Heavy-ion fusion reactions: quantum tunneling with many degrees of freedom and superheavy elements

Kouichi Hagino Tohoku University

Element 113 Nihonium (Nh) Nov., 2016

Physics of SHE

 \rightarrow very current topics

theory: improvement of predictive power

Heavy-ion fusion reactions: quantum tunneling with many degrees of freedom and superheavy elements

Kouichi Hagino Tohoku University

- 1. H.I. fusion reactions: why are they interesting?
- 2. Coupled-channels approach
- 3. Remaining challenges
- 4. Future perspectives: superheavy elements

Recent review article:

K. Hagino and N. Takigawa, Prog. Theo. Phys.128 ('12)1061.

Fusion reactions: compound nucleus formation

cf. Bohr '36

⁴He

energy production in stars (Bethe '39)

nucleosynthesis

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Two interactions:
1. Coulomb force

long range repulsion

2. Nuclear force

short range attraction

<u>potential barrier</u> due to a cancellation between the two (Coulomb barrier)

Above-barrier energies
Sub-barrier energies

(energies around the Coulomb barrier)
Deep sub-barrier energies

Why sub-barrier fusion?

two obvious reasons:

NASA, Skylab space station December 19. 1973, solar flare reaching 588 000 km off solar surface

superheavy elements

```
cf. <sup>209</sup>Bi (<sup>70</sup>Zn,n) <sup>278</sup>Nh
V_B \sim 260 \text{ MeV}
E_{cm}^{(exp)} \sim 262 \text{ MeV}
```

nuclear astrophysics (nuclear fusion in stars) cf. extrapolation of data Why sub-barrier fusion?

two obvious reasons:

✓ superheavy elements

 \checkmark nuclear astrophysics

other reasons:

 \checkmark reaction dynamics

strong interplay between reaction and structure

cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

- many types of intrinsic degrees of freedom (several types of collective vibrations, deformation with several multipolarities, transfer)
- energy dependence of tunneling probability cf. alpha decay: fixed energy

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

Large enhancement of fusion cross sections

Potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

* Sub-barrier enhancement also for non-deformed targets: couplings to low-lying collective excitations \rightarrow coupling assisted tunneling

Enhancement of tunneling probability : a problem of two potential barriers

$$P(E) = P(E; V_0) \to w_1 P(E; V_1) + w_2 P(E; V_2)$$

Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

two-body problem, but with excitations (coupled-channels approach)

Coupled-channels method: a quantal scattering theory with excitations

full order treatment of excitation/de-excitation dynamics during reaction

Inputs for C.C. calculations

i) Inter-nuclear potential

a fit to experimental data at above barrier energies

ii) Intrinsic degrees of freedom

in most of cases, (macroscopic) collective model (rigid rotor / harmonic oscillator)

C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)

$$|0^{+}\rangle \longrightarrow |0^{+}\rangle$$

$$\beta \beta \beta \beta \beta \beta \beta$$

$$(0^{+})$$

$$(0^{+})$$

full order treatment of excitation/de-excitation dynamics during reaction

but only 1st order in Hamiltonian \rightarrow inconsistency

$$V_{ ext{Coup}}(r) \sim -Reta rac{dV_N(r)}{dr}$$

 \rightarrow improve to include all orders also in Hamiltonian

$$\langle \phi_n | V(r-x) | \phi_m
angle \sim V(r) \, \delta_{n,m} - rac{dV(r)}{dr} \langle \phi_n | x | \phi_m
angle$$

$$\langle \phi_n | V(r-x) | \phi_m \rangle = \int dx \, \phi_n^*(x) \phi_m(x) \, V(r-x)$$

- C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)
- ✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

K.H., N. Takigawa, PTP128 ('12) 1061

K.H. and N. Takigawa, PTP128 ('12) 1061

barrier distribution: a problem of two potential barriers

```
P(E) = P(E; V_0) \to w_1 P(E; V_1) + w_2 P(E; V_2)
```


Adiabatic potential renormalization

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRL79 ('97) 2014

Adiabatic potential renormalization

 couplings to high-lying states
 : no change in *E*-dependence of fusion cross sections
 simply changes the static potential (adiabatic potential renormalization)

coupled-channels calculations: sufficient only with low-lying excitations

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRL79 ('97) 2014

Further developments : C.C. with several nuclear structure models

K.H. and J.M. Yao, PRC91('15) 064606

CCFULL + microscopic nuclear structure calculations (GCM, Shell Model, IBM....)

simple harmonic oscillator

anharmonicity of phonon spectra

Remaining challenges

1. Interplay between fusion and (multi-) nucleon transfer processes

G. Scamps and K. Hagino, PRC92 ('16) 054616

fusion with multi-nucleon transfer: needs a further development

explain simultaneously fusion and transfer cross sections?
reaction dynamics of pair transfer?

> cf. pairing in neutron-rich nuclei K. Hagino and H. Sagawa, PRC72 ('05) 044321

Remaining challenges

2. Fusion of halo nuclei

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

 \rightarrow needs an extension with breakup and particle transfer at the same time also, what is the role of n/p unbalance in CN formation? (Shimoura-san)

electron capture (A,Z) +e⁻ \rightarrow (A,Z-1) + v_e

towards neutron-rich nuclei

fusion of neutron-rich nuclei when Z becomes small enough ${}^{24}O + {}^{24}O, {}^{28}Ne + {}^{28}Ne$ etc.

N. Chamel and P. Haensel, Living Rev. Relativity, 11 ('08) 10.

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

full microscopic description:

Future perspectives: Superheavy elements

Future perspectives: Superheavy elements

fusion hindrance

C.C. Sahm et al., Z. Phys. A319 ('84) 113

Future perspectives: Superheavy elements

Future directions

≻Towards Z=119 and 120 nuclei

the island of stability?

reaction dynamics? reliable prediction of fusion cross sections?

Towards the island of stability neutron-rich beams: indispensable

Future directions -1

≻Towards Z=119 and 120 nuclei

⁴⁸Ca projectile (hot fusion) $\rightarrow {}^{50}_{22}$ Ti, ${}^{51}_{23}$ V, ${}^{54}_{24}$ Cr projectile + deformed target nucleus

> needs a proper understanding of deformation effects on SHE synthesis reactions

✓ First step: T_l σ_{cap} : relatively easy to measure \rightarrow but, one needs T_1 P_{CN} how? $\sigma_{\rm cap} = \frac{\pi}{k^2} \sum_{l} (2l+1)T_l$ W_{suv} ✓ Second step: •7 deformation effects on P_{CN} $\sigma_{\text{ER}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1)T_l(E)$ $\times P_{CN}(E,l) W_{SUV}(E^*,l)$

Extraction of T_l from H.I. quasi-elastic (QEL) scattering (easier measurement than σ_{cap})

fit expt. data with multiple potential barriers:

$$\sigma_{\exp}(E) = \sum_{k=1}^{N} w_k \sigma_0(E; V_k(r))$$

Bayesian spectrum deconvolution \rightarrow to determine *N*

$$\implies T_l = \sum_{k=1}^N w_k T_l(E; V_k(r))$$

* no need to know the details of the couplings

K.H., PRC93 ('16) 061601(R)

Fusion reactions of deformed nuclei

- how to evolve towards a compound nucleus? (what are intermediate shapes?)
- deformation: quantum effects how deformation reduces during the heat-up process?

Future directions - 2

Towards the island of stability neutron-rich beams

: indispensable

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

Understanding of reaction dynamics (breakup, particle transfer, fusion)

Future directions - 2

Towards the island of stability neutron-rich beams

: indispensable

structure of neutron-rich nuclei : equally important

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

Understanding of reaction dynamics

中性子過剰核を軸にした超重核の物理の探究の可能性

Summary

Heavy-ion fusion reactions around the Coulomb barrier

✓ Strong interplay between nuclear structure and reaction
 ✓ Quantum tunneling with various intrinsic degrees of freedom
 ✓ coupled-channels approach

Remaining challenges

✓ fusion of halo nuclei (influence of breakup and particle transfer)✓ Microscopic understanding of low-E fusion reactions?

- ✓ how to understand many-particle tunneling phenomena?
- ✓ microscopic understanding of large amplitude motions

Future perspectives: superheavy elements

- ✓ how to reduce theoretical uncertainties?
- ✓ Towards heavier SHE (Z = 119, 120)
- \checkmark Towards the island of stability

investigations of physics of SHE with neutron-rich nuclei as a keyword

FUSION20

November 16-20, 2020 Shizuoka, Japan

Kouichi Hagino (co-chair) Tohoku University Katsuhisa Nishio (co-chair) JAEA