Fusion barrier distribution and superheavy elements (SHE)

Kouichi Hagino Tohoku University, Sendai, Japan

1. Heavy-ion sub-barrier fusion reactions

- 2. Coupled-channels approach and barrier distributions
- 3. Application to superheavy elements
- 4. Quantum friction
- 5. Summary

XLI Brazilian Meeting on Nuclear Physics, Maresias, Brazil, Sep. 2-6, 2018

Fusion reactions: compound nucleus formation

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flore reaching 588 000 km off solar surfa

energy production in stars

nucleosynthesis

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

- microscopic understanding: an ultimate goal of nuclear physics

Fusion reactions: compound nucleus formation

Why sub-barrier fusion?

two obvious reasons:

- i) Superheavy elements
- ii) Nuclear Astrophysics

Fusion reactions for SHE

island of stability around Z=114, N=184

W.D. Myers and W.J. Swiatecki (1966), A. Sobiczewski et al. (1966)

Why sub-barrier fusion?

two obvious reasons:

figure: M. Aliotta

NASA, Skylab space station December 19, 1973, solar flare reaching 583 000 km off solar surface

nuclear astrophysics (nuclear fusion in stars) cf. extrapolation of data

Why sub-barrier fusion?

Two obvious reasons:

✓ discovering new elements (SHE)✓ nuclear astrophysics (fusion in stars)

Other reasons:

many-particle tunneling

Why sub-barrier fusion?

Two obvious reasons:

✓ discovering new elements (SHE) \checkmark nuclear astrophysics (fusion in stars)

Other reasons:

reaction mechanism strong interplay between reaction and nuclear structure cf. high E reactions: much simpler reaction mechanism

many-particle tunneling

 \checkmark many types of intrinsic degrees of freedom

 \checkmark energy dependence of tunneling probability cf. alpha decay: fixed energy

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

Nh Mc nihonium Ts Og

Discovery of large sub-barrier enhancement of σ_{fus}

potential model: V(r) + absorption

cf. seminal work: R.G. Stokstad et al., PRL41('78) 465 Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

two-body problem, but with excitations (coupled-channels approach)

scattering theory with excitations

An example of coupled-channels calculation

C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)

✓ Fusion barrier distribution [Rowley, Satchler, Stelson, PLB254('91)]

$$D_{\text{fus}}(E) = \frac{d^2(E\sigma_{\text{fus}})}{dE^2} \propto \frac{dP_{l=0}}{dE}$$

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

a nice tool to understand the reaction dynamics

K.H., N. Takigawa, PTP128 ('12) 1061

Recent application to SHE : Quasi-elastic B.D.

hot fusion reactions ${}^{48}Ca + actinide target \rightarrow SHE$ $= deformation \longrightarrow$ reaction dynamics with barrier distributions?

Quasi-elastic barrier distribution

$$D_{\text{qel}}(E) = -\frac{d}{dE} \left(\frac{\sigma_{\text{qel}}(E,\pi)}{\sigma_R(E,\pi)} \right)$$

Quasi-elastic scattering

- : reflected flux at the barrier
 - a sum of elastic, inelastic, and transfer
 - easier to measure than capture

H. Timmers et al., NPA584('95)190 K.H. and N. Rowley, PRC69('04)054610

E. Crema et al., PRC88 ('13) 044616

previous attempts

S. Mitsuoka et al., PRL99 ('07) 182701

Q1

Focal-plane detection

ensity monitor

nihonium

Q2

<u>C.C. analysis for a hot fusion reaction ${}^{48}Ca + {}^{248}Cm$ </u>

K.H. and T. Tanaka (2017) (T. Tanaka et al., JPSJ 87 ('18) 014201)

$${}^{48}\text{Ca} + {}^{248}\text{Cm} \rightarrow {}^{296}_{116}\text{Lv}^*$$

C.C. analysis for a hot fusion reaction ${}^{48}Ca + {}^{248}Cm$

K.H. and T. Tanaka (2017)

⁴⁸Ca + ²⁴⁸Cm ($\beta_2 = 0.297, \beta_4 = 0.04$) $\rightarrow {}^{296}_{116}Lv^*$ [β_2 and β_4 from P. Moller]

C.C. analysis for a hot fusion reaction ${}^{48}Ca + {}^{248}Cm$

K.H. and T. Tanaka (2017)

$$^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

Connection to the ER cross sections

Connection to the ER cross sections

Connection to the ER cross sections

$${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}{}_{116}Lv^*$$

notion of compactness: D.J. Hinde et al., PRL74 ('95) 1295

- = more compact at the touching
 - \rightarrow favorable for CN

Extension of the fusion-by-diffusion model

K.H., PRC98 ('18) 014607

Fusion-by-diffusion model W.J. Swiatecki et al., Acta Phys. Pol. B34 ('03) 2049 PRC71 ('05) 014602

diffusion of a 1D parabolic barrier

S_{inj}

Langevin in the overdamped limit:

$$P_{CN}(E) = \frac{1}{2} \left[1 - \operatorname{erf} \left(\frac{\Delta V}{T} \right) \right]$$

W.J. Swiatecki et al., PRC71 ('05) 014602

Extension of the fusion-by-diffusion model

K.H., PRC98 ('18) 014607

$$s_{\text{inj}}(\theta) = s_{\text{inj}}^{(0)} + R_T \sum_{\lambda} \beta_{\lambda T} Y_{\lambda 0}(\theta)$$
$$P_{\text{CN}}(E,\theta) = \frac{1}{2} \left[1 - \text{erf}\left(\frac{\Delta V(\theta)}{T(\theta)}\right) \right]$$

Extension of the fusion-by-diffusion model

K.H., PRC98 ('18) 014607

A more challenging problem

quantum theory for friction

Quantum friction

classical eq. of motion
$$\dot{p} = -V'(x)$$

 γp

a quantization: Kanai model E. Kanai, PTP 3 (1948) 440)

$$H = \frac{p^2}{2m} + V(x) \to \frac{\pi^2}{2m} e^{-\gamma t} + e^{\gamma t} V(x) \qquad (\pi = e^{\gamma t} p)$$
$$\xrightarrow{d}{dt} \langle p \rangle = -\langle V'(x) \rangle - \gamma \langle p \rangle$$

time-dep. wave packet approach

hot fusion reaction:

$$^{48}_{20}Ca + ^{254}_{99}Es \rightarrow ^{302}119$$

not available with sufficient amount

 ${}^{51}_{23}V + {}^{248}_{96}Cm \rightarrow {}^{299}119$ etc.

how much will fusion cross sections be influenced?

TDHF+Langevin approach

K. Sekizawa and K. Hagino, a work in progress

the distance of closest approach estimated with TDHF:

input to Langevin calculations

comparison between ⁴⁸Ca- and ⁵¹V-induced reations (on going)

Summary

Reaction dynamics for SHE formation reactions

- Recent measurement of barrier distributions with GARIS
 - ✓ $^{48}Ca + ^{248}Cm$
 - \checkmark coupled-channels analysis
 - ✓ notion of compactness: ER formation with side collisions

more data coming soon

Open problems

- ✓ reaction dynamics? \rightarrow quantum theory for friction
- ✓ shape evolution with a deformed target? how does the deformation disappear during heat-up?
- \checkmark towards island of stability

reaction dynamics with <u>neutron-rich</u> beams?

cf. Felipe Canto's talk

formation of SHE

chemistry of SHE

the origin of (S)HE

heavy-ion fusion reactions

International Year of the Periodic Table of Chemical Elements

2017.08.18-19

2017.08.24-25

r-process nucleosynthesis

SHE: quantum many-body systems with a strong Coulomb field

 \rightarrow comprehensive understanding of SHE