Capture barrier distributions and superheavy elements

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. Introduction: Fusion reactions for SHE
- 2. Role of deformation in capture reactions
- 3. Barrier distribution and C.C. analysis
- 4. Summary

International symposium on RI beam physics in the 21st century: 10th anniversary of RIBF Dec. 4-5, RIKEN

New element 113: Nihonium

 \rightarrow ²⁷⁸Nh + n Jul. 23, 2004 α_1 113 11.68 ± 0.04 MeV (PSD) Apr. 2, 2005 0.344 ms α_{2} $11.15 \pm 0.07 \text{ MeV}$ α_1 11.52 ± 0.04 MeV (PSD) 6.15 + 5.00 (PSD + SSD) 4.93 ms 9.26 ms α_2 $10.03 \pm 0.07 \text{ MeV}$ α_{2} 1.14 + 8.89 (PSD + SSD) 11.31 ± 0.07 MeV α_1 0.88 + 10.43 (PSD + SSD) 7.16 ms 11.82 ± 0.06 MeV (PSD) ²⁶⁶Bh nihonium 0.667 ms 34.3 ms α_{A} 9.08 ± 0.04 MeV (PSD) α_2 2.47 s 2.32 MeV (escape) α_{2} 10.65 ± 0.06 MeV (PSD) 1.63 s ⁶²Db 9.97 ms 204 MeV(PSD) November, 2016 70N α_{A} 40.9 s 9.77 ± 0.04 MeV (PSD) α_3 S. F. 1.31 s $10.26\pm0.07~MeV$ 2.67 + 7.64 (PSD + SSD) 444 ms 266Bh 192MeV (PSD) α_{4} 0.787 s 9.39 ± 0.06 MeV (PSD) RIKEN RIKEN 理化学研究所 RIKEN 理化学研究所 S. F. 5.26 s α_{5} 8.63 ± 0.06 MeV (PSD) Aug. 12, 2012 R 126 s 理化学 258 RIKEN α_6 8.66 ± 0.06 MeV (PSD) 3.78 s ²⁵⁴Md Morimoto-san's talk

 70 Zn + 209 Bi $\rightarrow ^{279}$ Nh*

- \succ to understand the reaction dynamics
- \succ to make a reliable theoretical prediction for fusion cross sections

 $\sigma_{\rm ER}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1) T_l(E) P_{\rm CN}(E,l) W_{\rm suv}(E^*,l)$

Hot fusion for Z = 119 and 120

Towards Z=119 and 120 isotopes

hot fusion: ⁴⁸Ca + actinide targets

Dubna: ${}^{48}Ca + {}^{249}Cf \ (\beta_2 = 0.235) \rightarrow {}^{297-x}Og \ (Z=118) + xn$

role of deformation?

Role of deformation in capture cross sections

Sub-barrier enhancement of capture cross sections

Role of deformation in capture cross sections

Sub-barrier enhancement of capture cross sections

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

a nice tool to understand the reaction dynamics

K.H., N. Takigawa, PTP128 ('12) 1061

Measurements of barrier distributions with GARIS

<u>T. Tanaka</u>, Y. Narikiyo, K. Morita, K. Fujita, D. Kaji, K. Morimoto,, K.H., J. of Phys. Soc. Japan (JPSJ), in press.

Quasi-elastic barrier distribution

a sum of elastic, inelastic, and transfer

$$D_{\text{qel}}(E) = -\frac{d}{dE} \left(\frac{\sigma_{\text{qel}}(E,\pi)}{\sigma_R(E,\pi)} \right)$$

K.H. and N. Rowley, PRC69 ('04) 054610

Measurements of barrier distributions with GARIS

$$D_{\text{qel}}(E) = -\frac{d}{dE} \left(\frac{\sigma_{\text{qel}}(E,\pi)}{\sigma_R(E,\pi)} \right)$$

T. Tanaka et al., K.H., JPSJ, in press.

K.H. and T. Tanaka (2017) (T. Tanaka et al., K.H., JPSJ in press)

$${}^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

 $[\beta_2 \text{ and } \beta_4 \text{ from P. Moller}]$

K.H. and T. Tanaka (2017)

$${}^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

single-channel calculation (spherical ²⁴⁸Cm)

K.H. and T. Tanaka (2017)

$$^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

K.H. and T. Tanaka (2017)

$$^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

K.H. and T. Tanaka (2017)

$${}^{48}\text{Ca} + {}^{248}\text{Cm} \ (\beta_2 = 0.297, \ \beta_4 = 0.04) \rightarrow {}^{296}_{116}\text{Lv}^*$$

barrier distribution

$${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}{}_{116}Lv^*$$

$${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}{}_{116}Lv^*$$

the initial (injection) point of a Langevin calculation:

role of orientation angle in ER cross sections

Fusion-by-diffusion model (Swiatecki) + deformation

K.H., in preparation

Towards the island of stability

neutron-rich beams: indispensable

- ➤ how to deal with <u>low beam intensity</u>?
- reaction dynamics of neutron-rich beams?
 - ✓ capture: role of breakup and (multi-neutron) transfer?
 - \checkmark diffusion: neutron emission during a shape evolution?
 - ✓ survival: validity of the statistical model?

structure of exotic nuclei

more studies are required

Summary

Reaction dynamics for SHE formation reactions

- Recent measurement of barrier distributions with GARIS
 - ✓ ⁴⁸Ca + ²⁴⁸Cm
 - \checkmark coupled-channels analysis
 - ✓ notion of compactness: ER formation with side collisions

more data coming soon

Open problems

✓ ⁴⁸Ca projectile \rightarrow ⁵⁰₂₂Ti, ⁵¹₂₃V, ⁵⁴₂₄Cr projectiles etc.

how much cross sections will be altered?

 \checkmark shape evolution with a deformed target?

how does the deformation disappear during heat-up? cf. Nakatsukasa-san's conjecture?

✓ reaction dynamics with neutron-rich nuclei?

formation of SHE

chemistry of SHE

the origin of (S)HE

reaction dynamics

structure of SHE

Haba-san's talk

interdisciplinary SHE science

with physics, chemistry, and astronomy

Nuclear Physics (RIBF) Astrophysics

sessions in this morning

Recent application to SHE : Quasi-elastic B.D.

Quasi-elastic barrier distribution

$$D_{\text{qel}}(E) = -\frac{d}{dE} \left(\frac{\sigma_{\text{qel}}(E,\pi)}{\sigma_R(E,\pi)} \right)$$

Quasi-elastic scattering

- : reflected flux at the barrier
 - a sum of elastic, inelastic, and transfer
 - easier to measure than capture

H. Timmers et al., NPA584('95)190 K.H. and N. Rowley, PRC69('04)054610

previous attempts

fusion-by-diffusion model

W.J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, PRC71 ('05) 014602

fusion-by-diffusion model

W.J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, PRC71 ('05) 014602

Super-heavy nuclei

coupled-channels method

Langevin approach

V.I. Zagrebaev and W. Greiner, NPA944('15)257

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

statistical model

