Di-neutron correlation in neutron-rich nuclei

Kouichi Hagino Tohoku University, Sendai, Japan Hiroyuki Sagawa (U. of Aizu)

- 1. Borromean nuclei and di-neutron correlation
- 2. Three-body model approach
- 3. Coulomb breakup
- 4. Two-neutron decay of unbound nucleus ²⁶O
- 5. Summary

Introduction: neutron-rich nuclei

Next generation RI beam facilities : e.g., RIBF (RIKEN, Japan)

•halo/skin structure

- ●large E1 strength
- •shell evolution

Mean-field approximation

stable nuclei

neutron-rich nuclei

$\psi(r) \sim \exp(-\kappa r)$ $\kappa = \sqrt{2m|\epsilon|/\hbar^2}$

weakly bound systems

halo nucleus

Role of redidual interaction

$$H = \sum_{i} T_i + \sum_{i < j} v_{ij} \rightarrow H = \sum_{i} (T_i + V_i) + \sum_{i < j} v_{ij} - \sum_{i} V_i$$

residual interaction (pairing)

Neutron-rich nuclei:

- weakly bound systems: low neutron density
- residual interaction (pairing interaction)
- many-body correlations

many-particles in a confining potential

a challenging problem

finite-well confining potentialself-consistent potential

Borromean nucleus

residual interaction \rightarrow attractive

Remaining problems

What is the spatial structure of the valence neutrons? (To what extent is this picture correct?)
E1 excitations?
Influence to nuclear reactions?

"Borromean nuclei"

Borromean nuclei and Di-neutron correlation

Borromean nuclei: unique three-body systems

Three-body model calculations:

strong di-neutron correlation in ¹¹Li and ⁶He

$$x^2y^2\rho_2(x,y)$$
 for ⁶He

Yu.Ts. Oganessian et al., *PRL82('99)4996* M.V. Zhukov et al., *Phys. Rep. 231('93)151*

cf. earlier works

✓ A.B. Migdal ('73)
✓ P.G. Hansen and B. Jonson ('87)

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327 dineutron correlation: caused by the admixture of different parity states

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

-6 -4 -2 0 2 4 6 z (fm) parity mixing

-6 -4 -2 0 2 4 6 z (fm)

spatial localization of two neutrons (dineutron correlation)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

weakly bound systems

- →easy to mix different parity states due to the continuum couplings
 - + enhancement of pairing on the surface

M. Matsuo, PRC73('06)044309

z (fm)

spatial localization of two neutrons
(dineutron correlation)

cf. Migdal, Soviet J. of Nucl. Phys. 16 ('73) 238 Bertsch, Broglia, Riedel, NPA91('67)123

weakly bound systems

- →easy to mix different parity states due to the continuum couplings
 - + enhancement of pairing on the surface

→ dineutron correlation: enhanced

- cf. Bertsch, Esbensen, Ann. of Phys. 209('91)327
 - M. Matsuo, K. Mizuyama, Y. Serizawa, PRC71('05)064326

Pairing correlations in atomic nuclei

Spatial structure of a Cooper pair?

Coherence length of a Cooper pair:

$$\xi = \frac{\hbar^2 k_F}{m\Delta}$$

much larger than the nuclear size

Di-neutron correlations in neutron-rich nuclei

Three-body model with density-dependent delta force

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$V_{nn}(r_1, r_2) = \delta(r_1 - r_2) \left(v_0 + \frac{v_{\rho}}{1 + \exp[(r_1 - R_{\rho})/a_{\rho}]} \right)$$

- \checkmark contact interaction
- ✓ v_0 : free n-n ← scattering length
- ✓ density dependent term: medium many-body effects

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$\Psi_{gs}(\mathbf{r},\mathbf{r}') = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \Psi_{nn'lj}^{(2)}(\mathbf{r},\mathbf{r}')$$

cf. "di-proton" correlation

$$^{17}\text{Ne} = {}^{15}\text{O} + p + p \quad (S_{2p} = 0.944 \text{ MeV})$$

 v_{pp} = density-dep. contact interaction + Coulomb

cf. two-proton decays of proto-rich nuclei beyond the proton drip-line T. Oishi, K. Hagino, and H. Sagawa, PRC82('10)024315; PRC90('14)034303

 \diamond Role of pairing correlation

configuration mixing of different parity states

K.Hagino, H. Sagawa, J. Carbonell, and P. Schuck, PRL99('07)022506

M. Matsuo, PRC73('06)044309

2n-rms distance

R (fm)

P. Schuck, J. of Phys. G37('10)064040

Coulomb breakup of 2-neutron halo nuclei

How to probe the dineutron correlation? \longrightarrow Coulomb breakup

3-body model calculations:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← structure of the core nucleus (⁹Li)

also for ²²C, ¹⁴Be, ¹⁹B etc. (T. Nakamura et al.)

Dipole excitations

Response to the dipole field:

K.H. and H. Sagawa, PRC76('07)047302

Geometry of Borromean nuclei

r_{nn} Cluster sum rule	
$B_{\text{tot}}(E1) = \sum_{f} \langle \Psi_{f} \hat{T}_{E1} \Psi_{0} \rangle $ $\sim \frac{3}{\pi} \left(\frac{Z_{c}e}{A_{c}+2} \right)^{2} \langle R^{2} \rangle$	$ ^2 \bigoplus_{i=1}^{n} 0.6 \bigoplus_{i=1}^{n} 0.6 \bigoplus_{i=1}^{n} 0.4 \bigoplus_{i=1}^$
$ \begin{array}{c} & & \\ $	$\begin{array}{c} 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
$\sqrt{\langle R^2 \rangle} \longleftarrow B_{tot}(E1)$	$\langle \sigma_{12} \rangle = 05.29$ deg.
$\int \sqrt{\langle r_{nn}^2 \rangle} \leftarrow matter radius \\ or HBT$	$\langle \theta_{12} \rangle$: significantly smaller than 90 deg.
$\langle \theta_{12} \rangle = 65.2 \pm 12.2 \ (^{11}\text{Li})$ = 74.5 ± 12.1 (⁶ He)	suggests dineutron corr. (but, an average of small and
K.H. and H. Sagawa, PRC76('07)047302	large angles)

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

Coulomb excitations

A problem: an external field is too weak

Energy distribution of emitted neutrons

- shape of distribution: insensitive to the nn-interaction
 - (except for the absolute value)
- \checkmark strong sensitivity to V_{nC}
- ✓ similar situation in between ¹¹Li and ⁶He

other probes?

- two-neutron transfer reactions
- two-nucleon emission

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R)

Other data:

¹³Li (Z. Kohley et al., PRC87('13)011304(R)) ¹⁴Be \rightarrow ¹³Li \rightarrow ¹¹Li + 2n ²⁶O (E. Lunderbert et al., PRL108('12)142503) ²⁷F \rightarrow ²⁶O \rightarrow ²⁴O + 2n

3-body model calculation with nn correlation: application to ²⁶O decay

ii) angular correlations of the emitted neutrons

K.H. and H. Sagawa, PRC89 ('14) 014331

correlation \rightarrow enhancement of back-to-back emissions $\langle \theta_{nn} \rangle = 115.3^{\circ}$ ii) distribution of opening angle for two-emitted neutrons

Di-neutron correlation : spatial localization of two neutrons

 ✓ parity mixing
 ✓ neutron-rich nuclei: scattering to the continuum states enhancement of pairing on the surface

how to probe it?

- Coulomb breakup
 - ✓ enhancement of B(E1) due to the correlation
 - ✓ Cluster sum rule (only with the g.s. correlation)
 - \checkmark opening angle of two neutrons
- •2-neutron emission decay
 - ✓ decay energy spectrum
 - ✓ opening angle of two emitted neutrons (back-to-back)

←→ dineutron correlation