

萩野浩一(東北大学) 佐川弘幸(会津大学)

K.H. and H. Sagawa, PRC89('14)014331

Di-neutron 相関と2中性子放出崩壊
 3体模型による解析
 崩壊エネルギースペクトル
 放出2中性子の角度分布
 5.まとめ

Di-neutron 相関と2中性子放出崩壊

中性子過剰核における強い di-neutron 相関

- ✓ ボロミアン核(3体計算)
 Bertsch-Esbensen ('91)
 Zhukov et al. ('93)
 Hagino-Sagawa ('05)
 Kikuchi-Kato-Myo ('10)
- ✓ より重い核(HFB計算)
 Matsuo et al. ('05)
 Pillet-Sandulescu-Schuck ('07)

Di-neutron 相関と2中性子放出崩壊

中性子過剰核における強い di-neutron 相関

- ✓ ボロミアン核(3体計算)
 Bertsch-Esbensen ('91)
 Zhukov et al. ('93)
 Hagino-Sagawa ('05)
 Kikuchi-Kato-Myo ('10)
- ✓ より重い核(HFB計算)
 Matsuo et al. ('05)
 Pillet-Sandulescu-Schuck ('07)

どのようにプローブするのか?

- クーロン分解

 T. Nakamura et al.
 クラスター和則
 (開き角度の平均値)

 2陽子放出崩壊

 クーロン3体問題
- ▶ 2中性子放出崩壊 遠心力障壁による 3体共鳴状態 MoNA (¹⁶Be, ¹³Li, ²⁶O) SAMURAI (²⁶O) 近藤さん(東工大) GSI (²⁶O)

<u>26Oの2中性子放出崩壊 (MoNA@MSU)</u>

E. Lunderberg et al., PRL108 ('12) 142503Z. Kohley et al., PRL 110 ('13)152501

 27 F (82 MeV/u) + 9 Be $\rightarrow ^{26}$ O $\rightarrow ^{24}$ O + n + n

cf. Y. Kondo et al., the previous talk (SAMURAI) C. Caesar et al., PRC88 ('13) 034313 (GSI exp.)

K.H. and H. Sagawa, PRC89 ('14) 014331

cf. Expt. : ${}^{27}F(82 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

 $|\Psi_{nn}\otimes|^{24}O\rangle$

²⁷Fの基底状態(束縛)

 $|\Psi_{nn}\otimes|^{25}\mathsf{F}
angle$

自発的に崩壊

同じ配位(²⁴O+n+n 系の固有状態ではない)

FSI → グリーン関数法

$$M_{fi} = \langle (j_1 j_2)^{J=0} | (1 - vG_0 + vG_0 vG_0 - \cdots) | \Psi_i \rangle$$

= $\langle (j_1 j_2)^{J=0} | (1 + vG_0)^{-1} | \Psi_i \rangle$

▶²⁴O + n ポテンシャル

Woods-Saxon ポテンシャル C.R. Hoffman et al., PRL100('08)152502 $e_{2s1/2} = -4.09 (13) \text{ MeV},$ $e_{1d3/2} = +770^{+20}$ keV, $\Gamma_{1d3/2} = 172(30)$ keV ▶²⁵F + n ポテンシャル $(^{24}O + n)$ potential (δV_{1s}) pn tensor interaction T. Otsuka et al., PRL95('05)232502 $e_{1d3/2}$ (²⁶F) = - 0.811 MeV ▶nn相互作用(密度依存型接触相互作用) \leftarrow E_{exp} (²⁷F) = -2.80(18) MeV

K.H. and H. Sagawa, PRC89 ('14) 014331

with final state nn interaction

放出2中性子のエネルギー分布

correlated

放出2中性子の角度分布

²⁶O の2中性子放出崩壊 ← 3体模型 (密度依存型接触相互作用: 連続状態グリーン関数が容易に求まる)

- ✓ 崩壊エネルギースペクトル:低エネルギーにするどいピーク
- ✓ 放出2中性子のエネルギー分布:3体共鳴
- ✓ 放出2中性子の角度分布:back-to-backが増幅

180

✓¹⁶Be, ¹³Liの解析(特に角度分布)
 ✓この模型でどのように幅を求めるか?