Heavy-ion reactions around the Coulomb barrier: *an overview*

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. Introduction: why subbarrier fusion?
- 2. Role of nuclear structure in subbarrier fusion
- 3. Friction, dissipation, quantum decoherence?
- 4. Fusion of unstable nuclei
- 5. Pair transfer reactions
- 6. Summary

Fusion: compound nucleus formation

courtesy: Felipe Canto

Inter-nucleus potential

•above barrier

- •sub-barrier
- •deep subbarrier

Two forces:
1. Coulomb force

Long range,
repulsive

2. Nuclear force

Short range,
attractive

Potential barrier due to the compensation between the two (Coulomb barrier)

Why subbarrier fusion?

Two obvious reasons:

NASA, Skylab space station December 19, 1973, solar flare reaching 588 000 km off solar surface

discovering new elements (SHE by cold fusion reactions)

nuclear astrophysics (fusion in stars)

Why subbarrier fusion?

Two obvious reasons:

✓ discovering new elements (SHE)✓ nuclear astrophysics (fusion in stars)

Other reasons:

reaction mechamism
 strong interplay between reaction and structure
 (channel coupling effects)
 cf. high *E* reactions: much simpler reaction mechanism
 many-particle tunneling
 cf. alpha decay: fixed energy

tunneling in atomic collision: less variety of intrinsic motions

the simplest approach to fusion cross sections: potential model

$$\sigma_{\mathsf{fus}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1) P_l(E)$$

cf. seminal work: R.G. Stokstad et al., PRL41('78)465 PRC21('80)2427

Strong target dependence at $E < V_b$

Low-lying collective excitations in atomic nuclei

Low-lying excited states in even-even nuclei are collective excitations, and strongly reflect the pairing correlation and shell strucuture

Coupled-Channels method

Two effects of channel couplings

 \checkmark energy loss due to inelastic excitations

cf. 2-level model: Dasso, Landowne, and Winther, NPA405('83)381

Coupling to excited states \longrightarrow distribution of potential barrier

multi-dimensional potential surface

N. Rowley, G.R. Satchler, P.H. Stelson, PLB254('91)25

$$\frac{d}{dE}[E\sigma_{fus}(E)] \propto P(E)$$
$$\frac{d^2}{dE^2}[E\sigma_{fus}(E)] \propto \frac{dP}{dE}$$

centered on $E = V_{\rm b}$

Fusion barrier distribution: sensitive to small effects such as β_4

M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48('98)401 logarithmic derivative (~00's)

$$\sigma_{fus}(E) \sim \frac{\hbar\Omega}{2E} R_b^2 \exp\left(\frac{2\pi}{\hbar\Omega}(E - V_b)\right) \qquad (E \ll V_b)$$

$$\frac{d}{dE}\ln(E\sigma) = \frac{(E\sigma)'}{E\sigma} = \frac{2\pi}{\hbar\Omega} \quad \text{cf. } D_{\text{fus}} = (E\sigma)''$$

R. Vandenbosch, Ann. Rev. Nucl. Part. Sci. 42('92)447

deep subbarrier hindrance of fusion cross sections

C.L. Jiang et al., PRL89('02)052701; PRL93('04)012701

Systematics of the touching point energy and deep subbarrier hindrance

T. Ichikawa, K.H., A. Iwamoto, PRC75('07) 064612 & 057603

6

 $Z_{r}Z_{\rho}\mu^{1/2}$ (10³ MeV^{1/2}/c)

8

10

12

0

2

4

Recent debates: quantum decoherence in deep subbarrier fusion?

PRL 99, 192701 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2007

G

Beyond the Coherent Coupled Channels Description of Nuclear Fusion

M. Dasgupta,¹ D. J. Hinde,¹ A. Diaz-Torres,¹ B. Bouriquet,^{1,*} Catherine I. Low,^{1,†} G. J. Milburn,² and J. O. Newton¹

¹Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia

> ²Department of Physics, University of Queensland, St. Lucia, QLD 4072, Australia (Received 8 June 2007; published 6 November 2007)

New measurements of fusion cross sections at deep sub-barrier energies for the reactions ${}^{16}\text{O} + {}^{204,208}\text{Pb}$ show a steep but almost saturated logarithmic slope, unlike ${}^{64}\text{Ni-induced}$ reactions. Coupled channels calculations cannot simultaneously reproduce these new data and above-barrier cross-sections with the same Woods-Saxon nuclear potential. It is argued that this highlights an inadequacy of the coherent coupled channels approach. It is proposed that a new approach explicitly including gradual decoherence is needed to allow a consistent description of nuclear fusion.

Quantum decoherence

Coherent superposition $|\psi\rangle = \alpha |\psi_1\rangle + \beta |\psi_2\rangle$ \longrightarrow interference

In macroscopic systems, no superposition:

$$|dead\rangle + |live\rangle$$

Quantum decoherence theory

Couplings to environment

atomic nuclei: microscopic systems

 \rightarrow little effect from *external* environment

"intrinsic environment"

nuclear spectrum

Open questions

➢Is quantum decoherence relevant to heavy-ion fusion? maybe yes, maybe no

➢ If yes, do we really have to care whether the system decoheres? or is it sufficient simply to take into account couplings to environments?

clear demonstration of effects of decoherence: necessary (at this moment, it is just a conjecture)

cf. fusion cross sections: $\sigma_{fus}(E) = \frac{\pi}{k^2} \sum_{J} (2J+1) \left(1 - \sum_{i} |S_{i0}^{(J)}|^2 \right)$

➢How well can we describe effects of non-collective degrees of freedom (unified model between fusion and DIC)?

Fusion model → friction free: strong absorption inside the barrier quantum mechanical model for Wall-Window friction?

Fusion of unstable nuclei

Fusion of stable nuclei: large enhancement of fusion cross sections

Fusion of unstable (weakly bound) nuclei? fusion cross section: enhanced? hindered? no change?

still not known completely

Two effets

- 1. Lowering of potential barrier due to a halo structure
 - → enhancement
- 2. effect of breakup

- •hindrance due to disappearance of barrier lowering after breakup?
- enhancement due to channel coupling effects as in stable nuclei?
- some more complicated dynamical effect?

Experimental data

- Some enhancement compared to ⁴He
- ≻similar behaviour between ⁶He and ⁸He
 - (can we understand this?)

➤no huge effects of breakup/transfer!?

A. Lemasson et al., PRL103('09)232701

≻large transfer cross sections

R. Raabe et al., Nature 431 ('04)823

Very recent data for $^{12,13,14,15}C + ^{232}Th$

M. Alcorta et al., PRL106('11)172701

¹⁵C: 1n halo nucleus

→ enhanced fusion cross sections

Pair Transfer

Calculations: need to include breakup and transfer in a consistent way

large (2n) transfer cross sections

pair transfer (in addition to breakup) is one the important processes in reactions of unstable nuclei

role of dineutron correlation?

2.5

⁶Не+⁶⁵Сч

⁸He+⁶⁵Cu

⁶He+¹⁹⁷Au ⁸He+¹⁹⁷Au

3

 \odot

3.5

 10^3

a^{1n+σ}2n (mb)

 10^{1}

0.5

1.5

2

E_{CM}/V_B

increased transfer cross sections going from ⁶He to ⁸He

> A. Lemasson et al., PLB697('11)454

Pair correlation and pair transfer

pair transfer probability strongly reflects the pairing correlation

pair transfer probability: $P_{\text{tr}} \sim \frac{d\sigma_{\text{tr}}}{d\sigma_R}$

W. von Oertzen et al., Z. Phys. A326('87)463

J. Speer et al., PLB259('91)422

 $R_{\min} = d \left(A_P^{1/3} + A_T^{1/3} \right)$: the distance of the closest approach

Pair transfer:

✓ Reaction mechanism?

- sequential vs simultaneous
- Q-value, angular momentum matchings
- ✓ Role of dineutron correlation (on the surface)?
- ✓ Influence to other reaction processes (e.g., subbarrier fusion)?

have not yet been fully clarified

how is the reaction mechanism modified if most of intermediate states are unbound?

Recent experiments for transfer reaction of neutron-rich nuclei

A. Chatterjee et al., PRL101('08)032701

I. Tanihata et al., PRL100('08)192502

It is timely to construct:

a new theory of pair transfer with dineutron correlation.

 \rightarrow need a deep understanding of reaction dynamics

influence on subbarrier fusion? (open question)

Heavy-ion subbarrier fusion reactions

✓ strong interplay between reaction and structure
✓ quantum tunneling with several kinds of environment

Open questions

✓ how do we understand many-particle tunneling?

- related topics: fission, alpha decays, two-proton radioactivities Large amplitude collective motions

✓ role of dissipative environment?

- dissipation, friction, quantum decoherence?
- ✓ microscopic understanding of subbarrier fusion?
- ✓ fusion of unstable nuclei?
 - breakup, (multi-nucleon) transfer

(Big) open question:

Construction of microscopic nuclear reaction model applicable at low energies?

 \rightarrow many-particle tunneling

cf. nuclear structure calculations

• 2-body nn interaction \rightarrow mean-field \rightarrow RPA residual interaction \checkmark TDHF

advantage: non-empirical disadvantage: difficult to control a mean-field

Microscopic nuclear reaction theories

TDHF, QMD, AMD **mathematical production** not applicable to low-energy fusion (classical?)

Cluster approach (RGM)

only for light systems

H.O. wave function (separation of cm motion)

Double Folding approach

surface region: OK, but inside? role of antisymmetrization? validity of frozen density approximation?

Full microscopic theory: ATDHF, GCM, ASCC? imaginary-time TDHF?

how to understand quantum tunneling from many-particle point of view?