Perspectives on nuclear reaction theory and superheavy elements

Kouichi Hagino (Sendai \rightarrow) Kyoto University, Kyoto, Japan

- 1. Nuclear Reactions: overview
- 2. Coupled-channels approach with a beyond-mean-field method
- 3. Time-dependent GCM for many-body tunneling
- 4. Fusion for superheavy elements and TDHF
- 5. Summary

Mini-Workshop on nuclear physics and nuclear astrophysics, 2020.1.15, Soongsil University

Introduction: low-energy nuclear physics

■ behaviors of atomic nuclei as a quantum many-body systems

understanding based on strong interaction

- static properties: nuclear structure
 - ✓ ground state properties (mass, size, shape,....)
 - \checkmark excitations
 - ✓ nuclear matter
 - ✓ decays

> dynamics: nuclear reactions

an interplay between nuclear structure and nuclear reaction

Fusion reactions: compound nucleus formation

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flare reaching 583 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Proton Neutron Y Gamma Ray

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

microscopic understanding: an ultimate goal of nuclear physics

Discovery of large sub-barrier enhancement of σ_{fus} (~80's)

potential model: inert nuclei (no structure)

K. H. and N. Takigawa, Prog. Theo. Phys.128 ('12)1061.

Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

two-body problem, but with excitations (coupled-channels approach)

scattering theory with excitations

Coupled-channels method: a quantal scattering theory with excitations

Inputs for C.C. calculations

i) Inter-nuclear potential

 \checkmark a fit to experimental data at above barrier energies

- ii) Intrinsic degrees of freedom
 - ✓ types of collective motions (rotation / vibration) a/o transfer
 - \checkmark coupling strengths and excitation energies
 - \checkmark how many states

Semi-microscopic modeling of sub-barrier fusion

K.H. and J.M. Yao, PRC91('15) 064606

Beyond-mean-field method

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

- MF + ang. mom. projection
 + particle number projection
 + generator coordinate method (GCM)
- M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 ('03) 121 J.M. Yao et al., PRC89 ('14) 054306

58Ni+58Ni

anharmonicity of 2^+ phonon \rightarrow only a minor improvement

Next, more non-trivial case with 2⁺ - 3⁻ coupling: anharmonicity of oct. vib. in ²⁰⁸Pb

K.H. and J.M. Yao, PRC91 ('15) 064606

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

Microscopic

TDHF = Time Dependent Hartree-Fock

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15)

ab initio, but no tunneling

Time-dependent GCM for many-body tunneling

N. Hasegawa, K.H., and Y. Tanimura, in preparation

 $\alpha + \alpha$ in 1D

 $\Psi(t) = \sum f_k(t) \Phi_{\mathsf{SD},k}(t)$ k

time-dep. variational principle

$$\delta \int dt \frac{\langle \Psi(t) | i\hbar \partial_t - H | \Psi(t) \rangle}{\langle \Psi(t) | \Psi(t) \rangle} = 0$$

Fusion for superheavy elements

1966)

Fusion for SHE: fusion hindrance

strong Coulomb repulsion \rightarrow re-separation

neutron-rich beams: indispensable \rightarrow reaction dynamics?

Towards the island of stability: Fusion of unstable nuclei

K.-S. Choi, K. Hagino et al.,

Phys. Lett. B780 ('18) 455

good understandings of the structure of neutron-rich nuclei is also important

development of microscopic nuclear reaction theory \blacktriangleright nuclear ractions in neutron stars

 $^{24}O + ^{24}O$, $^{28}Ne + ^{28}Ne$ etc.

Physics of SHE with n-rich nuclei as important ingredient

hot fusion reactions with ⁴⁸Ca:

$${}^{48}_{20}\text{Ca} + {}_{99}\text{Es} \rightarrow 119$$

 ${}^{48}_{20}\text{Ca} + {}_{100}\text{Fm} \rightarrow 120$

short lived →not available with sufficient amounts

 $^{48}\text{Ca} \rightarrow {}^{50}_{22}\text{Ti}, {}^{51}_{23}\text{V}, {}^{54}_{24}\text{Cr projectiles}$

how much will

cross sections be affected?

closed shell \rightarrow open shells

TDHF + Langevin approach

<u>New model for fusion for SHE: TDHF + Langevin approach</u>

K. Sekizawa and K.H., PRC99 (2019) 051602(R)

how special is ⁴⁸Ca ?

				\square		
System	CN	E* (MeV)	R _{min} (fm)	$\begin{array}{c} P_{\rm CN} \\ (\times 10^4) \end{array}$	$W_{\rm sur}$ (×10 ⁹)	$\frac{P_{\rm CN} W_{\rm sur}}{(\times 10^{13})}$
$^{48}Ca + ^{254}Fm$	³⁰² 120	29.0	12.93	1.72	176	302
$^{54}Cr + ^{248}Cm$	³⁰² 120	33.2	13.09	1.89	1.31	2.47
$^{51}V + {}^{249}Bk$	³⁰⁰ 120	37.0	12.94	3.95	0.117	0.461
$^{48}Ca + ^{257}Fm$	³⁰⁵ 120	30.5	12.94	2.49	0.729	1.82
				$\bigcup_{i \in \mathcal{I}} f_{i}(i) = f_{i}(i)$		
		similar P _{CN}				

no special role of ⁴⁸Ca in the entrance channel

From phenomenological to microscopic nuclear reaction theories

Macroscopic (phenomenological)

Microscopic

감사합니다

a picture from Sep., 2018

FUSION20

November 15-20, 2020 Shizuoka, Japan

Kouichi Hagino (co-chair) Kyoto University Katsuhisa Nishio (co-chair) JAEA