Role of quantum mechanics in a diffusion process for superheavy elements

Kouichi Hagino Kyoto University, Kyoto, Japan

K. Washiyama (Kyushu) M. Tokieda (Tohoku)

- 1. Diffusion over the saddle: Langevin approach
- 2. Generalized Langevin approach and cold fusion
- 3. Towards quantum Langevin method
- 4. Summary

The Virtual Superheavy Elements seminars, online, Dec. 8, 2020

Fusion for Superheavy elements

Entrance channel dynamics: capture barrier distribution

 ${}^{48}Ca + {}^{248}Cm \rightarrow {}^{296}_{116}Lv^*$

T. Tanaka,..., K.H., et al., JPSJ 87 ('18) 014201 PRL124 ('20) 052502

cf. notion of compactness: D.J. Hinde et al., PRL74 ('95) 1295

CN

the next talk by Tanaka

Fusion for Superheavy elements

Langevin approach

V.I. Zagrebaev and W. Greiner (2015)

⁴⁸Ca + ²⁴⁴Pu

Langevin approach

Theoretical issues

✓ how to thermaize? mechanisms?
✓ is thermal equilibrium OK?
✓ Is Markovian approximation OK?
✓ quantum effects?
✓ quantal-to-classical transitions (decoherence)?

Recent publication by Banerjee et al. (ANU)

Recent publication by Banerjee et al. (ANU)

comparisons: to a <u>classical</u> Langevin calculation

 \rightarrow quantum effect should be crucial at low E_x

Decay of a metastable state at finite temperatures

cf. induced fission

H. Grabert, P. Olschowski, and U. Weiss, PRB36, 1931 (1987) quantum Langevin for low temperatures? classical Langevin equation

$$m\frac{d^{2}q}{dt^{2}} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

friction random interaction $\rightarrow \langle R(t) \rangle = 0$
classical: $\langle R(t)R(t') \rangle = 2D\,\delta(t-t') \equiv 2D\chi(t-t')$
 $D = \gamma T$ (Einstein relation)
(white noise; no memory)

Brownian motion

interaction of a Brownian particle with atoms

classical Langevin equation

$$m\frac{d^{2}q}{dt^{2}} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

friction random interaction $\rightarrow \langle R(t) \rangle = 0$
classical: $\langle R(t)R(t') \rangle = 2D\,\delta(t-t') \equiv 2D\chi(t-t')$
 $D = \gamma T$ (Einstein relation)
(white noise; no memory)

nuclear reactions:

q = the relative distance etc. "atoms" = nucleonic d.o.f

quantal Langevin equationS. Ayik et al., PRC71 ('05) 054611 $m \frac{d^2 q}{dt^2} = -\frac{dV(q)}{da} - \gamma \frac{dq}{dt} + R(t)$ $\langle R(t) \rangle = 0$

classical: $\langle R(t)R(t')\rangle = 2D\,\delta(t-t') \equiv 2D\chi(t-t')$ quantal: $D = \gamma T$ (Einstein relation)

$$\chi(t-t') = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\hbar\omega}{2T} \operatorname{coth} \frac{\hbar\omega}{2T} \exp\left[-\frac{(\hbar\omega)^2}{2\Delta^2}\right] e^{-i\omega(t-t')}$$

Fermi high energy statics cut-off

$$\rightarrow \delta(t-t') \ (T \rightarrow \infty)$$

 10^{-1} $E_0=0$ MeV 0.0 10^{-2} 0.2 110 Pd + 110 Pd Probability $\alpha_{0.4}$ 10^{-3} 0.6 Quantum 0.8 Classical 10^{-4} 12.0 0.0 4.0 6.0 8.0 10.0 0.6 0.4 0.8 1.2 1.4 $Z_0(fm)$ Temperature[MeV]

2D Langevin calculations with the rel. coordinate and the mass asym.

K. Washiyama, Ph. D. thesis, Tohoku University (March, 2007)

2D Langevin calculations with the rel. coordinate and the mass asym.

K. Washiyama and K.H., in preparation

TDHF calculation for ⁴⁸Ca+²⁰⁸Pb

$$E_{cm} = 178 \text{ MeV}$$

The neck d.o.f. is fast.

cf. D. Boilley et al., PRC84 ('11) 054608

More quantal approach?

generalized Langevin approach: $m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$

$$R(t)R(t')\rangle = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\hbar\omega}{2T} \operatorname{coth} \frac{\hbar\omega}{2T} \exp\left[-\frac{(\hbar\omega)^2}{2\Delta^2}\right] e^{-i\omega(t-t')}$$

still classical motion (e.g., no tunneling)

more quantal approach: return to the original Hamiltonian

$$H = \frac{p^2}{2m} + V(q) + \sum_i \hbar \omega_i a_i^{\dagger} a_i + h(q) \sum_i d_i (a_i + a_i^{\dagger})$$
H.O. linear coupling

A.O. Caldeira and A.J. Leggett, Ann. Phys. 149 ('83) 374

solve *H* quantum mechanically $\leftarrow \rightarrow$ "quantum Langevin"

More quantal approach?

$$H = \frac{p^2}{2m} + V(q) + \sum_i \hbar \omega_i a_i^{\dagger} a_i + h(q) \sum_i d_i (a_i + a_i^{\dagger})$$

solve *H* quantum mechanically $\leftarrow \rightarrow$ "quantum Langevin"

time-dependent coupled-channels equations with an efficient basis

$$\Psi_{\mathsf{tot}}(q,t) = \sum_{\{\tilde{n}_k\}} \tilde{\psi}_{\{\tilde{n}_k\}}(q,t) \left| \{\tilde{n}_k\} \right\rangle$$

$$\begin{split} |\{\tilde{n}_k\}\rangle &= \prod_{k=1}^{K} \frac{1}{\sqrt{\tilde{n}_k!}} \left(b_k^{\dagger}\right)^{\tilde{n}_k} |0\rangle \\ b_k^{\dagger} &= \sum_i C_{ki} a_i^{\dagger} \end{split}$$

M. Tokieda and K. Hagino, Ann. of Phys. 412 (2020) 168005 Front. in Phys. 8 (2020) 8.

Application to heavy-ion fusion reactions

time-dep. wave packet approach

 $R(E) \propto \langle \psi_R(t_f) | \delta(H-E) | \psi_R(t_f) \rangle$

3D: radial coordinate for each partial wave(NB. no tangential friction)

absorption to simulate fusion

fusion cross sections

M. Tokieda, Ph.D. thesis (2021), Tohoku University

fusion cross sections

$$\sigma_{\rm fus}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-R_l(E))$$

M. Tokieda, Ph.D. thesis (2021), Tohoku University

fusion cross sections

$$\sigma_{\rm fus}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1)(1 - R_l(E))$$

NB. Fusion cross sections: largely influenced even when $\langle E_x \rangle$ is small

Q-value distribution

$$\langle E_x \rangle = \frac{\langle \psi_R(t_f) | \delta(H_B - E) | \psi_R(t_f) \rangle}{\langle \psi_R(t_f) | \psi_R(t_f) \rangle}$$

the next step: a comparison to the experimental data

M. Tokieda, Ph.D. thesis (2021), Tohoku University

fission: avery complicated dynamics

a microscopic understanding \rightarrow far from complete

M. Bender et al., J. of Phys. G47, 113002 (2020)

quantum Langevin: a unified description?

Summary

fusion for SHE

→ a very complicated many-body dynamics

the classicl Langevin: standard

quantum extension?

 \rightarrow maybe important for cold fusion reactions

- generalized Langevin calculations enhanced $P_{\rm CN}$ for ⁴⁸Ca+²⁰⁸Pb
- quantum Langevin approach

CC with Caldeira-Legett Hamiltonian

friction: hinders subbarrier fusion cross sections

 \rightarrow a unified description from low-*E* to high-*E*