, J. of Phys. G38 ('11) 015015

NNPA2018 (the 1st NNPA symposium) May 28-June 1, 2018, Antalya, Turkey

Lucia and Andrea

Sub-barrier fusion reactions and quantum tunneling

Fusion with quantum tunneling

with many degrees of freedom

- several nuclear shapes

- several surface vibrations

several modes and adiabaticities

- several types of nucleon transfers

Tunneling probabilities: the exponential E dependence

→ nuclear structure effects are amplified

Sub-barrier fusion reactions and quantum tunneling

K. H. and N. Takigawa, Prog. Theo. Phys. 128 ('12)1061.

Effects of nuclear deformation on fusion

$$0.544 - 6^{+}$$

$$0.267 - 4^{+}$$

$$0.082 \frac{}{0} \frac{}{}_{154} \text{Sm} \frac{}{0^{+}}$$

rotational spectrum

a small rotational energy

$$E_I = \frac{I(I+1)\hbar^2}{2\mathcal{J}}$$

- \rightarrow a large moment of inertia J
- \rightarrow rotation: a slow deg. of freedom

$$E_{\rm rot} \sim E_{2^+} = 82 \ {\rm keV}$$

 $E_{\rm tunnel} \sim \hbar \Omega_{\rm barrier} \sim 3.5 \ {\rm MeV}$

$$\Psi_{0^+} = \bigcirc + \bigcirc + \bigcirc + \bigcirc$$

 \rightarrow a spherical state in the lab. system

fix the orientation angle to calculate the fusion probability

"a snapshot of a rotating nucleus"

Effects of nuclear deformation on fusion

154Sm

¹⁵⁴Sm: a typical deformed nucleus

Fusion: strong interplay between nuclear structure and reaction

Fusion barrier distribution

$$D_{\mathsf{fus}}(E) = \frac{d^2(E\sigma_{\mathsf{fus}})}{dE^2}$$

N. Rowley, G.R. Satchler, and P.H. Stelson, PLB254 ('91) 25

K.H. and N. Takigawa, PTP128 ('12) 1061

Fusion barrier distribution

sensitive to the sign of β_4 !

Fusion as a quantum tunneling microscope for nuclei

spherical

Determination of β_4 of ²⁴Mg with quasi-elastic barrier distributions

Y.K. Gupta, B.K. Nayak, U. Garg, K.H., et al., PLB806, 135473 (2020).

high precision determination of β_4 \rightarrow for the first time

cf. (p,p'): $\beta_4 = -0.05 + /-0.08$

R. De Swiniarski et al., PRL23, 317 (1969)

Emulator for multi-channel scattering

Y.K. Gupta, V.B. Katariya, G.K. Prajapati, K.Hagino et al., PLB845, 138120 (2023).

needs to repeat many calculations with different (β_2, β_4)

→ an emulator to speed-up the calculations based on the eigenvector continuation

$$\Psi(\theta) = \sum_{i=1}^{N} c_i \Psi(\theta_i)$$

K. Hagino, Z. Liao, S. Yoshida, M. Kimura, and K. Uzawa, Phys. Rev. C112, 024618 (2025).

Probing nuclear shapes in Relativistic Heavy-Ion collisions

M.I. Abdulhamid et al. (STAR collaboration) Nature 635, 67 (2024)

 \rightarrow am intersection of **High** E and **Low** E HI collisions

Probing nuclear shapes in Rel. H.I. collisions

flow: the final N-distribution

$$\frac{1}{N}\frac{dN}{d\phi} = \frac{1}{2\pi} \left[1 + 2\sum_{n} v_n \cos n(\phi - \Psi_n) \right]$$

elliptic flow v_2

the ratio of $^{129}\text{Xe} + ^{129}\text{Xe}$ to $^{208}\text{Pb} + ^{208}\text{Pb}$ \rightarrow quadrupole deformation of ^{129}Xe

other examples:

- \checkmark γ deformation
- ✓ a cluster

the ratio of 96 Ru+ 96 Ru to 96 Zr+ 96 Zr

→ octupole deformation of ⁹⁶Zr

J. Jia et al., Nucl. Sci. Tech. 35, 220 (2024)

Probing nuclear shapes in Relativistic Heavy-Ion collisions

So far, the focus has been mainly on a static deformation of a deformed nucleus

There also exist several <u>dynamical</u> deformations of a spherical nucleus

$$\langle \beta \rangle = 0$$

but fluctuates around $\beta=0$ (zero-point motion)

cf. 1-dim. H.O.
$$\phi(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2}$$

$$\to \langle x \rangle = 0, \quad \langle x^2 \rangle = 1/2\alpha$$

the situation may be the same in Relativistic HIC as well

Probing nuclear shapes in Rel. H.I. collisions

$$\langle \beta \rangle = 0$$

but fluctuates around $\beta=0$

In most of the cases, the vibrational motion is not slow for fusion:

$$E_{
m vib} \sim 2 {
m MeV}$$
 $E_{
m tunnel} \sim \hbar \Omega_{
m barrier} \sim 3.5 {
m MeV}$

→ but this can be very slow in rel. H.I. collisions!

the adiabatic approximation for vibrations:

H. Esbensen, Nucl. Phys. A352, 147 (1981)

FUSION AND ZERO-POINT MOTIONS

H. ESBENSEN

Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Received 14 July 1980

$$\sqrt{\langle\beta_{\lambda}^{2}\rangle}=\frac{4\pi}{3ZR^{\lambda}}\sqrt{\frac{B(E\lambda)\uparrow}{e^{2}}}$$

$$\sigma_{\text{fus}}(E) \sim \int d\beta \, w(\beta) \sigma_0(E;\beta)$$
$$w(\beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \, e^{-\beta^2/2\sigma^2}$$

Probing nuclear shapes in Rel. H.I. collisions

Very recent preprint: D. Xu et al., arXiv: 2504.19644

A "breathing" octupole ²⁰⁸Pb nucleus: resolving the elliptical-to-triangular azimuthal anisotropy puzzle in ultracentral relativistic heavy ion collisions

Duoduo Xu, Shujun Zhao, Hao-jie Xu, 2,3,* Wenbin Zhao, 4,5,† Huichao Song, 1,6,7,‡ and Fuqiang Wang^{8,§}

octupole vibration of ²⁰⁸Pb

Probing nuclear shapes in Relativistic H.I. collisions

eccentricity parameter: deformation parameter of $\rho_z(x,y) \equiv \int_{-\infty}^{\infty} dz \, \rho(\mathbf{r})$

$$\epsilon_2(\{\alpha_{2\mu}\}) = -\frac{\int d\mathbf{r} \, r_\perp^2 \, e^{2i\phi} \rho(\mathbf{r}, \{\alpha_{2\mu}\})}{\int d\mathbf{r} \, r_\perp^2 \, \rho(\mathbf{r}, \{\alpha_{2\mu}\})} = -\frac{\langle (x - iy)^2 \rangle}{\langle x^2 + y^2 \rangle}$$

deformed Woods-Saxon density

$$\rho(\boldsymbol{r}, \{\alpha_{\lambda\mu}\}) = \frac{\rho_0}{1 + e^{(r - R(\theta, \phi))/a}}; \qquad R(\theta, \phi) = R_0 \left(1 + \sum_{\lambda, \mu} \alpha_{\lambda\mu} Y_{\lambda\mu}^*(\hat{\boldsymbol{r}})\right)$$

surface vibration

$$H = \frac{1}{2} \sum_{\lambda,\mu} \left(B_{\lambda} |\dot{\alpha}_{\lambda\mu}|^2 + C_{\lambda} |\alpha_{\lambda\mu}|^2 \right)$$
$$\langle |\epsilon_n|^2 \rangle \propto \int \left(\prod_{\lambda,\mu} d\alpha_{\lambda\mu} e^{-\alpha_{\lambda\mu}^2/2\sigma_{\lambda}^2} \right) |\epsilon_n(\{\alpha_{\lambda\mu}\})|^2$$

static deformation (axial symmetry)

$$\alpha_{\lambda\mu} = \beta_{\lambda} D_{0\mu}^{\lambda}(\Omega)$$
$$\langle |\epsilon_n|^2 \rangle = \int \frac{d\Omega}{8\pi^2} |\epsilon_n(\Omega)|^2$$

Probing nuclear shapes in Relativistic H.I. collisions

$$\epsilon_2(\{\alpha_{2\mu}\}) = -\frac{\langle (x-iy)^2 \rangle}{\langle x^2 + y^2 \rangle}$$

 58 Ni+ 58 Ni scattering ($\beta_2 \sim 0.218$)

$$\begin{cases} \langle |\epsilon_n|^2 \rangle \propto \int \left(\prod_{\lambda,\mu} d\alpha_{\lambda\mu} \, e^{-\alpha_{\lambda\mu}^2/2\sigma_{\lambda}^2} \right) |\epsilon_n(\{\alpha_{\lambda\mu}\})|^2 & \text{(vib.)} \end{cases}$$

$$\langle |\epsilon_n|^2 \rangle = \int \frac{d\Omega}{8\pi^2} \, |\epsilon_n(\Omega)|^2 & \text{(static def.)}$$

Monte Carlo sampling (3000 samples)

$$\rho_z(x,y) \equiv \int_{-\infty}^{\infty} dz \, \rho(\mathbf{r})$$

K. Hagino and M. Kitazawa, arXiv: 2508.05125

Probing nuclear shapes in Relativistic H.I. collisions

 58 Ni+ 58 Ni scattering ($\beta_2 \sim 0.218$)

triaxiality

$$\alpha_{2\mu} = D_{0\mu}^2(\Omega)\beta_2\cos\gamma + \frac{1}{\sqrt{2}}\left(D_{2\mu}^2(\Omega) + D_{-2\mu}^2(\Omega)\right)\beta_2\sin\gamma \ \overline{\underline{\omega}} \ 0.1$$

$$\langle |\epsilon_n|^2 \rangle = \int \frac{d\Omega}{8\pi^2} |\epsilon_n(\Omega)|^2$$

$$\epsilon_2(\{\alpha_{2\mu}\}) = -\frac{\langle (x-iy)^2 \rangle}{\langle x^2 + y^2 \rangle}$$

K. Hagino and M. Kitazawa, arXiv: 2508.05125

Summary

Heavy-ion fusion reactions around the Coulomb barrier

- ✓ Strong interplay between nuclear structure and reaction
- ✓ Quantum tunneling with various intrinsic degrees of freedom
- ✓ Role of deformation in sub-barrier enhancement
 - → a snapshot of the rotational motion

✓ <u>Similarities between low-E H.I. fusion and Relativistic H.I. Collisions</u>

→ a snapshot of a nucleus

A tool to probe nuclear deformations

→ surface vibrations of a spherical nucleus

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91) 25)

$$D_{\text{fus}}(E) = \frac{d^2(E\sigma_{\text{fus}})}{dE^2} \sim \pi R_b^2 \frac{dP_{l=0}}{dE}$$

Data: J.R. Leigh et al., PRC52 (1995) 3151

Fusion as a quantum tunneling microscope for nuclei

similar enhancement for non-deformed nuclei

strong correlation with nuclear spectrum

→ coupling assisted tunneling phenomena

Coulomb barrier

- 1. Coulomb interaction long range, repulsion
- 2. Nuclear interaction short range, attraction

Potential barrier (Coulomb barrier)

Fusion: takes place by overcoming the barrier

the barrier height \rightarrow defines the energy scale of a system

Fusion reactions at energies around the Coulomb barrier

Discovery of large sub-barrier enhancement of σ_{fus} (~80's)

the potential model: inert nuclei (no structure)

$$\sigma_{\text{fus}} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-|S_l|^2)$$

$$10^3 \frac{1}{10^2} \frac{1}{10^4} \frac{1}{10^4}$$

¹⁵⁴Sm: a typical deformed nucleus

$$0.544 - 6^{+}$$

$$0.267 - 4^{+}$$

$$0.082 \frac{154}{\text{Sm}}$$

rotational spectrum

K. H. and N. Takigawa, Prog. Theo. Phys. 128 ('12)1061.

$$\sigma_{\text{fus}}(E) = \int_0^1 d(\cos \theta) \sigma_{\text{fus}}(E; \theta)$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

¹⁵⁴Sm: a typical deformed nucleus

$$0.544 - 6^{+}$$

$$0.267 - 4^{+}$$

$$0.082 \frac{154}{\text{Sm}}$$

rotational spectrum

K. H. and N. Takigawa, Prog. Theo. Phys. 128 ('12)1061.

$$\sigma_{\text{fus}}(E) = \int_0^1 d(\cos \theta) \sigma_{\text{fus}}(E; \theta)$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

$$\theta$$

Emulator for multi-channel scattering

Y.K. Gupta, V.B. Katariya, G.K. Prajapati, K.Hagino et al., PLB845, 138120 (2023).

needs to repeat many calculations with different (β_2, β_4)

→ an emulator to speed-up the calculations

Eigenvector continuation

> bound state problems:

$$H(\theta)|\Psi(\theta)\rangle = E(\theta)|\Psi(\theta)\rangle$$

$$\Psi(\theta) = \sum_{i=1}^{N} c_i \Psi(\theta_i)$$

T. Duguet et al., Rev. Mod. Phys. 96, 031002 (2024)

- > Extension to scattering problems:
 - R. Furnstahl et al., PLB809, 135719 (2020)
 - C. Drisshler et al., PLB823, 136777 (2021)
 - J. Liu, J. Lei, and Z. Ren, PLB858, 139070 (2024)
 - K. Hagino, Z. Liao, S. Yoshida, M. Kimura, and K. Uzawa, arXiv: 2504.14922

1D two-channel problem:

$$H = \begin{pmatrix} V(x) & F(x) \\ F(x) & V(x) + \epsilon \end{pmatrix}$$
 $V(x) = V_0 e^{-x^2/2s^2}$ $F(x) = F_0 e^{-x^2/2s_f^2}$ $V_0 = 100 \text{ MeV}, s = s_f = 3 \text{ fm},$ $V_0 = 3 \text{ MeV}$

$$\Psi_E(x, F_0) = \sum_{i=1-5} c_i \Psi_E(x, F_{0i})$$

$$F_{0i} = 1.5, 2.0, 2.5, 3.5, 4.5 \text{ MeV}$$

to simulate $F_0 = 3 \text{ MeV}$

EC: the discrete basis method + Kohn variation principle cf. K.H. and G.F. Bertsch, PRC110, 054610 (2024)

K. H., Z. Liao, S. Yoshida, M. Kimura, and K. Uzawa, arXiv: 2504.14922

Probing nuclear shapes in Rel. H.I. collisions

M.I. Abdulhamid et al. (STAR collaboration) Nature 635, 67 (2024)