

Kouichi Hagino Kyoto University, Kyoto, Japan

- 1. Low-energy Nuclear Reactions: overview
- 2. Role of deformation in sub-barrier fusion reactions
- 3. Probing nuclear shapes in quasi-elastic scattering
- 4. Summary

理研ミニWS「RIBFと高エネルギー原子核衝突反応の両面から探る原子核の形状」、理研, 2024.9.30

Introduction: low-energy nuclear reactions

nucleus: a composite system ✓ various sort of reactions

- elastic scattering
- inelastic scattering
- transfer rections
- breakup reactions
- fusion reactions

Introduction: low-energy nuclear reactions

nucleus: a composite system
✓ various sort of reactions
✓ an interplay between nuclear structure and reaction

shapes, excitations,

- elastic scattering
- inelastic scattering
- transfer rections
- breakup reactions
- fusion reactions

Fusion reactions: compound nucleus formation

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flore reaching 588 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Proton Neutron Y Gamma Ray

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Coulomb barrier

the barrier height \rightarrow defines the energy scale of a system

Fusion reactions at energies around the Coulomb barrier

Low-energy heavy-ion fusion reactions and quantum tunneling

Fusion with quantum tunneling

with many degrees of freedom

- several nuclear shapes

- several surface vibrations

several modes and adiabaticities

- several types of nucleon transfers

Tunneling probabilities: the exponential E dependence \rightarrow nuclear structure effects are amplified Discovery of large sub-barrier enhancement of σ_{fus} (~80's)

the potential model: inert nuclei (no structure)

¹⁵⁴Sm : a typical deformed nucleus

rotational spectrum

¹⁵⁴Sm : a typical deformed nucleus

¹⁵⁴Sm : a typical deformed nucleus

¹⁵⁴Sm : a typical deformed nucleus

4+

核融合反応断面積:

$$\sigma_{fus}(E) = \int_{0}^{1} d(\cos \theta_{T}) \sigma_{fus}[E; V(r, \theta_{T})] \qquad = 2\pi \int_{-1}^{1} d(\cos \theta_{T}) |Y_{00}(\theta_{T})|^{2} \sigma_{fus}[E; V(r, \theta_{T})] = 2\pi \int_{-1}^{1} d(\cos \theta_{T}) |Y_{00}(\theta_{T})|^{2} \sigma_{fus}[E; V(r, \theta_{T})] = \frac{154 \text{Sm}}{\text{基底状態の波動関数}}$$

弹性散乱断面積:

$$\frac{d\sigma_{\rm el}}{d\Omega} = |f(\theta)|^2; \quad f(\theta) = \int_0^1 d(\cos\theta_T) f_{\rm el}[\theta; V(r, \theta_T)]$$

$$\sigma_{\mathsf{fus}}(E) = 2\pi \int_{-1}^{1} d(\cos \theta_T) |Y_{00}(\theta_T)|^2 \sigma_{\mathsf{fus}}[E; V(r, \theta_T)]$$

基底状態の波動関数

時々ある誤解:

準弾性散乱:

「この取り扱いでは、原子核が<mark>励起していない」</mark>—これは大きな誤解 角度 θ_T を固定 \longleftrightarrow 角運動量状態が完全不確定(不確定性原理) $|\theta_T\rangle = \sum_{I=0}^{\infty} \langle \theta_T | Y_{I0} \rangle | Y_{I0} \rangle$

 $\frac{d\sigma_{\text{qel}}}{d\Omega} = \sum_{I=0}^{\infty} \frac{d\sigma_I}{d\Omega} = \int_0^1 d(\cos\theta_T) \frac{d\sigma_{\text{el}}}{d\Omega} [V(r,\theta_T)]$

 4^{+}

 $= f_{\rm el}(\theta; \theta_T)$

 4^{+}

Fusion barrier distribution

 $\frac{d^2(E\sigma_{\rm fus})}{dE^2}$ $D_{\mathsf{fus}}(E)$

N. Rowley, G.R. Satchler, and P.H. Stelson, PLB254 ('91) 25

K.H. and N. Takigawa, PTP128 ('12) 1061

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

Fusion as a quantum tunneling microscope for nuclei

Quasi-elastic barrier distribution

$$D_{\text{qel}}(E) = -\frac{d}{dE} \left(\frac{\sigma_{\text{qel}}(E,\pi)}{\sigma_{\text{Ruth}}(E,\pi)} \right)$$

Quasi-elastic scattering:

H. Timmers et al., NPA584('95)190

A sum of all the reaction processes other than fusion (elastic + inelastic + transfer +)

D_{fus} and D_{qel}: behave similarly to each other

cf. Application to reactions relevant to SHE

 ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}{}_{116}Lv^*$

T. Tanaka et al., JPSJ 87 ('18) 014201 PRL124 ('20) 052502

 ${}^{51}V + {}^{248}Cm \rightarrow {}^{299}119^*$

M. Tanaka et al., JPSJ 91 ('22) 084201

K.H. and N. Rowley, PRC69('04)054610

Determination of β_4 of ²⁴Mg with quasi-elastic scattering

Y.K. Gupta, B.K. Nayak, U. Garg, K.H., et al., PLB806, 135473 (2020).

Determination of β_4 of ²⁸Si with quasi-elastic scattering

Y.K. Gupta, V.B. Katariya, G.K. Prajapati, K.H., et al., PLB845, 138120 (2023).

Summary

Heavy-ion fusion reactions around the Coulomb barrier

✓ Strong interplay between nuclear structure and reaction
✓ Quantum tunneling with various intrinsic degrees of freedom
✓ Role of deformation in sub-barrier enhancement

✓ Fusion barrier distribution $D_{fus}(E) = \frac{d^2(E\sigma_{fus})}{dE^2}$

✓ Quasi-elastic barrier distribution $D_{qel}(E) = -\frac{d}{dE} \left(\frac{\sigma_{qel}(E,\pi)}{\sigma_{Ruth}(E,\pi)} \right)$ sensitive to the nuclear structure recent applications to ²⁴Mg, ²⁸Si + ⁹⁰Zr → determination of β_4