Di-neutron correlation and two-neutron decay of the ²⁶O nucleus

Kouichi Hagino Tohoku University, Sendai, Japan

0.005

0 005

Hiroyuki Sagawa University of Aizu / RIKEN

r (fm)

8 9 10

180

160

140

80 θ₁₂

60

40 20

(ged) 100 120

1. Di-neutron correlation: what is it? 2. Coulomb breakup 3. Two-neutron decay of unbound nucleus ^{26}O 4. Summary

Is this picture correct?

Introduction: neutron-rich nuclei

Next generation RI beam facilities : e.g. RIBF (RIKEN, Japan) FRIB (MSU, USA)

ed. by E.M. Henley and S.D. Ellis *"Exotic nuclei far from the stability line"* K.H., I. Tanihata, and H. Sagawa

halo/skin structure
Borromean nuclei
large E1 strength

shell evolution

Borromean nuclei

Structure of Borromean nuclei

- •What is the spatial structure of the valence neutrons?
- •To what extent is this picture correct?

 ${}^{11}\text{Li} = {}^{9}\text{Li} + n + n$ ${}^{6}\text{He} = {}^{4}\text{He} + n + n$

Borromean nuclei and Di-neutron correlation

Borromean nuclei: unique three-body systems

Three-body model calculations:

strong di-neutron correlation in ¹¹Li and ⁶He

$$x^2y^2\rho_2(x,y)$$
 for ⁶He

Yu.Ts. Oganessian et al., *PRL82('99)4996* M.V. Zhukov et al., *Phys. Rep. 231('93)151*

cf. earlier works

✓ A.B. Migdal ('73)✓ P.G. Hansen and B. Jonson ('87)

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

What is Di-neutron correlation?

Example: ${}^{18}O = {}^{16}O + n + n$

- i) Without nn interaction: $|nn\rangle = |(1d_{5/2})^2\rangle$
 - Distribution of the 2^{nd} neutron when the 1^{st} neutron is at z_1 :

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓Two neutrons move independently

✓ No influence of the 2^{nd} neutron from the 1^{st} neutron

need correlations to form a "pair"

Example: ${}^{18}O = {}^{16}O + n + n$ cf. ${}^{17}O : 3$ bound states $(1d_{5/2}, 2s_{1/2}, 1d_{3/2})$ i) even parity only \longrightarrow insufficient $z_1 = 1$ fm $z_1 = 2$ fm $z_1 = 3$ fm $z_1 = 4$ fm $(\underbrace{\mathbb{E}}_{\substack{0\\ \times -2\\ -4\\ -6}}^{0}$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Example: ${}^{18}\text{O} = {}^{16}\text{O} + n + n$ cf. ${}^{17}\text{O} : 3$ bound states $(1d_{5/2}, 2s_{1/2}, 1d_{3/2})$ i) even parity only \longrightarrow insufficient

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

ii) both even and odd parities (bound + continuum states)

dineutron correlation: caused by the admixture of different parity states

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

r

R

 $\frac{1}{2} (0h_{11/2})^2 \frac{1}{\sqrt{2}} (0i_{13/2})^2$

interference of even and odd partial waves

$$\rho_2(x_1, x_2) = |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2 + |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2$$

Dineutron correlation in the momentum space

$$\Psi(r,r') = \alpha \Psi_{s^2}(r,r') + \beta \Psi_{p^2}(r,r') \longrightarrow \theta_r = 0: \text{ enhanced}$$

$$\rightarrow \text{ Fourier transform}$$

$$\tilde{\Psi}(k,k') = \int e^{ik \cdot r} e^{ik' \cdot r'} \Psi(r,r') dr dr'$$

$$e^{ik \cdot r} = \sum_{l} (2l+1)i^{l} \dots \rightarrow i^{l} \cdot i^{l} = i^{2l} = (-)^{l}$$

$$\stackrel{\uparrow}{\tau} \stackrel{\uparrow}{\tau} \stackrel{\uparrow}{\tau}$$

$$\tilde{\Psi}(k,k') = \alpha \tilde{\Psi}_{s^{2}}(k,k') - \beta \tilde{\Psi}_{p^{2}}(k,k') \rightarrow \theta_{k} = \pi: \text{ enhanced}$$

Two-particle density in the *r* space: $8\pi^2 r^4 \sin \theta \cdot \rho(r, r, \theta)$

Two-particle density in the p space: $8\pi^2 k^4 \sin \theta \cdot \rho(k, k, \theta)$

Consequence to a two-nucleon emission decay

2p decay of ⁶Be : time-dependent calculations

 $c_1 = 0$ (1m) 30 0.5250.4 r_{PP} (im) 200.3 15 0210 0.1 5 Ū Π 15 20 25 30 35 40 O 5 10 т_{с-рр} (1m)

<u>T. Oishi</u> (Tohoku → Jyvaskyla), K.H., H. Sagawa, PRC90 ('14) 034303

Di-neutron correlation in neutron-rich nuclei

Strong di-neutron correlation in neutron-rich nuclei

 ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05)
 Pillet-Sandulescu-Schuck ('07) How to probe it?

- Coulomb breakup

 T. Nakamura et al.
 cluster sum rule
 (mean value of θ_{nn})

 pair transfer reactions
 two-proton decays

 Coulomb 3-body problem
 - <u>two-neutron decays</u>
 3-body resonance due to a centrifugal barrier MoNA (¹⁶Be, ¹³Li, ²⁶O)
 <u>SAMURAI (²⁶O)</u>
 GSI (²⁶O)

Coulomb breakup of 2-neutron halo nuclei

How to probe the dineutron correlation? \longrightarrow Coulomb breakup

Experiments:

T. Nakamura et al., PRL96('06)252502

T. Aumann et al., PRC59('99)1252

3-body model calculations:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← structure of the core nucleus (⁹Li)

Geometry of Borromean nuclei

Cluster sum rule r_{nn} 0.8 $^{11}Li^{-11}$ Total $B_{\text{tot}}(E1) = \sum_{f} |\langle \Psi_f | \hat{T}_{E1} | \Psi_0 \rangle|^2$ $\widehat{(\theta)}_{\mathbf{d}} 0.6$ S=0 component \boldsymbol{R} \cdots S=1 component $2\pi \sin\theta$ θ_{12} $\sim \frac{3}{\pi} \left(\frac{Z_c e}{A_c + 2} \right)^2 \langle R^2 \rangle$ 0.2 reflects the g.s. correlation 30 150 O) 60 90 120 180 θ_{12} (deg) "experimental data" for opening angle $\langle \theta_{12} \rangle = 65.29$ deq. $\sqrt{\langle R^2 \rangle}$ - B_{tot}(E1) matter radius $\langle \theta_{12} \rangle$: significantly smaller $\langle r_{
m nn}^2 \rangle$ or HBT than 90 deg. $\langle \theta_{12} \rangle = 65.2 \pm 12.2 \ (^{11}\text{Li})$ suggests dineutron corr. $= 74.5 \pm 12.1$ (⁶He) (but, an average of small and

large angles)

K.H. and H. Sagawa, PRC76('07)047302

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

Other data:

¹³Li (Z. Kohley et al., PRC87('13)011304(R)) ¹⁴Be \rightarrow ¹³Li \rightarrow ¹¹Li + 2n ²⁶O (E. Lunderbert et al., PRL108('12)142503) ²⁷F \rightarrow ²⁶O \rightarrow ²⁴O + 2n

3-body model calculation with nn correlation: required

Two-neutron decay of ²⁶O

the simplest among ¹⁶Be, ¹³Li, ²⁶O (MSU)
¹⁶Be: deformation, ¹³Li: treatment of ¹¹Li core

Experiment:

E. Lunderberg et al., PRL108 ('12) 142503Z. Kohley et al., PRL 110 ('13)152501

 27 F (82 MeV/u) + 9 Be $\rightarrow ^{26}$ O $\rightarrow ^{24}$ O + n + n

K.H. and H. Sagawa, PRC89 ('14) 014331

cf. Expt. : ${}^{27}F(82 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

FSI — Green's function method ← continuum effects

²⁵O : calibration of the n-²⁴O potential

n-²⁴O Woods-Saxon potential

$$a = 0.72 \text{ fm (fixed)}$$

 $r_0 = 1.25 \text{ fm (fixed)}$
 $V_0 \leftarrow e_{2s1/2} = -4.09 (13) \text{ MeV}$
 $V_{1s} \leftarrow e_{d3/2} = 0.749(10) \text{ MeV}$

Gamow states (outgoing boundary condition)

d_{3/2}: E = 0.749 MeV (input), $\Gamma = 87.2$ keV cf. $\Gamma_{exp} = 86$ (6) keV

f_{7/2}:
$$E = 2.44$$
 MeV, $\Gamma = 0.21$ MeV
p_{3/2}: $E = 0.577$ MeV, $\Gamma = 1.63$ MeV

n-²⁴O decay spectrum

$$\frac{dP}{dE} = |\langle \Phi_{\text{ref}} | \Psi_E \rangle|^2 = \frac{1}{\pi} Im \langle \Phi_{\text{ref}} | \frac{1}{H - E - i\eta} | \Phi_{\text{ref}} \rangle$$

• apply a similar method to ${}^{24}O + n + n$

Two-neutron decay of ²⁶O : i) Decay energy spectrum

 v_0 : free nn interaction $\alpha: E_{gs}(^{26}O)$

$$H = T_1 + V_1 + T_2 + V_2 + v_{nn}$$

$$\frac{dP}{dE} = \int dE' |\langle \Psi_{E'} | \Phi_{\text{ref}} \rangle|^2 \,\delta(E - E') = \frac{1}{\pi} \Im \langle \Phi_{\text{ref}} | \frac{1}{H - E - i\eta} | \Phi_{\text{ref}} \rangle$$

 $E_{\text{peak}} = 18 \text{ keV} (\text{input})$

Two-particle density in the bound state approximation

cf. Grigorenko et al. (PRC91 ('15) 064617)

 $E = 0.01 \text{ MeV} [(d_{3/2})^2 : 79 \%]$ $E = 1.7 \text{ MeV} [(d_{3/2})^2 : 80 \%]$ $E = 2.6 \text{ MeV} [(d_{3/2})^2 : 86 \%]$ cf. s.p. resonances (MeV) $d_{3/2}$: E = 0.75, $\Gamma = 0.087$ $f_{7/2}$: E = 2.44, $\Gamma = 0.21$ $p_{3/2}$: E = 0.58, $\Gamma = 1.63$

2^+ state in ${}^{26}O$

New RIKEN data : a prominent second peak at $E = 1.28^{+0.11}_{-0.08}$ MeV

cf. sdpf-m: $E_{2+} = 2.62$ MeV (Y. Utsuno) ab-initio calc. with chiral NN+3N: $E_{2+} = 1.6$ MeV (C. Caesar et al., PRC88('13)034313) continuum shell model: $E_{2+} = 1.8$ MeV (A. Volya and V. Zelvinsky, PRC74 ('14) 064314)

	²⁵ O (3/2 ⁺)	²⁶ O (2 ⁺)
Experiment	+ 749 (10) keV	$1.28^{+0.11}_{-0.08}\mathrm{MeV}$
USDA	1301 keV	1.9 MeV
USDB	1303 keV	2.1 MeV
sdpf-m (Utsuno)	?	2.6 MeV
chiral NN+3N	742 keV	1.6 MeV
continuum SM (Volya-Zelevinsky)	1002 keV	1.8 MeV
continuum SM (Tsukiyama, Otsuka, Fujimoto)	0.86 MeV	1.66 MeV
3-body model (Hagino-Sagawa)	749 keV (input)	1.282 MeV

correlation \rightarrow enhancement of back-to-back emissions

cf. Similar conclusion: L.V. Grigorenko, I.G. Mukha, and M.V. Zhukov, PRL 111 (2013) 042501

main contributions: *s*- and *p*-waves in three-body wave function (no or low centrifugal barrier)

*higher *l* components: largely suppressed due to the centrifugal pot. ($E_{decay} \sim 18 \text{ keV}, e_1 \sim e_2 \sim 9 \text{ keV}$) ii) distribution of opening angle for two-emitted neutrons

Recent measurements and simulations at MONA

Y system

Z. Kohley et al., PRC91 ('15) 034323

2n emission decay of ²⁶O ← three-body model with density-dependent zero-range interaction: continuum calculations: relatively easy

- ✓ Decay energy spectrum: strong low-energy peak
- ✓ 2^+ energy: excellent agreement with the data
- ✓ Angular distributions: enhanced back-to-back emission

→ dineutron emission

□open problems

- ✓ Analyses for ¹⁶Be and ¹³Li
 ✓ Decay width?
- ✓ Extension to 4n decay c.f. 28 O