Collective excitations of Λ hypernuclei

Kouichi Hagino (Tohoku Univ.) Myaing Thi Win (Tohoku Univ.) F. Minato (JAEA)

1. Introduction

- 2. Deformation of Lambda hypernuclei
- 3. Vibrational excitations of spherical hypernuclei
- 4. Summary

Introduction

 Λ hypernucleus

Aparticle: the lightest hyperon (no charge, no isospin)

*no Pauli principle between nucleons and a Λ particle

O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57('06)564

Impurity effects: one of the main interests of hypernuclear physics **how does Λ affect several properties of atomic nuclei?**

➢ size, shape, density distribution, single-particle energy, shell structure, fission barrier.....

the most prominent example: the reduction of B(E2) in $^{7}{}_{\Lambda}$ Li

about 19% reduction of nuclear size (shrinkage effect)

K. Tanida et al., PRL86('01)1982

Self-consistent mean-field (Hartree-Fock) method:

optimized shape can be automatically determined = suitable for a discussion on shape of hypernuclei

≻Recent Skyrme-Hartree-Fock +BCS calculation by Zhou *et al.*

RMF for deformed hypernuclei

$$\mathcal{L} = \mathcal{L}_N + \bar{\psi}_{\Lambda} \left[\gamma_{\mu} \left(i \partial^{\mu} - g_{\omega \Lambda} \omega^{\mu} \right) - m_{\Lambda} - g_{\sigma \Lambda} \sigma \right] \psi_{\Lambda}$$

$$g_{\omega\Lambda} = \frac{2}{3}g_{\omega N} \longleftarrow \text{quark model}$$
$$g_{\sigma\Lambda} = 0.621g_{\sigma N} \longleftarrow {}^{17}_{\Lambda}\text{O}$$

cf. D. Vretenar et al., PRC57('98)R1060

 $\Lambda\sigma$ and $\Lambda\omega$ couplings

> parameter sets: NL3 and NLSH > Axial symmetry > pairing among nucleons: Const. gap approach △_n = 4.8/N^{1/3} △_p = 4.8/Z^{1/3} (MeV) > A particle: the lowest s.p. level (K^π =1/2⁺) > Basis expansion with deformed H.O. wf

Myaing Thi Win and K.H., PRC78('08)054311

- •in most cases, similar deformation between the core and the hypernuclei
- •hypernuclei: slightly smaller deformation than the core

Exception: ${}^{29}_{\Lambda}$ **Si** Disappearance of deformation

oblate (²⁸Si)
$$\xrightarrow{\Lambda}$$
 spherical (²⁹ _{Λ} Si)

Myaing Thi Win and K.H., PRC78('08)054311

Potential energy surface (constraint Hartree-Fock)

a flat energy curve

 \rightarrow a large change in nuclear deformation due to a Λ particle

the same conclusion also with NLSH and/or with constant G approach to pairing

Myaing Thi Win and K.H., PRC78('08)054311

Another example: ${}^{13}_{\Lambda}C$

 $oblate \rightarrow spherical$

Myaing Thi Win and K.H., PRC78('08)054311 M. Isaka, K. Kimura, A. Dote, and A. Ohnishi, PRC83('11)044323 Vibrational Excitation of spherical A hypernuclei

Application of **RPA**

$$Q^{\dagger} = \sum_{p,h\in p,n,\bigwedge} \left(X_{ph} a_p^{\dagger} a_h - Y_{ph} a_h^{\dagger} a_p \right)$$

Application to ${}^{18}_{\Lambda\Lambda}O$

- even mass hypernucleus

Skyrme HF + RPA SkM* + Yamamoto No. 5 + Lanskoy SΛΛ1

F. Minato and K.H., PRC85('12)924316

low-	lyi	ng	col	le	ect	ive	states	

		21+	31-		
nucleus	E (MeV)	B(E2) (e ² fm ⁴)	E(MeV)	B(E3) (e ² fm ⁶)	
¹⁶ O	13.1	0.726	6.06	91.1	
¹⁸ _{AA} O	13.8	0.529	6.32	67.7	

Dipole motion: soft dipole Lambda mode

dipole oscillation of Λ particles around the core nucleus

Dipole motion: soft dipole Lambda mode

dipole oscillation of Λ particles around the core nucleus

Summary

Shape of Λ hypernuclei: from the view point of mean-field theory (RMF)

➢ deformation: an important key word in the sd-shell region
➢ small effect of Λ in most of hypernuclei

 \rightarrow Shape of ²⁸Si : drastically changed due to Λ

Vibrational excitations of Λ hypernuclei

>New dipole mode (soft dipole Λ mode)

A challenging problem

> full spectrum of a single Λ hypernucleus

odd mass, broken time reversal symmetry, half-integer spins

