RIBF/post-RIBF and theory-experiment coupling

Kouichi Hagino Tohoku University, Sendai, Japan

RIBF Theory Forum : white paper (2008)

RIBF theory forum the first members (2005 - 2014):

Itagaki, Utsuno, Kanada-En'yo, Ogata, Ono, Kohama, <mark>Sakurai</mark>, Nakatsukasa, <u>Hagino</u>, Honma, Matsuo, Mochizuki, Yabana

- ✓ Unveil new properties of atomic nuclei by controlling the proton and neutron numbers
- ✓ Explore the new phases and dynamics of nuclear matter at several proton and neutron densities
- ✓ Understand the origin of elements and several nuclear phenomena in the universe
- ✓ Challenge the physics of superheavy elements
- ✓ Systematize microscopic nuclear many-body theories

Report on future of nuclear physics in Japan (working group on unstable nuclei: chaired by Aoi-san) 2013

"Six view points for research of unstable nuclei"

- \checkmark the limit of existence: exploration of terra incognita
- \checkmark single-particle motions and magic numbers
- ✓ n-nucleon correlations
- \checkmark deformations
- ✓ EOS
- ✓ nuclear astrophysics

✓ <u>the limit of existence: exploration of terra incognita</u>

PRL 116, 102503 (2016)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2016

Nucleus ²⁶O: A Barely Unbound System beyond the Drip Line

Y. Kondo,¹ T. Nakamura,¹ R. Tanaka,¹ R. Minakata,¹ S. Ogoshi,¹ N. A. Orr,² N. L. Achouri,² T. Aumann,^{3,4} H. Baba,⁵ F. Delaunay,² P. Doornenbal,⁵ N. Fukuda,⁵ J. Gibelin,² J. W. Hwang,⁶ N. Inabe,⁵ T. Isobe,⁵ D. Kameda,⁵ D. Kanno,¹ S. Kim,⁶ N. Kobayashi,¹ T. Kobayashi,⁷ T. Kubo,⁵ S. Leblond,² J. Lee,⁵ F. M. Marqués,² T. Motobayashi,⁵ D. Murai,⁸ T. Murakami,⁹ K. Muto,⁷ T. Nakashima,¹ N. Nakatsuka,⁹ A. Navin,¹⁰ S. Nishi,¹ H. Otsu,⁵ H. Sato,⁵ Y. Satou,⁶ Y. Shimizu,⁵ H. Suzuki,⁵ K. Takahashi,⁷ H. Takeda,⁵ S. Takeuchi,⁵ Y. Togano,^{4,1} A. G. Tuff,¹¹ M. Vandebrouck,¹² and K. Yoneda⁵

PRL 116, 102503 (2016)

Nucleus ²⁶O: A Barely Unbound System beyond the Drip Line

Y. Kondo,¹ T. Nakamura,¹ R. Tanaka,¹ R. Minakata,¹ S. Ogoshi,¹ N. A. Orr,² N. L. Achouri,² T. Aumann,^{3,4} H. Baba,⁵ F. Delaunay,² P. Doornenbal,⁵ N. Fukuda,⁵ J. Gibelin,² J. W. Hwang,⁶ N. Inabe,⁵ T. Isobe,⁵ D. Kameda,⁵ D. Kanno,¹ S. Kim,⁶ N. Kobayashi,¹ T. Kobayashi,⁷ T. Kubo,⁵ S. Leblond,² J. Lee,⁵ F. M. Marqués,² T. Motobayashi,⁵ D. Murai,⁸ T. Murakami,⁹ K. Muto,⁷ T. Nakashima,¹ N. Nakatsuka,⁹ A. Navin,¹⁰ S. Nishi,¹ H. Otsu,⁵ H. Sato,⁵ Y. Satou,⁶ Y. Shimizu,⁵ H. Suzuki,⁵ K. Takahashi,⁷ H. Takeda,⁵ S. Takeuchi,⁵ Y. Togano,^{4,1} A. G. Tuff,¹¹ M. Vandebrouck,¹² and K. Yoneda⁵

✓ <u>Two-neutron decays</u>

Three-body model calculation K.H. and H. Sagawa, PRC93 ('16)

✓ good reproduction of the data (both g.s. and the 2⁺ state)

	²⁵ O (3/2 ⁺)	²⁶ O (2 ⁺)
Experiment	+ 749 (10) keV	$1.28^{+0.11}_{-0.08}$ MeV
USDA	1301 keV	2.4 MeV
chiral NN+3N	742 keV	1.64 MeV
continuum SM	1002 keV	1.87 MeV
3-body model (Hagino-Sagawa)	749 keV (input)	1.282 MeV

K.H. and H. Sagawa, PRC93 ('16)

✓ <u>Two-neutron decays</u>

Future perspectives (two-neutron and multi-neutron decays):

≻ MSU data

✓ better data with RIBF?

- ✓ measurement for the angular distribution?
- ✓ measurement of spin of emitted neutrons?
- \checkmark role of three-body interaction?
- \checkmark extension of the three-body model: deformed core / core+4n model
- ➢ ²⁸O experiment (Y. Kondo et al.)

Future perspectives (two-neutron and multi-neutron decays):

Future perspectives (two-neutron and multi-neutron decays):

- RIBF → post-RIBF: light/medium-heavy → med.-heavy/heavy nuclei
- cf. one proton decay of medium-heavy proton-rich nuclei
 - Spherical emitter: ¹⁴⁵₆₉Tm (Oak Ridge)

M. Karny,, K.H., et al., PRL90('03)012502

- cf. discovery of new p-emitters at RIBF: ⁹³Ag, ⁸⁹Rh, I. Celikovic et al., PRL116('16)
- one-neutron decay of medium-heavy neutron-rich nuclei (from an excited state)?
 two-neutron decay?

✓ <u>nn correlations</u>

three-body model calculations for Borromean nuclei

Fusion of halo nuclei

K. H., A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00)

- 1. Lowering of potential barrier due to a halo structure
 - \rightarrow enhancement
- 2. effect of breakup
- 3. effect of transfer

Review of H.I. fusion: K.H. and N. Takigawa, PTP128 ('12) 1061.

Fusion of halo nuclei

- Lowering of potential barrier due to a halo structure
 → enhancement
- 2. effect of breakup
- 3. effect of transfer

12,13,14,15C + 232Th 1000 ▼ ¹²C, Ref. [24] ^{13}C 0 14C100 15C o (mb) --- ¹²C, CC 10.0 $^{13}C, CC$ ¹⁴C, CC ---- ^{14}C , no coupl. 1.0056 60 68 52 64 72 $E_{cm} (MeV)$ M. Alcorta et al., PRL106('11)

Review of H.I. fusion: K.H. and N. Takigawa, PTP128 ('12) 1061.

Two-neutron transfer reactions: pairing correlations

R. Raabe et al., Nature 431 ('04)823

I. Tanihata et al., PRL100('08)192502

✓ reaction mechanics? ✓ role of unbound intermediate states?

Future perspectives (nn correlations):

H. Sagawa, PRC77('08)

heavier neutron-rich nuclei

surface dineutron condensation in neutron skin??

Fusion in neutron stars

15

11.7km

✓ effect of large neutron skins?

✓ information on nuclear EOS?

<u>multi-neutron transfer reactions</u> cf. KISS project

new simple Coupled-channels model

✓ <u>Deformations</u>

≻RMF in 3D mesh

density of ⁸⁰Zr (tetrahedral def.)

➤ deformation of hypernuclei

Myaing Thi Win and K.H., PRC78('08)054311

disappearance of nuclear deformation

deformed halo nuclei

(deformed Woods-Saxon)

large E1 prob. for ³¹Ne halo: l = 0 or 1 only $C^2 S = 1$ for ${}^{30} \operatorname{Ne}(0^+_1) \otimes \phi_{nlj}$ 5.00 but in a deformed potential, $C^2S=2j+1$ for ${}^{30}Ne(2_1^+)\otimes\phi_{nlj}$ $|d_{5/2}\rangle \rightarrow |d_{5/2}\rangle + |s_{1/2}\rangle + |g_{7/2}\rangle +$ 1.00 <u>a</u> $\rightarrow |s_{1/2}\rangle \quad (|\epsilon| \rightarrow 0)$ $\sigma_{-1n}(E1)$ (0.50 $1d_{3/2}^*$ 1.2 s1,2, d3/2, d5/2 and g9/2 probabilities in the [220 1/2] orbit 0.10 1.1 $V_{ws} = -51 \text{ MeV}$ $\beta = 0.5$ 0.05 1.0 1f 7/2* 0.9 l=2 $1f_{7/2}$ 0.8 0.01 orobability 0.7 0.0 0.2 0.4 0.6 0.8 1.0 0.6 S_n (MeV) 0.5 T. Nakamura et al., PRL103('09) 0.4 l=00.3 0.2 also large σ_{reac} 0.1 0.0 M.Takechi et al., PLB 707('12) -10 0 ε_m (MeV) I. Hamamoto, PRC69('04)041306(R)

deformed halo nucleus?

analysis with particle-rotor model (coupled-channels method)

Odd-even staggering in reaction cross sections

K. H. and H. Sagawa, PRC84('11)

Future perspectives: deformed halo nuclei

 Possibility of a heavy halo nucleus what is the heaviest halo nuclues? cf. ¹²⁷Ru (Hamamoto, PRC85)
 "Fine structure" in breakup/transfer reactions direct population of the 2⁺ state after breakup/transfer

$$\frac{\left[|j_{p}'l_{p}'\rangle\otimes|2^{+}\rangle\right]^{(IM)}}{\operatorname{core}+n\left[|j_{p}l_{p}\rangle\otimes|0^{+}\rangle\right]^{(IM)}} 0^{+}$$

cf. proton decay

Influence on low-energy heavy-ion reactions (e.g., sub-barrier fusion) interplay between breakup/ transfer/ rotational couplings
Influence on low-energy heavy-ion reactions (e.g., sub-barrier fusion)
Interplay between breakup/ transfer/ rotational couplings

✓ <u>Single-particle motions and magic numbers</u>

disappearance of N=8, 20

appearance of new magic # N=16,32,34

✓ new magic numbers in heavier n-rich nuclei?

(medium-) heavy nuclei: correlations

- pairing
- deformation
- collective motions

shell evolution in medium-heavy/heavy nuclei

self-consistent mean-field approach

✓ three-body force✓ tensor interaction

T. Otsuka et al., PRL95('05)232502 PRL105('10)032501

✓ correlations due to "beyond-mean-field-approximation"

Fluctuation of mean-field: generator coordinate method

particle-vibration couplings

beyond MF (GCM) calculations

> particle-vibration couplings

need high performance computing

Evidence from α Decay That Z = 82 Is Not Magic for Light Pb Isotopes

 α decays: as complex as fission

- $\Gamma_{\alpha} \sim S_{\alpha} \cdot P_{\text{tunnel}}$
 - S_{α} \longleftarrow nuclear structure information

large ambiguities

- •how to calculate S_{α} for n-rich and p-rich nuclei?
- •clustering probability on the surface?
- • α -daughter potential (especially inside)?

coupled-channels method

Langevin approach

V.I. Zagrebaev and W. Greiner, NPA944('15)257

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

statistical model

coupled-channels (entrance)K.H.+ Langevin (touching to CN)Aritomo+ statistical modelAritomo

Butsuri (Oct., 2013)

重イオン核融合反応と超重元素

96番元

自然界に存在する元素で最も重いものは

これまで測定された範囲ではプルトニウム

(Pu) である. この元素は原子番号94を持

ち、ウラン鉱石の中にわずかに含まれる

これより大きい原子番号の元素、例えば、

が、自然界には存在しない、これは何故だ

ろうか? どのような機構で最も重い元素

番号が決まっているのだろうか?

素のキュリウム (Cm) や100 番元素

ルミウム(Fm)は人工的には作れる

萩野浩一 東北大学大学院理学研究科 hagino@nucl.phys.tohoku.ac.jp

させて大きな原子核(複合核)を作る反応

である(右下図).しかし、超重核領域では

この複合核が生成されること自体が稀であ

る、この領域では、接触した二つの原子核

が変形して融合核を形作る前に強いクーロ

ン斥力により再び分離してしまうという準

きた複合核は圧倒的な確率で核分裂により

たことを確認するには、中性子などの放出

寿命がある程度長い元素ができ

更に

核分裂が起きやすいためである。

有友嘉浩 ^{東京工業大学原子炉工学研究所} aritomo yoshihiro@nr.titech.ac.jp

Keywords

核融合·複合核:

2つの原子核が融合して1つ の原子核になることを核融 合と呼び、融合してできた 核を複合核と呼ぶ。

解説 🔶

殻構造・安定の島

原子の中で電子軌道が殻構 造を持ち、最外殻が満たさ定 な原子(不活性ガス)になる のと同様に、原子核の中で の間子や中性子のエネルギ 一進位にも認様達があり

Y. Aritomo, K.H., K. Nishio, S. Chiba, PRC85('12)044614

towards the island of stability neutron-rich beams?

E_{CM} [MeV]
 ✓ Quasi-elastic barrier distribution with GARIS

 (Y. Tanaka, K. Morita, 2015)
 ✓ C.C. calculation: CCFULL
 (K.H. et al., CPC123('99)143)
 ✓ theory: K.H. and N. Rowley, PRC69('04)054610

(ii) Langevin
combination to
n-evaporation
(iii) statistical model
decay dynamics of
hot n-rich nuclei

quantal theory for DIC?
 cf. multi-nucleon transfer
 nuclear friction?

still a very challenging problem for nuclear theory

	Time-indep. approach	Time-dep. approach
Induced fission	✓ Bohr-Wheeler	 ✓ Langevin-type ✓ Discrete basis (Bertsch)
Spontaneous fission $50 \begin{bmatrix} 240 \\ 40 \\ 40 \end{bmatrix} q_1$ $\widehat{o}^{\$}_{20} \begin{bmatrix} 30 \\ 0 \end{bmatrix} q_1$	✓ PES+Mass+WKB q_{II} f g	 ✓ Imtime TDHF (Negele) ✓ Time-dep. Hill- Wheeler (Goutte et al.) ✓ TDHF (after the barrier)
0 3 7 30 7	Q_{20} (b) J. Sadhukhan, PRC93('16)01	W. Nazarewicz, N. Schunck, 1304(R)

still a very challenging problem for nuclear theory

	Time-indep. approach	Time-dep. approach
Induced fission	✓ Bohr-Wheeler	 ✓ Langevin-type ✓ Discrete basis (Bertsch)
Spontaneous fission	✓PES+Mass+WKB	 ✓ Imtime TDHF (Negele) ✓ Time-dep. Hill- Wheeler (Goutte et al.) ✓ TDHF (after barrier)

issues:

which degrees of freedom? (time-indep. approaches)
how to deal with many-body tunneling? (time-dep. approaches)

Other future theoretical issues:

From phenomenological models to more microscopic models

- C.C. with microscopic inputs c.f. J.M. Yao and K.H., PRC91('15)
- DFT for spontaneous fission
- TDHF approach ←
- ➤ "Beyond mean-field" approximations

Full time-dependent GCM? $|\Psi(t)\rangle = \int dq f(q,t) |\Phi_q(t)\rangle$

 \rightarrow many-body tunneling

cf. Quantum Chemistry "Quantum tunneling using entangled classical trajectories" A. Donoso and C.C. Martens, PRL87 ('01) 223202

✓ <u>Theory-experiment couplings</u>

all the ingedients are important

✓ <u>Theory-experiment couplings</u>

cf. Three types of theoretician (Uesaka-san)

i) Totally independent to experiments

ii) those who make calculations for experimentalists (useful, but...)

iii) those who promote mutual developments between theo. and expt.

my personal theory-experiment couplings

Validity of the linear coupling approximation in heavy-ion fusion reactions at sub-barrier energies K. Hagino* and N. Takigawa Department of Physics, Tohoku University, Sendai 980-77, Japan M. Dasgupta, D. J. Hinde, and J. R. Leigh

VOLUME 55, NUMBER 1

VOLUME 82, NUMBER 7

PHYSICAL REVIEW C

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1999

JANUARY 1997

Fusion versus Breakup: Observation of Large Fusion Suppression for ⁹Be + ²⁰⁸Pb

M. Dasgupta,¹ D. J. Hinde,¹ R. D. Butt,¹ R. M. Anjos,² A. C. Berriman,¹ N. Carlin,³ P. R. S. Gomes,² C. R. Morton,¹ J. O. Newton,¹ A. Szanto de Toledo,³ and K. Hagino⁴

PHYSICAL REVIEW C 86, 041307(R) (2012)

Double isobaric analog of ¹¹Li in ¹¹B

R. J. Charity,¹ L. G. Sobotka,¹ K. Hagino,² D. Bazin,³ M. A. Famiano,⁴ A. Gade,³ S. Hudan,⁵ S. A. Komarov,¹ Jenny Lee,³
S. P. Lobastov,³ S. M. Lukyanov,³ W. G. Lynch,³ C. Metelko,⁵ M. Mocko,³ A. M. Rogers,³ H. Sagawa,^{6,7} A. Sanetullaev,³
M. B. Tsang,³ M. S. Wallace,³ M. J. van Goethem,⁸ and A. H. Wuosmaa⁴

35 joint papers with experimentalists / 152 original papers (1994-2016)

- 29: H.I. subbarrier fusion reactions 2: hypernuclei
 - 2: neutron-rich nuclei
 - 2: proton decays

FRIB theory alliance

March 31-April 1 Inaugural meeting

Theory Alliance facility for rare isotope beams "Enhancing theory efforts nationally"

NSCL/MSU FRIB theory alliance will: JINPA 'ORNL JINA connect broadly across MWT/ANI fields ACFI bring focus to those LVOC/LI activities that are FRIB TA relevant CEEN TA-FB INT identify and nurture the natior best talent take advantage of high univ performance computing NPAC/LANL CUSTIPEN NUCLEI FUSTIPEN TORUS ICNT MuM TALENT

A possible snapshot for the FRIB theory alliance

Summary: personal perspectives of the next 10-20 years

Structure and reactions of n-rich medium-heavy and heavy nuclei

- \checkmark halo and skin structures (deformation, surface dineutron condensation)
- \checkmark decay dynamics (nuclei beyond the drip lines, excited states)
- ✓ influence on low-energy nuclear reactions (fusion, pair transfer)

Shell evolution in heavy neutron-rich nuclei

- ✓ Stability of N=82, Z=82 shells
- \checkmark theory of alpha decays
- \checkmark extension of mean-field models with several correlations
- ✓ structure of SHE

Physics of superheavy elements

- \checkmark theory of multi-nucleon transfer reactions
- $\checkmark\,$ combining the coupled-channels approach with Langevin calculation
- \checkmark estimate of fusion cross sections with neutron-rich beams
- \checkmark theory of nuclear fission
- "beyond mean field" approach for nuclear reactions (description of many-particle tunneling)

strong experiment-theory couplings: essential

Sakurai-san's slide (2008)

Sakurai-san's slide (2008)

