Open issues in di－neutron correlations in neutron－rich nuclei

Kouichi Hagino（萩野浩一） Kyoto University（京都大学）
Hiroyuki Sagawa（佐川弘幸） University of Aizu／RIKEN（会津大学／理研）

1．Introduction：di－neutron correlations
2．Correlations with a repulsive interaction
3．A measure of dineutron correlations
4．Two－neutron transfer reactions
5．Summary

Borromean systems in atomic nuclei

a spectrum of $2 \& 3$ identical bosons with an attractive interaction

weakly bound
Borromean systems
P. Naidon and S. Endo, Rep. Prog. Phys. 80 ('17)056001

Borromean nuclei

residual interaction \rightarrow attractive

particle unstable

particle stable

$$
{ }^{11} \mathrm{Li}={ }^{9} \mathrm{Li}+\mathrm{n}+\mathrm{n}: \text { bound }
$$

${ }^{9} \mathrm{Li}+\mathrm{n}$: unbound
$\mathrm{n}+\mathrm{n}$: unbound
${ }^{6} \mathrm{He}={ }^{4} \mathrm{He}+\mathrm{n}+\mathrm{n}$: bound
${ }^{4} \mathrm{He}+\mathrm{n}$: unbound $\mathrm{n}+\mathrm{n}$: unbound

Questions to ask: the role of nn-correlation?

- Spatial structure?
- Excitation modes?
- Decay dynamics of unbound nuclei?
- Influence for nuclear reactions?

Three-body model and di-neutron correlation

Density-dependent delta-force

$$
\begin{aligned}
v\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)= & v_{0}(1+\alpha \rho(r)) \\
& \times \delta\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)
\end{aligned}
$$

$V_{0} \leftarrow$ scatt. length

continuum states: discretized in a large box

$$
\Psi_{g s}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\mathcal{A} \sum_{n n^{\prime} l j} \alpha_{n n^{\prime} l j} \Psi_{n n^{\prime} l j}^{(2)}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)
$$

\longrightarrow diagonalize the $H_{3 b d}$
G.F. Bertsch and H. Esbensen, Ann. of Phys. 209 ('91) 327
K.H. and H. Sagawa, PRC72 ('05) 044321

The ground state density: ${ }^{11} \mathrm{Li}={ }^{9} \mathrm{Li}+\mathrm{n}+\mathrm{n}$
K.H. and H. Sagawa, PRC72 ('05) 044321
without nn interaction

with nn interaction

large asymmetry in density distribution $=\underline{\text { di-neutron correlation }}$

Di-neutron correlation

Bertsch-Esbensen, Ann. Phys. ('91) Zhukov et al., Phys. Rep. ('93)
Hagino-Sagawa, PRC72 ('05)
cf. coherence length in the BCS approximation:

$$
\xi=\frac{\hbar^{2} k_{F}}{m \Delta}
$$

\rightarrow much larger than nuclei

Matsuo et al., PRC71 ('05)

Pillet et al., PRC76 ('07)

Experiments:

- Coul.-ex. (${ }^{11} \mathrm{Li},{ }^{19} \mathrm{~B}$, etc.)
K.J. Cook et al., PRL124 ('20) 212503
- knockout (${ }^{11} \mathrm{Li}$)
Y. Kubota et al.,
${ }^{11} \mathrm{Li}(\mathrm{p}, \mathrm{pn}){ }^{10} \mathrm{Li}$ PRL 125 ('20) 252501

Surface dineutron correlations

K.H., H. Sagawa, J. Carbonell, and P. Schuck, PRL99 ('07) 022506

Surface dineutron correlations

K.H., H. Sagawa, J. Carbonell, and P. Schuck, PRL99 ('07) 022506

the origin of dineutron correlation: a mixing of $[j l]^{2}$ with different parities

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091
cf. the phase of $C_{j l}$
role of parity mixing

$$
{ }^{18} \mathrm{O}={ }^{16} \mathrm{O}+\mathrm{n}+\mathrm{n} \rightarrow \rho_{2}(\boldsymbol{r})=\left|\Psi_{\text {g.s. }}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\right|_{\boldsymbol{r}^{\prime}=z_{0}}^{2}
$$

cf. F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29(‘84)1091
weakly bound systems
\checkmark continuum states
several l's

parity mixing: easy

enhanced dineutron correlation

Two-nucleon correlation with a repulsive interaction

$$
|\Psi\rangle=\sum_{j, l} C_{j l}\left|[j l]^{2}\right\rangle
$$

nuclear attractive interaction
\rightarrow dineutron correlation

What happens when the interaction is repulsive?
cf. A Coulomb hole in He atoms

how about nuclear systems?
z (a.u.)

Two-nucleon correlation with a repulsive interaction

What happens when the interaction is repulsive?

$\operatorname{IV}(\mathrm{T}=1)$ particle-hole interaction: repulsive

${ }^{56} \mathrm{Co}={ }^{56} \mathrm{Ni}+\mathrm{n}-\mathrm{p}$

\rightarrow the particle-hole density?

IV ph configurations

Tamm-Dancoff approximation with a Skyrme interaction

$$
\left.{ }^{56} \mathrm{Co}={ }^{56} \mathrm{Ni}+\mathrm{n}-\mathrm{p} \quad\left|{ }^{56} \mathrm{Co}\right\rangle=\left.\sum_{p, h} C_{p h} a_{\nu p}^{\dagger} a_{\pi h}\right|^{56} \mathrm{Ni}\right\rangle
$$ diagonalize $H_{S k} \quad$ Skyrme HF

IV ph configurations

$$
\left.{ }^{56} \mathrm{Co}={ }^{56} \mathrm{Ni}+\mathrm{n}-\mathrm{p} \quad\left|{ }^{56} \mathrm{Co}\right\rangle=\left.\sum_{p, h} C_{p h} a_{\nu p}^{\dagger} a_{\pi h}\right|^{56} \mathrm{Ni}\right\rangle
$$

the spatial distribution of a hole configuration: the 4^{+}state of ${ }^{56} \mathrm{Co}(\mathrm{M}=0)$
a neutron at 3.4 fm

 PRC106, 034313 (2022)

IV ph configurations

$$
{ }^{56} \mathrm{Co}={ }^{56} \mathrm{Ni}+\mathrm{n}-\mathrm{p} \quad\left|{ }^{56} \mathrm{Co}\right\rangle=\sum_{p, h} C_{p h} a_{\nu p}^{\dagger} a_{\pi h}\left|{ }^{56} \mathrm{Ni}\right\rangle
$$

$\left(2 \mathrm{p}_{3 / 2}\right)_{\mathrm{n}}\left(1 \mathrm{f}_{7 / 2}\right)_{\mathrm{p}}^{-1}: 97.7 \%$
(even) $)_{n}(\text { even })_{p}^{-1}: 0.10 \%$ $(\text { odd })_{n}(\text { odd })_{p}{ }^{-1}: 99.9 \%$
the origin of dineutron correlation: a mixing of $[j l]^{2}$ with different parities

$$
|\Psi\rangle=\sum_{j, l} C_{j l}\left|[j l]^{2}\right\rangle
$$

How large should the mixing be? What is a measure of the correlation?

odd $^{2}: 89.1 \%\left[\left(\mathrm{p}_{3 / 2}\right)^{2}=83 \%\right]$ even ${ }^{2}$: 10.9%
${ }^{18} \mathrm{O}\left(\mathrm{S}_{2 \mathrm{n}}=12.2 \mathrm{MeV}\right)$

odd $^{2}: 3.37 \%$
even ${ }^{2}$: 96.6% [sd shell=94.8\%]

2 configuration model

$$
|\Psi\rangle=\sqrt{\alpha^{2}}\left|\left(1 p_{3 / 2}\right)^{2}\right\rangle+\sqrt{1-\alpha^{2}}\left|\left(2 s_{1 / 2}\right)^{2}\right\rangle
$$

\checkmark wave functions of $1 \mathrm{p}_{3 / 2}, 2 \mathrm{~s}_{1 / 2}$ states \leftarrow a Woods-Saxon potential \checkmark the depth of WS pot.: $e_{\mathrm{sp}}=-0.5 \mathrm{MeV}$ for each state

2 config. model

$$
|\Psi\rangle=\sqrt{\alpha^{2}}\left|\left(1 p_{3 / 2}\right)^{2}\right\rangle+\sqrt{1-\alpha^{2}}\left|\left(2 s_{1 / 2}\right)^{2}\right\rangle
$$

$\underline{2 \text { configuration model }}|\Psi\rangle=\sqrt{\alpha^{2}}\left|\left(1 p_{3 / 2}\right)^{2}\right\rangle+\sqrt{1-\alpha^{2}}\left|\left(2 s_{1 / 2}\right)^{2}\right\rangle$

$\underline{2 \text { configuration model }}|\Psi\rangle=\sqrt{\alpha^{2}}\left|\left(1 p_{3 / 2}\right)^{2}\right\rangle+\sqrt{1-\alpha^{2}}\left|\left(2 s_{1 / 2}\right)^{2}\right\rangle$

\checkmark symmetric at $\alpha^{2}=0.5 \rightarrow$ the correlation does not matter whether the main configuration is $\mathrm{s}_{1 / 2}$ or not
\checkmark even a small admixture \rightarrow large asymmetry in density
What is a good measure of the degree of correlations? (an open question)

Pair transfer and pair correlations

Calc.: K.H. and G. Scamps, PRC92 ('15) 064602 Exp.: L. Corradi et al., PRC84 ('11) 034603

Pair transfer and pair correlations

Calc.: K.H. and G. Scamps, PRC92 ('15) 064602 Exp.: L. Corradi et al., PRC84 ('11) 034603

Estimate for (t, p) and (p, t) reactions based on a one-step DWBA

Pair transfer and pair correlations

Pair transfer reactions: complicated reaction dynamics
\rightarrow not straightforward to extract information on pairing from $\sigma_{\text {transfer }}$

E. Maglione et al., Phys. Lett. 162B (‘85) 59.

2-step DWBA

G. Potel et al., PRL 107 ('11) 092501

$$
{ }^{208} \mathrm{~Pb}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{210} \mathrm{~Pb}\left(0^{+} \text {states }\right)
$$

$$
{ }^{208} \mathrm{~Pb}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{210} \mathrm{~Pb}\left(0^{+}\right)
$$

$\mathrm{E}^{*}(\mathrm{MeV})$
White: strength for pair addition

$$
\left.S=\left|\left\langle^{210} \mathrm{~Pb}\right| \psi^{\dagger} \psi^{\dagger}\right|{ }^{208} \mathrm{~Pb}\right\rangle\left.\right|^{2}
$$

Red: Pair transfer cross sections
Cross sections may not be large even when the strength is large \rightarrow due to reaction dynamics (e.g., Q-value matching)

An additional issue: pair transfer reactions and dineutron correlations

"pair correlation"

dineutron correlations

If a pair transfer reaction probes the region of the red square
\rightarrow pair transfer: distinguish between uncorrelated and correlated, but not between the "pair correlation" and dineutron correlation?
cf. A. Insolia, R.J. Liotta, and E. Maglione,
J. of Phhys. G15 (‘89) 1249
\rightarrow an open problem: need a new perspective
cf. $\left({ }^{4} \mathrm{He},{ }^{6} \mathrm{He}\right)$ reaction@OEDO

Pair transfer of Borromean nuclei (Expt.)

$>$ Uncorrelated: not reproduce the data
$>$ P2 (31\% ($\left.\mathrm{s}_{1 / 2}\right)^{2}$) and P3 (45\%) reproduce the data at forward angles
$>$ But not for backward angles (Opt. pot.? intermediate states?)
a treatment of ${ }^{10} \mathrm{Li}$ as intermediate states
$E_{\text {lab }}=3 \mathrm{MeV} / \mathrm{A}$
I. Tanihata et al., PRL100('08)192502

A further additional issue
After all, a one-step pair transfer process is not dominant

Remarks

* 1-step and 2-step are terminologies based on perturbation theory * a relative importance of each process depends also on the post form or the prior form formulations (a choice of H_{0})

$$
h=\underline{t}+V_{T}(r)+V_{P}(r)
$$

Broglia et al.,

$$
\begin{aligned}
a_{\mathrm{tr}} & =a_{\mathrm{sim}}+a_{\mathrm{succ}}+a_{\mathrm{non}-\text { orthog }} \sim a_{\mathrm{succ}} \\
& =\tilde{a}_{\mathrm{sim}}+\tilde{a}_{\mathrm{succ}}+\tilde{a}_{\mathrm{non}-\text { orthog }}
\end{aligned}
$$

A further additional issue

After all, a one-step pair transfer process is not dominant

A further additional issue
After all, a one-step pair transfer process is not dominant
\rightarrow the main process is a sequential 1 n transfer

$$
\begin{aligned}
& 0.8\left(1 \mathrm{~d}_{5 / 2}\right)^{2} \\
& +0.6\left(2 \mathrm{~s}_{1 / 2}\right)^{2}
\end{aligned}
$$

pair correlation \rightarrow a coherent superposition of many 1 n transfer processes

* In reality, superfuidity in a target nucleus has also to be taken into account
dependence of incident energy? \rightarrow still an open problem

A related problem: Pair transfer reactions of neutron-rich nuclei

$$
{ }^{208} \mathrm{~Pb}+{ }^{15} 0 \quad{ }^{207} \mathrm{~Pb}+{ }^{170} \quad{ }^{266} \mathrm{~Pb}+{ }^{18} 0
$$

For neutron-rich nuclei, many intermediate states will be unbound

$$
\sqrt{6}
$$

How much will the reaction dynamics be altered?

Pair transfer reaction with a one-dimensional 3-body model

based on
K.H., A. Vitturi, F. Perez-Bernal, and H. Sagawa, J. of Phys. G38 ('11) 015105

$$
H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+V\left(x_{1}\right)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{2}^{2}}+V\left(x_{2}\right)+v_{n n}\left(x_{1}, x_{2}\right)
$$

$\rho\left(x_{1}, x_{2}\right)=\left|\Psi_{\mathrm{gs}}\left(x_{1}, x_{2}\right)\right|^{2}$

time-evolution

$$
i \hbar \frac{\partial}{\partial t} \Psi\left(x_{1}, x_{2}, t\right)=H \Psi\left(x_{1}, x_{2}, t\right)
$$

$\Psi\left(x_{1}, x_{2}, t\right)=\alpha \Psi_{\mathrm{gs}}\left(x_{1}, x_{2}\right)+\widetilde{\Psi}\left(x_{1}, x_{2}, t\right)$

$$
\rightarrow \tilde{\rho}\left(x_{1}, x_{2}, t\right)=\left|\tilde{\Psi}\left(x_{1}, x_{2}, t\right)\right|^{2}
$$

$$
\Psi\left(x_{1}, x_{2}, t\right)=\alpha \Psi_{\mathrm{gs}}\left(x_{1}, x_{2}\right)+\widetilde{\Psi}\left(x_{1}, x_{2}, t\right)
$$

$$
\rightarrow \tilde{\rho}\left(x_{1}, x_{2}, t\right)=\left|\tilde{\Psi}\left(x_{1}, x_{2}, t\right)\right|^{2}
$$

sequential: the main process
1n transfer
$\mathrm{ct}=220 \mathrm{fm}$

Due to correlations

- inelastic scattering
- 2 n transfer reaction

$\mathrm{ct}=80 \mathrm{fm}$

For weakly bound situation: $\mathrm{P}_{2 \mathrm{n}}>\mathrm{P}_{1 \mathrm{n}}$ (consistent with expt.)
Time-dep. approach: a good method to understand complicated pair transfer processes
Future problesms: 3D calculations, dynamical calculations

Summary

$>$ Dineutron correlations \leftarrow mixing of config. consisted of opposite parity states

- an attractive pairing interaction \rightarrow dineutron
even a small mixing \rightarrow a large asymmetry in density
- anti-correlation if the interaction is repulsive
$\checkmark \mathrm{T}=1$ particle-hole interaction
$>$ Future theoretical perspectives
- An extension of 3-body model with core deformation
- An extention to a 5-body mode: double dineutrons? $\leftarrow{ }^{28} \mathrm{O}$
- two-nucleon transfer reactions: time-dependent approach?

