Perspectives on nuclear reaction theory and superheavy elements

Kouichi Hagino (Sendai \rightarrow) Kyoto University, Kyoto, Japan

- 1. Nuclear Reactions: overview
- 2. Coupled-channels approach with a beyond-mean-field method
- 3. Time-dependent GCM for many-body tunneling
- 4. Fusion for superheavy elements and TDHF
- 5. Summary

Workshop on new generation nuclear density functionals, 2019.11.18-22, Peking University

Introduction: low-energy nuclear physics

■ behaviors of atomic nuclei as a quantum many-body systems

understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties (mass, size, shape,....)
 - \checkmark excitations
 - ✓ nuclear matter
 - ✓ decays

> dynamics: nuclear reactions

an interplay between nuclear structure and nuclear reaction

P

the barrier height \rightarrow defines the energy scale of a system

Fusion reactions at energies around the Coulomb barrier

Fusion reactions: compound nucleus formation

cf. Bohr '36

energy production in stars (Bethe '39)

nucleosynthesis

Proton Jeutron Y Gamma Ray

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Discovery of large sub-barrier enhancement of σ_{fus} (~80's)

potential model: inert nuclei (no structure)

Discovery of large sub-barrier enhancement of σ_{fus} (~80's)

¹⁵⁴Sm : a typical deformed nucleus

K. H. and N. Takigawa, Prog. Theo. Phys.128 ('12)1061.

Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

TDHF simulation

TDHF = Time Dependent Hartree-Fock (a single Slater determinant)

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15) 020056

ab-initio, but no tunneling

Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

two-body problem, but with excitations (coupled-channels approach)

scattering theory with excitations

Coupled-channels method: a quantal scattering theory with excitations

Inputs for C.C. calculations

i) Inter-nuclear potential

 \checkmark a fit to experimental data at above barrier energies

- ii) Intrinsic degrees of freedom
 - ✓ types of collective motions (rotation / vibration) a/o transfer
 - \checkmark coupling strengths and excitation energies
 - \checkmark how many states

Semi-microscopic modeling of sub-barrier fusion

K.H. and J.M. Yao, PRC91('15) 064606

3

()

 \mathcal{A}

 2^{+}

Simple harmonic oscillator \rightarrow justifiable?

Anharmonic vibrations

- Boson expansion
- Quasi-particle phonon model
- Shell model
- Interacting boson model
- Beyond-mean-field method

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

 MF + ang. mom. projection
 + particle number projection
 + generator coordinate method (GCM)

M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 ('03) 121 J.M. Yao et al., PRC89 ('14) 054306

Semi-microscopic coupled-channels model for sub-barrier fusion

✓ *M*(E2) from MR-DFT calculation ← ✓ scale to the empirical B(E2; $2_1^+ \rightarrow 0_1^+$)

- among higher members of phonon states

- \checkmark still use a phenomenological potential
- ✓ use the experimental values for E_x

* axial symmetry (no 3⁺ state)

⁵⁸Ni+⁵⁸Ni

anharmonicity of 2^+ phonon \rightarrow only a minor improvement

Next, more non-trivial case with 2⁺ - 3⁻ coupling: anharmonicity of oct. vib. in ²⁰⁸Pb

K.H. and J.M. Yao, PRC91 ('15) 064606

Application to ¹⁶O + ²⁰⁸Pb fusion reaction

double-octupole phonon states in ²⁰⁸Pb

M. Yeh, M. Kadi, P.E. Garrett et al., PRC57 ('98) R2085
K. Vetter, A.O. Macchiavelli et al., PRC58 ('98) R2631
V. Yu. Pnomarev and P. von Neumann-Cosel, PRL82 ('99) 501
B.A. Brown, PRL85 ('00) 5300

large fragmentations, especially 6⁺ state

Application to ¹⁶O + ²⁰⁸Pb fusion reaction

cf. C.R. Morton et al., PRC60('99) 044608

 2_1^+ state: strong coupling both to g.s. and $3_1^ \longrightarrow |2_1^+\rangle = \alpha |2^+\rangle_{HO} + \beta |[3^- \otimes 3^-]^{(I=2)}\rangle_{HO} + \cdots$

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

TDHF = Time Dependent Hartree-Fock

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15)

ab initio, but no tunneling

dynamics with a superposition of many "TDHF trajectories (Slater determinants)"

> cf. Stochastic mean-field method B. Yilmaz et al., PRC90 ('14) 054617

 $\alpha + \alpha$ in 1D

 $\Psi(t) = \sum_{k} \frac{f_k(t) \Phi_{\text{SD},k}(t)}{\sqrt{1-\frac{1}{2}}}$

time-dep. variational principle

$$\delta \int dt \frac{\langle \Psi(t) | i\hbar \partial_t - H | \Psi(t) \rangle}{\langle \Psi(t) | \Psi(t) \rangle} = 0$$

 $\alpha + \alpha$ in 1D

N. Hasegawa, K.H., and Y. Tanimura, in preparation

Fusion for superheavy elements

a prediction of island of stability (Swiatecki et al., 1966)

Fusion for SHE: fusion hindrance

strong Coulomb repulsion \rightarrow re-separation

- formation of SHE: very rare \rightarrow a large theoretical uncertainty
- ✓ no exp. data for P_{CN} ✓ exp. data: P_{ER} only

CN=複合核、ER=蒸発残留核

theoretical challenges: to reduce the uncertainties and make reliable predictions

fusion hindrance

Physics of open quantum systems

Langevin approach

V(E) (MeV)

 γ : friction coefficient R(t): random force

Extension of fusion-by diffusion model

K. Hagino, PRC98 ('18) 014607

cf. barrier distribution measurements by Tanaka et al.

hot fusion reactions with ⁴⁸Ca:

$${}^{48}_{20}\text{Ca} + {}_{99}\text{Es} \rightarrow 119$$

 ${}^{48}_{20}\text{Ca} + {}_{100}\text{Fm} \rightarrow 120$

short lived →not available with sufficient amounts

 $^{48}\text{Ca} \rightarrow {}^{50}_{22}\text{Ti}, {}^{51}_{23}\text{V}, {}^{54}_{24}\text{Cr projectiles}$

how much will

cross sections be affected?

closed shell \rightarrow open shells

TDHF + Langevin approach

Mapping TDHF onto a classical equation of motion

K. Washiyama and D. Lacroix, PRC78 ('08) 024610

TDHF simulations

<u>New hybrid model: TDHF + Langevin approach</u>

K. Sekizawa and K.H., PRC99 (2019) 051602(R)

<u>New model for fusion for SHE: TDHF + Langevin approach</u>

K. Sekizawa and K.H., PRC99 (2019) 051602(R)

how special is ⁴⁸Ca ?

				$\overline{}$		
System	CN	E* (MeV)	R _{min} (fm)	$\begin{array}{c} P_{\rm CN} \\ (\times 10^4) \end{array}$	$W_{\rm sur}$ (×10 ⁹)	$\frac{P_{\rm CN} W_{\rm sur}}{(\times 10^{13})}$
$^{48}Ca + ^{254}Fm$	³⁰² 120	29.0	12.93	1.72	176	302
$^{54}Cr + ^{248}Cm$	³⁰² 120	33.2	13.09	1.89	1.31	2.47
$^{51}V + {}^{249}Bk$	³⁰⁰ 120	37.0	12.94	3.95	0.117	0.461
$^{48}Ca + ^{257}Fm$	³⁰⁵ 120	30.5	12.94	2.49	0.729	1.82
				$\bigcup_{i \in \mathcal{I}} f_{i}(i) = f_{i}(i)$		
		similar $P_{\rm CN}$				

no special role of ⁴⁸Ca in the entrance channel

From phenomenological to microscopic nuclear reaction theories

Macroscopic (phenomenological)

FUSION20

November 15-20, 2020 Shizuoka, Japan

Kouichi Hagino (co-chair) Kyoto University Katsuhisa Nishio (co-chair) JAEA

> Japan-China joint organization Program Committee Japanese members + L. Guo, X. Tang, S.G. Zhou

FISION20

November 15-20, 2020 Shizuoka, Japan

Kouichi Hagino (co-chair) Kyoto University Katsuhisa Nishio (co-chair) JAEA

> Japan-China joint organization Program Committee Japanese members + L. Guo, X. Tang, S.G. Zhou

Shizuoka Convention Beaureau: Taichiro Ishida

FUSION20

November 15-20, 2020 Shizuoka, Japan

Kouichi Hagino (co-chair) Kyoto University Katsuhisa Nishio (co-chair) JAEA

> Japan-China joint organization **Program Committee** Japanese members + L. Guo, X. Tang, S.G. Zhou

tennessine

117

Shizuoka Convention Beaureau: Taichiro Ishida (石田)

