Heavy-ion fusion reactions: quantum tunneling with many degrees of freedom and superheavy elements

Kouichi Hagino Tohoku University

- 1. H.I. fusion reactions: why are they interesting?
- 2. Coupled-channels approach
- 3. Remaining challenges
- 4. Future perspectives: superheavy elements

Recent review article:

K. Hagino and N. Takigawa, Prog. Theo. Phys.128 ('12)1061.

Fusion reactions: compound nucleus formation

cf. Bohr '36

⁴He

energy production in stars (Bethe '39)

nucleosynthesis

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Two interactions:
1. Coulomb force

long range repulsion

2. Nuclear force

short range attraction

<u>potential barrier</u> due to a cancellation between the two (Coulomb barrier)

Above-barrier energies
Sub-barrier energies
Deep sub-barrier energies

Why sub-barrier fusion?

two obvious reasons:

NASA, Skylab space station December 19. 1973, solar flare reaching 588 000 km off solar surface

superheavy elements

```
cf. <sup>209</sup>Bi (<sup>70</sup>Zn,n) <sup>278</sup>Nh
V_B \sim 260 \text{ MeV}
E_{cm}^{(exp)} \sim 262 \text{ MeV}
```

nuclear astrophysics (nuclear fusion in stars) cf. extrapolation of data Why sub-barrier fusion?

two obvious reasons:

✓ superheavy elements

✓ nuclear astrophysics

other reasons:

✓ reaction dynamics

strong interplay between reaction and structure

cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

cf. •tunneling in atomic collisions / chemical reactions

: less variety of intrinsic motions (解離吸着) cf. dissociative adsorption of H₂ on metal surface K. Hagino and N. Takigawa, PTP128 ('12) 1061 • α decays: fixed energy

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

Large enhancement of fusion cross sections

Potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

* Sub-barrier enhancement also for non-deformed targets: couplings to low-lying collective excitations \rightarrow coupling assisted tunneling

Coupled-channels method: a quantal scattering theory with excitations

full order treatment of excitation/de-excitation dynamics during reaction

Inconsistency in linear coupling approximation $|0^+\rangle \xrightarrow{\beta \ \beta \ \beta \ \beta \ \beta \ \beta \ \beta} |0^+\rangle \xrightarrow{|0^+\rangle} |2^+\rangle$

full order treatment of excitation/de-excitation dynamics during reaction

but only 1st order in Hamiltonian \rightarrow inconsistency

$$V_{ ext{coup}}(r) \sim -Reta rac{dV_N(r)}{dr}$$

 \rightarrow improve to include all orders also in Hamiltonian

$$\langle \phi_n | V(r-x) | \phi_m \rangle \sim V(r) \, \delta_{n,m} - \frac{dV(r)}{dr} \langle \phi_n | x | \phi_m \rangle$$

$$\langle \phi_n | V(r-x) | \phi_m \rangle = \int dx \, \phi_n^*(x) \phi_m(x) \, V(r-x)$$

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRC55 ('97) 276

Inconsistency in linear coupling approximation

$$\langle \phi_n | V(r-x) | \phi_m \rangle = \int dx \, \phi_n^*(x) \phi_m(x) \, V(r-x)$$

improve to include all orders also in Hamiltonian

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRC55 ('97) 276

later improvement: a more elegant method

$$V(r-x) \to V(r - \{x_{nm}\}); \qquad x_{nm} = \langle \phi_n | x | \phi_m \rangle$$
$$\implies \langle \phi_n | V(r-x) | \phi_m \rangle = \sum_k \langle \phi_n | u_k \rangle V(r - \lambda_k) \langle u_k | \phi_m \rangle$$
$$\widehat{x} | u_k \rangle = \lambda_k | u_k \rangle$$

K. Hagino, N. Rowley, and A.T. Kruppa, CPC 123 ('99) 143

the situation before 1997

 $^{16}O + ^{144}Sm$

- ✓ good reproduction if ¹⁶O excitations are ignored
- ✓ worsen if ¹⁶O excitations are taken into account

similar situation also in other
 reactions with ¹⁶O
 → a big puzzle at that time

importance of consistent treatment

solution: all order couplings

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRL79 ('97) 2014

Adiabatic potential renormalization

 couplings to high-lying states
 : no change in *E*-dependence of fusion cross sections
 simply changes the static potential (adiabatic potential renormalization)

coupled-channels calculations: sufficient only with low-lying excitations

K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRL79 ('97) 2014

CCFULL: a standard code in heavy-ion sub-barrier fusion reactions K. Hagino, N. Rowley, A.T. Kruppa, CPC123 ('99) 143

CCFULL: a standard code in heavy-ion sub-barrier fusion reactions K. Hagino, N. Rowley, A.T. Kruppa, CPC123 ('99) 143

my international collaborations with CCFULL (experimental groups)

My theory collaborations on heavy-ion fusion reactions

(black: collaborations on other topics)

Further developments : C.C. with several nuclear structure models

Inputs for C.C. calculations

- i) Inter-nuclear potential
 - a fit to experimental data at above barrier energies
- ii) Intrinsic degrees of freedom

in most of cases, (macroscopic) collective model (rigid rotor / harmonic oscillator)

analysis with Interacting Boson Model (IBM)

K.Hagino, N. Takigawa, and S. Kuyucak, PRL79('97)2943

anharmonic vibrations

quadrupole moment: $Q(3^{-}) = -0.70 \pm 0.02b$

* on-going:
a model development
with E. Williams at ANU
(CCFULL + IBM)

Relativistic Mean-Field + fluctuation of MF (GCM) + C.C.

Remaining challenges

1. Interplay between fusion and (multi-) nucleon transfer processes

G. Scamps and K. Hagino, PRC92 ('16) 054616

 $\overset{\bullet}{\longrightarrow} \bigoplus \longrightarrow \bigcirc \rightarrow \overset{\bullet}{\longrightarrow}$

fusion with multi-nucleon transfer: needs a further development

 explain simultaneously fusion and transfer cross sections?
 reaction dynamics of pair transfer?

> cf. pairing in neutron-rich nuclei K. Hagino and H. Sagawa, PRC72 ('05) 044321

Remaining challenges

2. Fusion of halo nuclei

and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

 \rightarrow needs an extension with breakup and particle transfer at the same time

electron capture (A,Z) +e⁻ \rightarrow (A,Z-1) + v_e

towards neutron-rich nuclei

fusion of neutron-rich nuclei when Z becomes small enough ${}^{24}O + {}^{24}O, {}^{28}Ne + {}^{28}Ne$ etc.

N. Chamel and P. Haensel, Living Rev. Relativity, 11 ('08) 10.

Future perspectives: Superheavy elements

CN = compound nucleus ER = evaporation residue

$$\sigma_{\mathsf{ER}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1) T_l(E)$$
$$\times P_{\mathsf{CN}}(E,l) W_{\mathsf{suv}}(E^*,l)$$

cf. no experimental data for P_{CN} \rightarrow large uncertainty

V.I. Zagrebaev and W. Greiner, NPA944('15)257 E_{c.m.} (MeV)

Future directions

≻Towards Z=119 and 120 nuclei

the island of stability?

reaction dynamics? reliable prediction of fusion cross sections?

Towards the island of stability neutron-rich beams: indispensable

Future directions -1

≻Towards Z=119 and 120 nuclei

⁴⁸Ca projectile (hot fusion) $\rightarrow {}^{50}_{22}$ Ti, ${}^{51}_{23}$ V, ${}^{54}_{24}$ Cr projectile + deformed target nucleus

> needs a proper understanding of deformation effects on SHE synthesis reactions

✓ First step: how to extract T_l from σ_{cap}

$$\sigma_{\rm Cap} = \frac{\pi}{k^2} \sum_{l} (2l+1)T_l$$

 ✓ Second step: deformation effects on P_{CN} Extraction of T_l from H.I. quasi-elastic (QEL) scattering (easier measurement than σ_{cap})

Exp. : Mitsuoka et al. (JAEA, 2007)

Calc.: M. Zamrun F. (Tohoku → Dean of Facul. Sci. at Haluoreo U.), K. Hagino, S. Mitsuoka, and H. Ikezoe, PRC77('08)034604.

fitting of QEL data with a few barriers

✓ Bayesian statistics for the number of barriers
 K. Hagino, PRC93 ('16) 061601(R)

mapping from σ_{qel} to transmission probability T_l for the *l*-th partial wave

cf. Expt. of σ_{qel} with GARIS (Morita et al. ,2015)

Fusion reactions of deformed nuclei

- how to evolve towards a compound nucleus? (what are intermediate shapes?)
- deformation: quantum effects how deformation reduces during the heat-up process?

Future directions - 2

Towards the island of stability neutron-rich beams

: indispensable

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

Understanding of reaction dynamics (breakup, particle transfer, fusion)

Future directions - 2

Towards the island of stability neutron-rich beams

: indispensable

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

Understanding of reaction dynamics

structure of neutron-rich nuclei : equally important

possibilities of physics of SHE — with neutron-rich nuclei as a keyword

Heavy-ion fusion reactions around the Coulomb barrier

✓ Strong interplay between nuclear structure and reaction
 ✓ Quantum tunneling with various intrinsic degrees of freedom
 ✓ theory of coupled-channels method and a world standard code
 ✓ 2 Ph.D. and 4 master students (out of 8 Ph.D. and 10 masters)
 <u>Remaining challenges</u>

✓ fusion of halo nuclei (influence of breakup and particle transfer)✓ Microscopic understanding of low-E fusion reactions?

- ✓ how to understand many-particle tunneling phenomena?
- ✓ microscopic understanding of large amplitude motions

Future perspectives: superheavy elements

- ✓ Towards heavier SHE (Z = 119, 120)
- \checkmark Towards the island of stability

investigations of physics of SHE with neutron-rich nuclei as a keyword

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

From phenomenological approach to microscopic approach

TDHF simulations

ab initio, but no tunneling

- * Simenel
- * Sekizawa
- * Washiyama
- * Iwata-Otsuka etc.

➤ "Beyond mean-field" approximations

Nuclear structure: GCM $|\Psi\rangle = \int dq f(q) |\Phi_q\rangle$

Full time-dependent GCM? $|\Psi(t)\rangle = \int dq f(q,t) |\Phi_q(t)\rangle$

→ many-particle tunneling and large amplitude collective motions

* discussions with prof. Tsuyoshi Kato (AP at U. of Tokyo, theoretical chemistry)

Back-up slides

Future perspectives: Superheavy elements

Coupled-channels method

Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

Statistical model (CN decay)

Evaporation residue cross section (pb) 10 $(1)^{48}Ca + 244Pu \rightarrow 292114$ $(1)^{30}$ $(1)^{49}Ca + 244Pu \rightarrow 292114$ $(1)^{59}$ $(1)^{59}$ $(2)^{29}$ $(1)^{59}$ $(1)^{59}$ $(1)^{59}$ $(2)^{29}$ $(1)^{59}$ $(2)^{29}$ $(1)^{59}$ $(2)^{29}$ $(1)^{59}$ $(2)^{29}$ $(1)^{59}$ $(2)^{29}$ $(2)^{59}$ $(2)^{5$

V.I. Zagrebaev and W. Greiner, NPA944('15)257 E_{c.m.} (MeV)

CN = compound nucleus ER = evaporation residue

 $\sigma_{\mathsf{ER}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1) T_l(E)$ $\times P_{\mathsf{CN}}(E,l) W_{\mathsf{suv}}(E^*,l)$

cf. no experimental data for P_{CN} \rightarrow large uncertainty

Remaining challenges

2. Fusion of halo nuclei

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

M. Alcorta et al., PRL106('11)

 \rightarrow needs an extension with breakup and particle transfer at the same time

still a very challenging problem for nuclear theory

	Time-indep. approach	Time-dep. approach
Induced fission	✓ Bohr-Wheeler	 ✓ Langevin-type ✓ Discrete basis (Bertsch)
Spontaneous fission $50 \begin{bmatrix} 240 \\ PL \\ 40 \end{bmatrix} = q_1$ $\widehat{a} = 30 \\ O^{N}_{20} \end{bmatrix}$	✓ PES+Mass+WKB q_{II} f g_{II} g	 ✓ Imtime TDHF (Negele) ✓ Time-dep. Hill- Wheeler (Goutte et al.) ✓ TDHF (after the barrier)
³ ³ ³ ³ ³ ³ ³ ³		

Fusion reactions: compound nucleus formation

<u>H₂/D₂ 分子の金属表面への解離吸着</u>

H₂分子の解離吸着に対するH₂分子の回転運動の効果

$$L_i$$
: 反応が始まる前の回転状態の角運動量 $\frac{6\hbar^2}{2\mu r_0^2} = 0.046 \text{ eV}$

K. Hagino and N. Takigawa, PTP128 ('12) 1061

原子核の摩擦と重イオン核融合反応

これらの無数の状態は核反応の途中で複雑に励起

原子核の内部自由度は 核反応に対して「環境」の ように振舞う 「内的環境自由度」

原子核のスペクトル