Recent developments in heavy-ion fusion reactions around the Coulomb barrier

Kouichi Hagino Tohoku University, Sendai, Japan

J.M. Yao (*North Carolina*) N. Rowley (*IPN Orsay*)

1. Introduction: H.I. sub-barrier fusion reactions

2. Coupled-channels approach

3. C.C. calculation with "beyond-mean-field" method

4. Summary

Introduction: heavy-ion sub-barrier fusion reactions

potential model: V(r) + absorption

Generalized Wong formula [N. Rowley and K.H., PRC91('15)044617]

$$\sigma_{fus}(E) \sim \frac{\hbar\Omega}{2E} R_b^2 \ln\left[1 + \exp\left(\frac{2\pi}{\hbar\Omega}(E - V_b)\right)\right] + (osc.)$$

Introduction: heavy-ion sub-barrier fusion reactions

potential model: V(r) + absorption

<u>Generalized Wong formula</u> [N. Rowley and K.H., PRC91('15)044617]

$$\sigma_{fus}(E) \sim \frac{\hbar\Omega}{2E} R_b^2 \ln\left[1 + \exp\left(\frac{2\pi}{\hbar\Omega}(E - V_b)\right)\right] + (osc.)$$

Introduction: heavy-ion sub-barrier fusion reactions

Discovery of large sub-barrier enhancement of σ_{fus} (~ the late 70's)

potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

Effect of nuclear deformation

¹⁵⁴Sm : a deformed nucleus with $\beta_2 \sim 0.3$

Coupled-Channels method

- C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)
 - ✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

K.H., N. Takigawa, PTP128 ('12) 1061

Semi-microscopic modeling of sub-barrier fusion

K.H. and J.M. Yao, PRC91('15) 064606

multi-phonon excitations

Anharmonic vibrations

- Boson expansion
- Quasi-particle phonon model
- Shell model
- Interacting boson model
- Beyond-mean-field method

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

 MF + ang. mom. projection
+ particle number projection
+ generator coordinate method (GCM)

M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 ('03) 121 J.M. Yao et al., PRC89 ('14) 054306

2 04

$$Q(2_1^+) = -10 + -6 \ e fm^2$$

Recent beyond-MF (MR-DFT) calculations for ⁵⁸Ni

K.H. and J.M. Yao, PRC91 ('15) 064606 J.M. Yao, M. Bender, and P.-H. Heenen, PRC91 ('15) 024301

fusion?

✓ A large fragmentation of (2⁺ x 2⁺)_{J=0}
✓ A strong transition from 2₂⁺ to 0₂⁺

Semi-microscopic coupled-channels model for sub-barrier fusion

- ✓ M(E2) from MR-DFT calculation ← among higher members ✓ scale to the empirical B(E2; $2_1^+ \rightarrow 0_1^+$) of phonon states
- \checkmark still use a phenomenological potential
- ✓ use the experimental values for E_x
- ✓ $β_N$ and $β_C$ from M_n/M_p for each transition
- \checkmark axial and reflection symmetries (no 3⁺ and 3⁻ states)

Coupled-channels calculations for sub-barrier fusion

≻Light systems: potential model

- ✓ Generalized Wong formula
- \checkmark fusion oscillations

≻<u>C.C. calculations with MR-DFT method</u>

✓ anharmonicity

Summary

- \checkmark truncation of phonon states
- \checkmark octupole vibrations and tri-axiality
 - : in progress

more flexibility:

- application to transitional nuclei
- a good guidance to a Q-moment of excited states

