Recent developments in heavy-ion fusion reactions around the Coulomb barrier

Kouichi Hagino Tohoku University, Sendai, Japan

collaborator: J.M. Yao (*North Carolina*)

1. Introduction: H.I. sub-barrier fusion reactions

- potential model and Wong formula
- coupled-channels approach

2. A Bayesian approach to fusion barrier distributions 3. C.C. calculation with "beyond-mean-field" method

4. Summary

Introduction: heavy-ion fusion reactions

Inter-nucleus potential

•above barrier energies
•sub-barrier energies
•deep subbarrier energies

Energy regions

Potential model for fusion

the simplest approach to fusion cross sections: potential model

$$\sigma_{\mathsf{fus}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1) P_l(E)$$

the simplest approach: potential model with V(r) + absorption

Wong's formula

C.Y. Wong, Phys. Rev. Lett. 31 ('73)766

$$\sigma_{fus}(E) = \frac{\hbar\Omega}{2E} R_b^2 \ln\left[1 + \exp\left(\frac{2\pi}{\hbar\Omega}(E - V_b)\right)\right]$$

(single-channel)

 R_b, V_b, Ω_b : s-wave barrier

Generalized Wong formula

N. Rowley, A. Kabir, and R. Lindsay, J. of Phys. G15('89)L269 N. Rowley and K. Hagino, PRC91 (2015) 044617

potential model: V(r) + absorption

<u>Generalized Wong formula</u> [N. Rowley and K.H., PRC91('15)044617]

$$\sigma_{fus}(E) \sim \frac{\hbar\Omega_E}{2E} R_E^2 \ln\left[1 + \exp\left(\frac{2\pi}{\hbar\Omega_E}(E - V_E)\right)\right] + (osc.)$$

Discovery of large sub-barrier enhancement of σ_{fus}

potential model: V(r) + absorption

cf. seminal work: R.G. Stokstad et al., PRL41('78) 465

Effect of nuclear deformation

¹⁵⁴Sm : a deformed nucleus with $\beta_2 \sim 0.3$

Coupled-Channels method

- C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)
 - ✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

K.H., N. Takigawa, PTP128 ('12) 1061

Effect of nuclear deformation

¹⁵⁴Sm : a deformed nucleus with $\beta_2 \sim 0.3$

deformation: single barrier \rightarrow many barriers

Fusion barrier distribution

$$D_{\rm fus}(E) = \frac{d^2(E\sigma_{\rm fus})}{dE^2}$$

- ♦ N. Rowley, G.R. Satchler, and P.H. Stelson, PLB254 ('91) 25
- ◆ J.X. Wei, J.R. Leigh et al., PRL67 ('91) 3368
- ♦ M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48 ('98) 401

K.H. and N. Takigawa, PTP128 ('12) 1061

A Bayesian approach to fusion barrier distributions

K.H., PRC93 ('16) 061601(R)

Fusion barrier distributions

- Coupled-channels analyses
 - \checkmark a standard approach
 - \checkmark need to know the nature of collective excitations
- Direct fit to experimental data

$$D_{\mathsf{fus}}(E) = \sum_{k} w_k D_0(E; B_k, R_k, \hbar \Omega_k)$$

- ✓ phenomenological
- ✓ no need to know the nature of coll. excitations
- \checkmark quick and convenient way
- ✓ the number of barriers? (over-fitting problem)

¹⁶ J.R. Leigh et al., PRC52 ('95) 3151

Bayesian spectrum deconvolution

K. Nagata, S. Sugita, and M. Okada, Neural Networks 28 ('12) 82

✓ data set:
$$D_{exp} = \{E_i, d_i, \delta d_i\}$$
 (i = 1 ~ M)
✓ fitting function: $D_{fit}(E; \tilde{\theta}, K) = \sum_{k=1}^{K} w_k \phi_k(E; \theta_k)$
Bayes theorem

$$P(K|D_{exp}) = \frac{P(D_{exp}|K)P(K)}{P(D_{exp})}$$
$$\propto P(D_{exp}|K) = \int d\tilde{\theta} \, e^{-\chi^2(\tilde{\theta},K)/2} P(\tilde{\theta})$$

$$\chi^2(\tilde{\theta}, K) = \sum_{i=1}^M \left(\frac{d_i - D_{\mathsf{fit}}(E_i; \tilde{\theta}, K)}{\delta d_i} \right)^2$$

most probable value of K: maximize

$$Z(K) = \int d\tilde{\theta} \, e^{-\chi^2(\tilde{\theta}, K)/2} P(\tilde{\theta})$$

(high dim. integral \rightarrow MC method)

or equivalently, minimize the "Free Energy" $F(K) = -\ln Z(K)$

optimize the other parameters for a given value of *K*

Semi-microscopic modeling of sub-barrier fusion

K.H. and J.M. Yao, PRC91('15) 064606

multi-phonon excitations

 $Q(2_1^+) = -10 + -6 \ e fm^2$

Simple harmonic oscillator : justifiable?

- Boson expansion
- Quasi-particle phonon model
- Shell model
- Interacting boson model
- Beyond-mean-field method

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

 MF + ang. mom. projection
 + particle number projection
 + generator coordinate method (GCM)

M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 ('03) 121 J.M. Yao et al., PRC89 ('14) 054306

204

$$Q(2_1^+) = -10 + -6 \ e fm^2$$

□ Beyond MF: Illustration with ¹²C : (GCM+PNP+AMP)

Low-lying spectrum is reproduced rather well.

Recent beyond-MF (MR-DFT) calculations for ⁵⁸Ni

K.H. and J.M. Yao, PRC91 ('15) 064606 J.M. Yao, M. Bender, and P.-H. Heenen, PRC91 ('15) 024301

Semi-microscopic coupled-channels model for sub-barrier fusion

- ✓ M(E2) from MR-DFT calculation ← ✓ scale to the empirical B(E2; $2_1^+ \rightarrow 0_1^+$)
- \checkmark still use a phenomenological potential
- ✓ use the experimental values for E_x
- ✓ $β_N$ and $β_C$ from M_n/M_p for each transition
- ✓ axial symmetry (no 3^+ state)

 among higher members of phonon states

Experimental data: D. Bourgin, S. Courtin et al., PRC90('14)044601. Application to ¹⁶O + ²⁰⁸Pb fusion reaction

double-octupole phonon states in ²⁰⁸Pb

M. Yeh, M. Kadi, P.E. Garrett et al., PRC57 ('98) R2085 K. Vetter, A.O. Macchiavelli et al., PRC58 ('98) R2631

Application to ¹⁶O + ²⁰⁸Pb fusion reaction

cf. C.R. Morton et al., PRC60('99) 044608

potential energy surface of ²⁰⁸Pb (RMF with PC-F1)

J.M. Yao and K.H., PRC94 ('16) 11303(R)

 2_1^+ state: strong coupling both to g.s. and $3_1^ \longrightarrow |2_1^+\rangle = \alpha |2^+\rangle_{HO} + \beta |[3^- \otimes 3^-]^{(I=2)}\rangle_{HO} + \cdots$

Harmonic Oscillator

Anharmonicity

Heavy-ion subbarrier fusion reactions

- ✓ strong interplay between reaction and structure cf. fusion barrier distributions
- ► A Bayesian approach to fusion barrier distributions
 - \checkmark a quick and convenient way to analyze data
 - \checkmark determination of the number of barriers
- ≻<u>C.C. calculations with MR-DFT method</u>
 - ✓ anharmonicity
 - \checkmark truncation of phonon states
 - ✓ octupole vibrations: $^{16}O + ^{208}Pb$

more flexibility:

- application to transitional nuclei
- a good guidance to a Q-moment of excited states

C.C. with shell model?

70

65

75

(MeV)

E_{c.m.}

85

submitted (2016)

K.H. and J.M. Yao, PRC91 ('15) 064606

TABLE I. One-phonon excitation energies $\hbar\omega_{\lambda}$, β_{λ} values, and the associated standard deviation of surface amplitudes $\sqrt{2}\sigma_{\lambda}$ used in the coupled channels calculations for reactions between different nickel isotopes. Average values have been used for the reaction ⁵⁸Ni+⁶⁴Ni.

Reaction	λ	$\hbar\omega_{\lambda}$ (MeV)	β_{λ}	$\sqrt{2}\sigma_{\lambda}$ (fm)	$\Delta R \ ({ m fm})^a$
⁵⁸ Ni+ ⁵⁸ Ni	2+	1.45	0.187	0.337	0.00 ^b
	3-	4.47	0.20	0.368	
⁶⁴ Ni+ ⁶⁴ Ni	2+	1.34	0.19	0.355	0.20
	3-	3.56	0.18	0.336	
⁵⁸ Ni+ ⁶⁴ Ni	2+	1.4		0.346	0.14
	3-	4.0		0.352	

Role of Q-moment of the first 2⁺ state

cf.
$$Q_{exp}(2_1^+) = -10 \pm -6 \ efm^2$$

P.M.S. Lesser et al.,

NPA223 ('74) 563.

Fusion barrier distribution: sensitive to small effects such as β_4

M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48('98)401 the simplest approach: potential model with V(r) + absorption

Wong formula [C.Y. Wong, PRL31 ('73)766]

$$\sigma_{fus}(E) \sim \frac{\hbar\Omega}{2E} R_b^2 \ln\left[1 + \exp\left(\frac{2\pi}{\hbar\Omega}(E - V_b)\right)\right]$$

TABLE I. Optimum values for the fitting parameters obtained with the Bayesian spectral deconvolution. *K* is the number of barriers and w_k is the weight factor for each barrier. B_k , R_k , and $\hbar\Omega_k$ are the height, position, and curvature of each barrier, respectively.

System	K	B_k (MeV)	$w_k R_k^2$ (fm ²)	$\hbar\Omega_k \ ({\rm MeV})$
$^{16}O + ^{144}Sm$	3	59.5 ± 0.0789 61.5 ± 0.153 65.3 ± 0.251	64.3 ± 6.06 28.6 ± 6.53 29.0 ± 4.63	3.58 ± 0.149 2.34 ± 0.506 3.00 ± 0.338
$^{16}O + ^{154}Sm$	5	53.3 ± 1.10 55.9 ± 0.467 58.5 ± 0.758 60.4 ± 0.833 62.4 ± 0.751	4.76 ± 2.87 18.3 ± 3.16 34.7 ± 19.4 40.7 ± 21.4 21.4 ± 10.7	3.96 ± 0.589 4.40 ± 0.438 3.77 ± 0.786 3.90 ± 0.939 3.25 ± 0.866

Bayesian spectrum deconvolution

K. Nagata, S. Sugita, and M. Okada, Neural Networks 28 ('12) 82

✓ data set:
$$D_{exp} = \{E_i, d_i, \delta d_i\}$$
 (i = 1 ~ M)
✓ fitting function: $D_{fit}(E; \tilde{\theta}, K) = \sum_{k=1}^{K} w_k \phi_k(E; \theta_k)$

assumption: the data $d_i = D_{fit} + \delta d_i$

$$\longrightarrow P(d_i|E_i, \tilde{\boldsymbol{\theta}}, K) = \frac{1}{\sqrt{2\pi(\delta d_i)^2}} \exp\left(-\frac{(d_i - D_{\mathsf{fit}}(E_i; \tilde{\boldsymbol{\theta}}, K))^2}{2(\delta d_i)^2}\right)$$

$$\rightarrow P(D_{\exp}|\tilde{\theta}, K) = \prod_{i=1}^{M} P(d_i|E_i, \tilde{\theta}, K) \left[\propto e^{-\chi^2(\tilde{\theta}, K)/2} \right]$$
$$\rightarrow P(D_{\exp}|K) = \int d\tilde{\theta} P(D_{\exp}|\tilde{\theta}, K) P(\tilde{\theta})$$

Bayes theorem

$$P(K|D_{\text{exp}}) = \frac{P(D_{\text{exp}}|K)P(K)}{P(D_{\text{exp}})} \propto P(D_{\text{exp}}|K)$$

most probable value of K: maximize

$$Z(K) = \int d\tilde{\theta} \, e^{-\chi^2(\tilde{\theta}, K)/2} P(\tilde{\theta})$$

Bayesian spectrum deconvolution

K. Nagata, S. Sugita, and M. Okada, Neural Networks 28 ('12) 82

✓ data set:
$$D_{exp} = \{E_i, d_i, \delta d_i\}$$
 (i = 1 ~ M)
✓ fitting function: $D_{fit}(E; \tilde{\theta}, K) = \sum_{k=1}^{K} w_k \phi_k(E; \theta_k)$

assumption: the data $d_i = D_{fit} + \delta d_i$

$$\rightarrow P(D_{\mathsf{exp}}|K) \propto \int d\tilde{\boldsymbol{\theta}} \, e^{-\chi^2(\tilde{\boldsymbol{\theta}},K)} P(\tilde{\boldsymbol{\theta}})$$

Bayes theorem

$$P(K|D_{exp}) = \frac{P(D_{exp}|K)P(K)}{P(D_{exp})} \propto P(D_{exp}|K)$$

most probable value of K: maximize

$$Z(K) = \int d\tilde{\theta} \, e^{-\chi^2(\tilde{\theta}, K)/2} P(\tilde{\theta})$$

(high dim. integral \rightarrow MC method)

or equivalently, minimize the "Free Energy" $F(K) = -\ln Z(K)$

• optimize the other parameters for a given value of *K*