# **Open issues in physics of SHE : nuclear reaction perspectives**



Kouichi Hagino Kyoto University



- 1. Introduction: fusion for superheavy elements
- 2. Theoretical issues in the Langevin approach
- 3. Towards a microscopic description
- 4. Summary

Kyoto-Soongsil Nuclear Physics Joint Workshop, June 7-8, 2024, Soongsil University

# Kyoto-Soongsil Nuclear Physics Joint Workshop (75th OMEG SSANP workshop)

Jun 7 – 8, 2024 Soongsil University Asia/Seoul timezone

Enter your search term

# Why Kyoto-Soongsil?









![](_page_5_Figure_1.jpeg)

# **Open issues in physics of SHE : nuclear reaction perspectives**

![](_page_6_Picture_1.jpeg)

Kouichi Hagino Kyoto University

![](_page_6_Picture_3.jpeg)

- 1. Introduction: fusion for superheavy elements
- 2. Theoretical issues in the Langevin approach
- 3. Towards a microscopic description
- 4. Summary

Kyoto-Soongsil Nuclear Physics Joint Workshop, June 7-8, 2024, Soongsil University

## Superheavy elements (the island of stability)

![](_page_7_Figure_1.jpeg)

long-lived with 10<sup>3-5</sup> years

stabilization due to the shell effect

![](_page_8_Figure_1.jpeg)

QM shell effect (magic numbers) increases  $B_{fiss}$  and stabilizes a nucleus

![](_page_9_Picture_0.jpeg)

Yuri Oganessian

## Fusion reactions for SHE

## the element 113: Nh

![](_page_10_Figure_2.jpeg)

Group 🔶 🤇

2

3

5

6

7

87 Fr

<sup>279</sup>113Nh\*

J Period

2

4 Be

12 Mg

> 20 Ca

38 Sr

56 Ba

88 Ra

> 90 Th

91 Pa

92 U

## November, 2016

<sup>209</sup>83Bi

<sup>70</sup>30Zn

![](_page_10_Figure_4.jpeg)

Heavy-ion fusion reaction

93 94 95 96 97 98 Np Pu Am Cm Bk Cf

99 Es Fm Nd No Lr

Wikipedia

## Fusion for superheavy elements

![](_page_11_Figure_1.jpeg)

### **Fusion for SHE: fusion hindrance**

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

## Langevin approach

![](_page_14_Figure_1.jpeg)

classical Langevin equation

$$m\frac{d^2q}{dt^2} = -\frac{dV(q)}{dq} - \gamma\frac{dq}{dt} + R(t)$$

friction random interaction  $\rightarrow \langle R(t) \rangle = 0$ 

classical:  $\langle R(t)R(t')\rangle = 2D\,\delta(t-t')$ 

 $D = \gamma T$  (Einstein relation)

(white noise; no memory)

Brownian motion

![](_page_15_Picture_7.jpeg)

interaction of a Brownian particle with atoms

## Langevin approach

![](_page_16_Figure_1.jpeg)

## multi-dimensional extension:

- q: •internuclear separation,
  - deformation,
  - asymmetry of the two fragments

![](_page_16_Figure_6.jpeg)

V.I. Zagrebaev and W. Greiner (2015) successful,

at least phenomenologically

## Langevin approach

![](_page_17_Figure_1.jpeg)

## Theoretical issues

✓ how to thermaize? mechanisms?
✓ is thermal equilibrium OK?
✓ Is Markovian approximation OK?
✓ quantum effects?

![](_page_17_Figure_4.jpeg)

- : internal environment
- $\rightarrow$  open quantum systems

![](_page_17_Figure_7.jpeg)

# Shell model approach?

## Shell model

![](_page_18_Figure_2.jpeg)

Figure: Noritaka Shimizu (Tsukuba)

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

#### Towards a microscopic description for induced fission

![](_page_21_Figure_1.jpeg)

## Application to low-energy fission of <sup>236</sup>U

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023). K. Uzawa, K.H., and G.F. Bertsch, arXiv:2403.04255.

#### dim.

![](_page_22_Figure_3.jpeg)

Skyrme UNEDF1, seniority zero config. up to 5 MeV  $\Gamma_{fis} \rightarrow 66,103 \text{ x } 66,103 \text{ dim. Hamiltonian}$ 

$$T_{CN \to \text{fis}} = \text{Tr}[\Gamma_n G \Gamma_{\text{fis}} G^{\dagger}]; \quad G = (H - NE)^{-1}$$

## Application to low-energy fission of <sup>236</sup>U

G.F. Bertsch and K.H., Phys. Rev. C107, 044615 (2023). K. Uzawa, K.H., and G.F. Bertsch, arXiv:2403.04255.

![](_page_23_Figure_2.jpeg)

Only a small number of freedom participate in induced fission ← the transition state theory

## insensitivity property

![](_page_24_Figure_1.jpeg)

#### Towards a microscopic description for induced fission

![](_page_25_Figure_1.jpeg)

#### Towards a microscopic description for induced fission

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

## Nuclear deformation and barrier distribution

Nuclear deformation  $\rightarrow$  a large sub-barrier enhancement of fusion cross sections

![](_page_28_Figure_2.jpeg)

Fusion barrier distribution [Rowley, Satchler, Stelson, PLB254('91)]

![](_page_29_Figure_1.jpeg)

K.H., N. Takigawa, PTP128 ('12) 1061

✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

![](_page_30_Figure_1.jpeg)

can be used to identify the side/tip collisions

#### Application to hot fusion reactions

![](_page_31_Figure_1.jpeg)

 ${}^{48}\text{Ca} + {}^{248}\text{Cm} \rightarrow {}^{296}_{116}\text{Lv}^*$ 

T. Tanaka,..., K.H., et al., JPSJ 87 ('18) 014201 PRL124 ('20) 052502

![](_page_31_Picture_4.jpeg)

## capture barrier distribution

 ${}^{51}V+{}^{248}Cm \rightarrow {}^{299}119*$ 

M. Tanaka et al., JPSJ91, 084201 (2022)

#### Application to hot fusion reactions

 $Ca + \frac{248}{Cm}$ 

0.08

0.06

48

## ${}^{48}\text{Ca} + {}^{248}\text{Cm} \rightarrow {}^{296}_{116}\text{Lv}^*$

T. Tanaka,..., K.H., et al., JPSJ 87 ('18) 014201 PRL124 ('20) 052502

![](_page_32_Picture_3.jpeg)

S

capture barrier distribution

S<sub>sd</sub> S<sub>inj</sub>

cf. notion of compactness: D.J. Hinde et al.,

PRL74 ('95) 1295

CN

![](_page_32_Figure_7.jpeg)

## open problems

![](_page_33_Figure_1.jpeg)

- ➤ how is the shape evolved to a compound nucleus?
- Deformation: a quantum effect how does the deformation disappear during heat-up?

quantum friction/open quantum systems

cf. M. Tokieda and K.H., Ann. of Phys. 412 ('20) 168005. Coupled-channels approach to the Caldeira-Leggett model

## Another important issue: physics of neutron-rich nuclei

![](_page_34_Figure_1.jpeg)

Yuri Oganessian

how to reach the island of stability?

## Fusion of unstable nuclei

![](_page_35_Figure_1.jpeg)

#### Fusion of unstable nuclei

![](_page_36_Figure_1.jpeg)

## neutron-rich beams: indispensable →reaction dynamics?

K.-S. Choi, K. Hagino et al., Phys. Lett. B780 ('18) 455

![](_page_36_Figure_4.jpeg)

simultaneous explanation for  ${}^{9}\text{Li}+{}^{208}\text{Pb}$  and  ${}^{11}\text{Li}+{}^{208}\text{Pb}$  with:  ${}^{11}\text{Li}+{}^{208}\text{Pb} \longleftrightarrow {}^{9}\text{Li}+{}^{210}\text{Pb} \longleftrightarrow {}^{7}\text{Li}+{}^{212}\text{Pb}$  transfer couplings

## Fusion of unstable nuclei

![](_page_37_Figure_1.jpeg)

Phys. Lett. B780 ('18) 455

of neutron-rich nuclei is also important

![](_page_38_Figure_0.jpeg)

electron capture (A,Z)  $+e^{-} \rightarrow (A,Z-1) + v_{e}$ 

towards neutron-rich nuclei

fusion of neutron-rich nuclei when Z becomes small enough  ${}^{24}O + {}^{24}O, {}^{28}Ne + {}^{28}Ne$  etc.

N. Chamel and P. Haensel, Living Rev. Relativity, 11 ('08) 10.

![](_page_39_Picture_0.jpeg)

# **Physics of SHE**

![](_page_39_Figure_2.jpeg)

SHE + neutron-rich nuclei + OQS  $\rightarrow$  new direction