Heavy-ion fusion reactions and superheavy elements

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. H.I. fusion reactions: why are they interesting?
- 2. Coupled-channels approach
- 3. Future perspectives: superheavy elements

Recent review article:

K. Hagino and N. Takigawa, Prog. Theo. Phys.128 ('12)1061.

YITP school on "Recent Progress of Nuclear Structure and Reaction Physics", YITP, Dec. 18-22, 2017

Niels Bohr (1936)

Neutron capture of nuclei \rightarrow compound nucleus

Nature 137 ('36) 351

cf. Experiment of Enrico Fermi (1935) many very narrow (=long life-time) resonances (width ~ eV)

M. Asghar et al., Nucl. Phys. 85 ('66) 305

Niels Bohr (1936)

Neutron capture of nuclei \rightarrow compound nucleus

Wikipedia

forming a compound nucleus with heavy-ion reactions = H.I. fusion

compound nucleus

cf. Bohr '36

NASA, Skylab space station December 19. 1973, solar flare reaching 583 000 km off solar surfa

energy production in stars (Bethe '39)

nucleosynthesis

Proton Neutron Y Gamma Ray

superheavy elements

Fusion and fission: large amplitude motions of quantum many-body systems with strong interaction

- microscopic understanding: an ultimate goal of nuclear physics

Two interactions:
1. Coulomb force

long range repulsion

2. Nuclear force

short range attraction

<u>potential barrier</u> due to a cancellation between the two (Coulomb barrier)

Above-barrier energies
 Sub-barrier energies

 (energies around the Coulomb barrier)
 Deep sub-barrier energies

two obvious reasons:

superheavy elements

```
cf. <sup>209</sup>Bi (<sup>70</sup>Zn,n) <sup>278</sup>Nh
V_B \sim 260 \text{ MeV}
E_{cm}^{(exp)} \sim 262 \text{ MeV}
```

two obvious reasons:

figure: M. Aliotta

NASA, Skylab space station December 19. 1973, solar flare reaching 583 000 km off solar surface

nuclear astrophysics (nuclear fusion in stars) cf. extrapolation of data

two obvious reasons:

✓ superheavy elements

 \checkmark nuclear astrophysics

other reasons:

reaction dynamics
 strong interplay between reaction and structure
 cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

two obvious reasons:

✓ superheavy elements

✓ nuclear astrophysics

other reasons:

✓ reaction dynamics

strong interplay between reaction and structure

cf. high *E* reactions: much simpler reaction mechanisms

✓ many-particle tunneling

- many types of intrinsic degrees of freedom (several types of collective vibrations, deformation with several multipolarities)
- energy dependence of tunneling probability cf. alpha decay: fixed energy

H.I. fusion reaction = an ideal playground to study quantum tunneling with many degrees of freedom

The simplest approach to fusion: potential model

Potential model: V(r) + absorption

$$\sigma_{\mathsf{fus}}(E) = \frac{\pi}{k^2} \sum_{l} (2l+1)P_l(E)$$

 $P_l(E)$: barrier penetrability

Comparison with experimental data: large enhancement of σ_{fus}

Potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

¹⁵⁴Sm : a typical deformed nucleus

Effects of nuclear deformation

¹⁵⁴Sm : a typical deformed nucleus

* Sub-barrier enhancement also for non-deformed targets: couplings to low-lying collective excitations → coupling assisted tunneling

Enhancement of tunneling probability : a problem of two potential barriers

$$P(E) = P(E; V_0) \to w_1 P(E; V_1) + w_2 P(E; V_2)$$

"barrier distribution" due to couplings to excited states in projectile/target nuclei Coupled-channels method: a quantal scattering theory with excitations

many-body problem

still very challenging

two-body problem, but with excitations (coupled-channels approach)

Coupled-channels method: a quantal scattering theory with excitations

if written down more explicitly:

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + V_0(r) + \epsilon_k - E \end{bmatrix} \psi_k(r) + \sum_{k'} \langle \phi_k | V_{\text{coup}} | \phi_{k'} \rangle \psi_{k'}(r) = 0$$

excitation energy

excitation operator

Coupled-channels method: a quantal scattering theory with excitations

full order treatment of excitation/de-excitation dynamics during reaction

Inputs for C.C. calculations

i) Inter-nuclear potential

a fit to experimental data at above barrier energies ii) Intrinsic degrees of freedom

in most of cases, (macroscopic) collective model (rigid rotor / harmonic oscillator)

Further development: semi-microscopic modelling

K.H. and J.M. Yao, PRC91('15) 064606

relativistic MF + GCM

anharmonicity of phonon spectra

J.M. Yao and K.H., PRC94 ('16) 11303(R)

From phenomenological approach to microscopic approach

Macroscopic (phenomenological)

TDHF simulation

S. Ebata, T. Nakatsukasa, JPC Conf. Proc. 6 ('15) 020056

"ab-initio", but no tunneling

TDHF simulation

- *"ab-initio"*, but no tunneling✓ DC-TDHF (Umar, Oberacker, Maruhn)
 - Beyond mean-field approximation
- ✓ Collective Hamiltonian and requantization ...
 K. Wen and T. Nakatsukasa, PRC96 ('17) 014610
 - ✓ Time-dependent Generator Coordinate Method (TD-GCM)

$$|\Psi(t)\rangle = \int dq f(q,t) |\Phi_q(t)\rangle$$

a linear superposition of many TDHF trajectories (Slater determinants)

> cf. Stochastic mean-field method B. Yilmaz et al., PRC90 ('14) 054617

an important future direction

Fusion reactions for SHE

the element 113: Nh

Group -> 1

1

2

3

4

5

6

7

↓ Period

November, 2016

Wikipedia

Fusion reactions for SHE

the element 113: Nh

November, 2016

Chinese Names of New Elements with Z = 113, 115, 117 & 118

Shan-Gui Zhou (周善贵/周善貴)¹ Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China (中国科学院理论物理研究所/中國科學院理論物理研究所)

Future perspectives: Superheavy elements

island of stability around Z=114, N=184

Yuri Oganessian

W.D. Myers and W.J. Swiatecki (1966), A. Sobiczewski et al. (1966)

who is she?

Z=110	Darmstadtium (Ds)	1994 Germany		
Z=111	Roentgenium (Rg)	1994 Germany	r	
Z=112	Copernicium (Cn)	1996 Germany		
Z=113	Nihonium (Nh)	2003 Russia / 2	2004 <mark>Ja</mark> p	oan
Z=114	Flerovium (Fl)	1999 Russia		
Z=115	Moscovium (Mc)	2003 Russia		
Z=116	Livermoriun (Lv)	2000 Russia		
Z=117	Tennessine (Ts)	2010 Russia	113	115
Z=118	Oganesson (Og)	2002 Russia	Nh	Мс

nihonium

Ts

118

oganesson

g

How to synthesize SHE?

Nuclear fusion reactions

e.g., ⁷⁰Zn + ²⁰⁹Bi \longrightarrow ²⁷⁹113

(note) fission barrier in the liquid drop model

$$a = R \cdot (1 + \epsilon)$$

$$a = R \cdot (1 + \epsilon)$$

$$b = R \cdot (1 + \epsilon)^{-1/2}$$

$$ab^2 = R^3 = \text{constant}$$

$$\Delta E = \Delta E_{\text{surf}} + \Delta E_{\text{coul}} \\ = E_S^{(0)} \left\{ \frac{2}{5} (1-x)\epsilon^2 - \frac{4}{105} (1+2x)\epsilon^3 + \cdots \right\}$$

$$E_S^{(0)} = +a_S A^{2/3}$$

$$x \equiv \frac{E_C^{(0)}}{2E_S^{(0)}} = \frac{a_C}{2a_S} \cdot \frac{Z^2}{A} \sim \frac{1}{53.3} \cdot \frac{Z^2}{A}$$

 $E_C^{(0)} = a_C Z (Z-1) / A^{1/3}$

(note) fission barrier in the liquid drop model

$$a = R \cdot (1 + \epsilon)$$

$$a = R \cdot (1 + \epsilon)$$

$$b = R \cdot (1 + \epsilon)^{-1/2}$$

$$ab^2 = R^3 = \text{constant}$$

$$\Delta E = \Delta E_{\text{surf}} + \Delta E_{\text{coul}} \\ = E_S^{(0)} \left\{ \frac{2}{5} (1-x)\epsilon^2 - \frac{4}{105} (1+2x)\epsilon^3 + \cdots \right\}$$

fission barrier:

$$\epsilon_B = \frac{21(1-x)}{3(1+2x)}$$
$$E_B = \frac{98}{15} \cdot \frac{(1-x)^3}{(1+2x)^2} \cdot E_S^{(0)}$$

if two identical nuclei contact:

$$a = R_0 \cdot (1 + \epsilon)$$

$$b = R_0 \cdot (1 + \epsilon)^{-1/2}$$

$$\frac{a}{b} \sim \frac{2R}{R} = 2 \rightarrow \epsilon \sim 0.587$$

$$a = R_0 \cdot (1 + \epsilon)^{-1/2}$$

$$\frac{a}{b} \sim \frac{2R}{R} = 2 \rightarrow \epsilon \sim 0.587$$

$$a = 100 \text{ fusion}$$

$$a = R_0 \cdot (1 + \epsilon)^{-1/2}$$

$$a = 2 \rightarrow \epsilon \sim 0.587$$

$$a = 100 \text{ fusion}$$

$$a = 16.8 \text{ MeV}$$

$$a = 16.8 \text{ MeV}$$

$$a = 0.72 \text{ MeV}$$

Langevin approach

V(E) (MeV)

multi-dimensional extention

- deformation,
- asymmetry of the two fragments

Theory: Lagenvin approach

multi-dimensional extension of:

1.8

Ζ

- \succ to understand the reaction dynamics
- \succ to make a reliable theoretical prediction for fusion cross sections

Hot fusion for Z = 119 and 120

Towards Z=119 and 120 isotopes

hot fusion: ⁴⁸Ca + actinide targets

Dubna: ${}^{48}Ca + {}^{249}Cf \ (\beta_2 = 0.235) \rightarrow {}^{297-x}Og \ (Z=118) + xn$

role of deformation?

Hot fusion: ⁴⁸Ca + deformed actinide target

Open problems

- \succ how is the shape evolved to a compound nucleus?
- Deformation: a quantum effect how does the deformation disappear during heat-up?

Quantum friction

Quantum friction

classical eq. of motion
$$\dot{p} = -V'(x) - V'(x)$$

 γp

a quantization: Kanai model E. Kanai, PTP 3 (1948) 440)

<u>M. Tokieda</u> and K.H., PRC95 ('17) 054604

Towards Z=119 and 120 nuclei

Another issue

$${}^{48}_{20}\text{Ca} + {}_{99}\text{Es} \rightarrow 119$$

 ${}^{48}_{20}\text{Ca} + {}_{100}\text{Fm} \rightarrow 120$

the targets: not available with sufficient amounts Dubna: ${}^{48}\text{Ca} + {}^{249}_{98}\text{Cf} \rightarrow {}^{297\text{-}x}\text{Og} (Z=118) + xn$ ${}^{249}_{98}\text{Cf} (351 \text{ year})$ ${}^{252}_{99}\text{Es} (471.7 \text{ day})$ ${}^{257}_{100}\text{Fm} (100.5 \text{ day})$

 ${}^{48}\text{Ca} \rightarrow {}^{50}_{22}\text{Ti}, {}^{51}_{23}\text{V}, {}^{54}_{24}\text{Cr projectiles}$

cf. ${}^{46}_{21}Sc_{25}$: relatively small neutron number

how much will fusion cross sections be reduced?

nobody still knows

Towards the island of stability

neutron-rich beams: indispensable

- ➤ how to deal with <u>low beam intensity</u>?
- reaction dynamics of neutron-rich beams?
 - ✓ capture: role of breakup and (multi-neutron) transfer?
 - \checkmark diffusion: neutron emission during a shape evolution?
 - ✓ survival: validity of the statistical model?

structure of exotic nuclei

more studies are required

Fusion of halo nuclei

12,13,14,15C + 232Th

- 1. Lowering of potential barrier due to a halo structure
 - → enhancement
- 2. effect of breakup
- 3. effect of transfer: equally important

M. Alcorta et al., PRL106('11)172701

Future directions - 2

Towards the island of stability neutron-rich beams: indispensable

K. Hagino, A. Vitturi, C.H. Dasso, and S.M. Lenzi, Phys. Rev. C61 ('00) 037602

simultaneous treatment of breakup and transfer

 \rightarrow an important future problem

Heavy-ion fusion reactions around the Coulomb barrier

✓ Strong interplay between nuclear structure and reaction
 ✓ Quantum tunneling with various intrinsic degrees of freedom
 ✓ coupled-channels approach

Remaining challenges

 \checkmark microscopic understanding of heavy-ion fusion reactions

Future perspectives: superheavy elements

- ✓ how to reduce theoretical uncertainties?
- ✓ Towards heavier SHE (Z = 119, 120)
- \checkmark Towards the island of stability

investigations of physics of SHE with neutron-rich nuclei as a keyword