2016.8.31

RIKEN ミニ・ワークショップ

「超重核生成反応の理論的理解に向けて」

RIKEN Mini-Workshop on "Towards theoretical understanding of production reactions of superheavy elements"

113番元素
ニホニウム Nh (案)
超重元素の物理

→ これまで以上の注目

理論:

精度よく断面積を予言しようという機運

ER生成は超希プロセス
各プロセスの小さな不定性が大きな影響

どのように理論的不定性 を小さくして精度よい予言 が出来るのか?

R.S. Naik, W. Loveland et al., PRC76 ('07)054604

<u>cold fusion から hot fusion へ</u>

118 番元素 Dubna: ⁴⁸Ca + ²⁴⁹Cf (β₂ = 0.235) RIKENの計画: ⁵⁰Ti + ²⁴⁸Cm (β₂ = 0.235) 変形核の特徴を取り入れた理論的記述が必要
⁵⁰Ti + ²⁴⁸Cm の断面積をどのくらい精度よく記述できるのか?

<u>もう一つの理論的課題</u>

島にたどり着くためには中性子過剰核ビームが必要不可欠

将来の重要課題(反応系、ビームのエネルギー、断面積の見積もり)

RIKEN ミニ・ワークショップ

2016.8.31

「超重核生成反応の理論的理解に向けて」

✓ 最終目標: ⁵⁰Ti + ²⁴⁸Cm の断面積の精度よい見積もりをする
 ✓ それに向けて各プロセスでの理論的課題を洗いだす
 ✓ 不安定核ビームを使った実験に向けた理論的課題は何か

● 各人の研究発表の場ではなく議論をする場
 ●「勉強会」ではなく参加者が議論に参加する場

議論のポイント:

- * 現在の理論模型の現状
- * どのような不満点があるのか
- * それを改良するにはどうすればよいのか
- * その改良をするにあたり、どのような実験データが欲しいのか
- * 逆に、実験側から理論へどのような要求があるか

2つの原子核がクーロン障壁を乗り越えて接触するまで

▶ サブ・バリア核融合の物理 ▶ 結合チャンネル法 ▶ 単純化された結合チャンネル計算とその問題点 ▶ 超重核生成反応に対する戦略

サブ・バリア核融合の物理

<u>核融合反応断面積の増幅現象の発見(70年代後半)</u>

ポテンシャル模型: V(r) + 吸収

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

¹⁵⁴Sm: 変形核 (β₂ ~ 0.3)

結合チャンネル法

$$\Psi(\mathbf{r},\xi) = \sum_{k} \psi_k(\mathbf{r}) \phi_k(\xi)$$

 $\downarrow \psi_k(\mathbf{r})$ に対する連立
 $\psi_k(\mathbf{r})$ に対する連立

 0^+

 0^{+}

C.C. 法: サブ・バリア核融合に対する標準的な方法 cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)

✓ 核融合障壁分布 (Rowley, Satchler, Stelson, PLB254('91))

K.H., N. Takigawa, PTP128 ('12) 1061

単純化された結合チャンネル計算とその問題点

経験的な結合チャンネル法

fusion-by-diffusion 模型

(W.J. Swiatecki et al., Acta Phys. Pol. B 34 ('03) 2049)

$$\sigma(E) = \int dB f(B) \,\sigma_{\mathsf{CI}}(E;B)$$

$$f(B) = \frac{1}{w\sqrt{2\pi}} e^{-(B-B_0)^2/2w^2}$$

$$\sigma_{\rm Cl}(E;B) = \pi R^2 (1 - B/E) \theta(E-B)$$

B₀, w, R: 経験的なグローバル公式

同様のアプローチ: Zagrebaev

- ✓ 実験データとの合いはそれほど悪くはない
- ✓ ただし、ファクター2くらいのずれは出る
- ✓ W. Loveland: $\sigma_{calc} / \sigma_{exp} \sim 0.55 2.24$ (Eur. Phys. J. A51 ('15) 120)

<u>経験的 C.C. 法の問題点: クーロン励起</u>

重い系では、クーロン励起によっても核融合断面積が抑制

N. Rowley, N. Grar, and K. Hagino, PLB632('06)243

超重核生成反応に対する戦略

クーロン励起 サブ・バリア領域のダイナミックス → 結合チャンネル計算が 必要

計算のインプット:

1) 核間ポテンシャル

通常は実験データを再現するように決める

2)結合に関与する準位と結合定数

通常は古典的な回転や調和振動子

CCFULL による計算 ⁴⁸Ca + ¹⁵⁴Sm (rot: 16⁺ まで)

$$\sigma_{exp} \rightarrow \sigma_{cc} \rightarrow T_l(E)$$

* very low energy における 核融合反応断面積の増幅 は恐らく transfer の影響 結合チャンネル計算のインプット:

1) 核間ポテンシャル

通常は実験データを再現するように決める

超重核領域では $\sigma_{cap} \sim \sigma_{qf}$

→ σ_{qf}の実験データがあれば、捕獲過程は大体 わかる(ただし、fission detector が必要)

または、D_{fus}の測定があればそこからの予想も可

2)結合に関与する準位と結合定数

通常は古典的な回転や調和振動子

→ 核構造計算(殻模型や GCM 計算)の結果 をインプットとして C.C. 計算を行う

J.M. Yao and K.H., PRC94 ('16) 11303(R)

中性子過剰ビームを用いた核融合反応

中性子過剰ビーム

(多)中性子移行反応

A. Lemasson et al., PRL103('09)232701

G. Montagnoli et al., J. of Phys. G23('97)1431

多核子移行過程を含めてどのように 核融合反応を記述するか:今後の重要課題の一つ

核融合障壁分布から断面積へ

$$D_{\exp}(E) = \sum_{i=1}^{K} w_k D_0(E; B_k, s_k)$$

- *K*, *w*_k, *B*_k, *s*_k を実験に合うように 最適化
- 問題: Kをどのように決めれば よいか (over-fitting)? べイズ統計を用いると K に 対する指針を得ることができる

核融合障壁分布から断面積へ

$$D_{\exp}(E) = \sum_{i=1}^{K} w_k D_0(E; B_k, s_k)$$

K: ベイズ統計で決定 *w*_k, *B*_k, *s*_k : 実験に合うように 最適化

結合の詳細を知らなくても 結合チャンネル計算と同等の 捕獲断面積を計算できる

✓ 超重核領域の反応
 ✓ 中性子過剰ビームによる反応

Quasi-elastic barrier distribution with GARIS (T. Tanaka, K. Morita, 2015)

2つの原子核がクーロン障壁を乗り越えて接触するまで

 ✓ 蒸発残留核生成反応における3つのプロセスの中で最も「クリーン」
 ✓ 超重核領域では σ_{cap} ~ σ_{qf} (実験で断面積を決定できる)
 ✓ 実験データ → 結合チャンネル計算
 ✓ 障壁分布のデータが測れれば → deconvolution 可(ベイズ統計) 結合の詳細がわからなくても断面積を計算できる
 ← 中性子過剰ビーム(多核子移行反応の取扱い)

Discussion Session

R.S. Naik, W. Loveland et al., PRC76 ('07)054604

2つの原子核がクーロン障壁を乗り越えて接触するまで

 ✓ 蒸発残留核生成反応における3つのプロセスの中で最も「クリーン」
 ✓ 超重核領域では σ_{cap} ~ σ_{qf} (実験で断面積を決定できる)
 ✓ 実験データ → 結合チャンネル計算
 ✓ 障壁分布のデータが測れれば → deconvolution 可(ベイズ統計) 結合の詳細がわからなくても断面積を計算できる
 ← 中性子過剰ビーム(多核子移行反応の取扱い)

2つの原子核が接触した状態が時間発展して複合核を作るまで

- ✓ 原子核形状のパラメトリゼーション
- ✓ 殻補正エネルギーの温度依存性
- ✓ 輸送係数に対する量子効果
- ✓ Fusion box の取り方
- ✓ Q-value

接触点が遠い → 準核分裂

接触点が近い → 複合核生成に有利

どのように複合核になっていくのか?
 (途中の形状はどうなっているのか?)
 変形:量子効果
 ヒート・アップの過程でどのように変形が小さくなっていくのか?

熱い複合核が中性子を放出して冷えるまで

理論的枠組み:統計模型

- ✓ HIVAP
- ✓ KEWPIE2

(Kyoto Evaporation Width calculation Program with tIme Evolution 2;

H. Lu, A. Marchix, Y. Abe, and D. Boilley, CPC200('16) 381)

インプットの不定性・モデル依存性

⁴⁸Ca+²³⁸U: HIVAPと Dubna で大きな違い

²⁰⁸Pb (⁵⁸Fe, 1n) ²⁶⁵Hs at the optimum energy

H. Lu, D. Boilley, Y. Abe, and C. Shen, preprint.

議論のポイント:

- *現在の理論模型の現状
- * どのような不満点があるのか
- * それを改良するにはどうすればよいのか
- * その改良をするにあたり、どのような実験データが欲しいのか
- * 逆に、実験側から理論へどのような要求があるか
- * QF と FF は本当に分離不可能か?
- * ER に代わる複合核形成の実験的証拠はないのか?

<u>cold fusion から hot fusion へ</u>

118 番元素 Dubna: ⁴⁸Ca + ²⁴⁹Cf (β₂ = 0.235) RIKENの計画: ⁵⁰Ti + ²⁴⁸Cm (β₂ = 0.235) 変形核の特徴を取り入れた理論的記述が必要
⁵⁰Ti + ²⁴⁸Cm の断面積をどのくらい精度よく記述できるのか?